Arch. Mech., 52, 4-5, pp. 685-711, Warszawa 2000

Iterative methods for solution of contact optimization problems
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NuMERICAL TREATMENT of frictionless contact optimization problems is presented on
the basis of linear elasticity. The minimum of the pressure maximum or other me-
chamnical values (torque, frictional power loss) is sought by controlling the pressure
distribution. Smooth contact pressure distribution can be achieved by using an ap-
propriate controlling function on the controlling subdomain. The contact problems
are investigated by means of the principle of minimum complementary energy and us-
ing the augmented Lagrangian technique. Axially symmetric problems are discretized
by p-version finite elements. The optimal shape of a roller bearing is determined by
the application of a new controlling function, which takes the rigid body translation
and rotation of the roller into consideration. Effectiveness of the proposed algorithms
is demonstrated by numerical examples.

1. Introduction

IN ENGINEERING PRACTICE, connections of machine elements are frequently mod-
eled as unilateral contact problems. The contact surfaces should be shaped in
such a way that the arising contact stresses remain under a prescribed limit.
Consequently, the singularity in the stress field and the danger of fatigue can
be eliminated, further only low level wearing can take place on the contacting
surfaces.

Contact optimization problems can be divided into two groups. The first
group of problems is based on kinematical quantities [1], while the second group
of the problems is using dynamical parameters.

In the first case, the following kinematical quantities are minimized in a
certain region of one of the bodies (or in several regions of both bodies): the
absolute value of the displacement vector, the difference between the largest and
the smallest displacement projected on a given direction etc. Let us suppose
that the theory of linear elasticity is applicable, and friction is not taking place
between the bodies.

The kinematical optimization problem is solved in two steps.

http://rcin.org.pl



686 I. PACZELT

Step 1. We solve the mathematical programming problem, which is linear or
quadratic, depending on the objective function. The solution involves the contact
pressure.

Step 2. Knowing the contact pressure and using the geometrical condition
between the bodies, we determine the shape of that body for which the objective
function is not composed [1].

In the second case, when dynamical quantities are minimized during the
optimization, we can set up the following problems:

Problem 1. Minimization of the contact pressure maximum.

Problem 2. Optimization of the contact pressure taking also the frictional
power loss into account.

Problem 3. Optimization problem for minimization of the maximum equiva-
lent stress.

Problem 4. Maximization of any mechanical value (torque, force...).

The papers by CONRyY [2], KLARBRING [3] and PETERSON [4] are concerned
with constant contact pressure distribution. The mathematical background is
given for these problems by HASLINGER and NEITTAANMAKI [5]. Numerical so-
lutions are given by KLARBRING [3] and ODA et al. [6] for contact problems of an
elastic or elastic-plastic punch and a rigid target, using displacement based linear
and quadratic finite elements. Approximately constant contact pressure distri-
bution is achieved in [6] and [7] by appropriate shape optimization for axially-
symmetric bodies assuming that a change in radius has no effect on the stiffness
and compliance matrices. A number of papers e.g. OH et al. [8], HARNETT [9)],
CHIU et al. [10], de MuL et al. [11], PACZELT et al. [12] are devoted to the
issue of the roller’s rounding-off. In these papers except the last one the radius of
the rounding-off is given, which results in generally non-smooth contact pressure
distribution. Works [13, 14] and [12] give solutions for 2D and 3D problems, pro-
vided that the contact pressure distribution is influenced by partial controlling
of the contact pressure and by minimizing the maximum of the contact pressure.

Discretization of the domain with p-version finite elements is advantageous
(SzABO et al. [15]), since it results in fast convergence, and the high order map-
ping assures accurate geometry for the shape optimization.

In this paper axially symmetric and 3D contact shape optimization prob-
lems, have been investigated. In case of axially symmetric problems the contact
pressure is controlled on the whole contact region, and the p-extension of the
finite element method is applied for the discretization. For 3D problems, the
contact pressure is controlled only partially on the contact surface and the punch
performs a rigid body rotation in addition to the rigid body translation.
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ITERATIVE METHODS FOR SOLUTION OF CONTACT OPTIMIZATION PROBLEM 687

2. Formulation of the contact problem

Let us consider the contact problem of two elastic bodies (e = 1,2). The
surfaces of the bodies will be divided into three regions: S;; denotes that part of
the body where displacements u, are given, in S§ the traction t, is applied, while
S¢ represents that part of the bodies where contact is expected. The S part of
the body is called the proposed zone of the contact. The bodies are loaded by
the body force b®, initial stress Ty and initial strain Aj. We are interested in
finding the displacement vector field u, strain A and stress T tensor fields. In
the domain V¢ we have the equilibrium equation

(2.1) T -V+b*=0, r e Ve,

the strain-displacement relationship

(2.2) A“z%(u"’ov+voue}, re Ve,
and Hooke's constitutive law:

(2.3) TS =T¢+D® - (A°=KT) , r eve,

where D¢ is a fourth-order tensor of the material parameters, “.”, “..”, “o”, is the
symbol of a scalar, double scalar and tensor product, respectively, and V is the
Hamiltonian differential operator.

The boundary conditions are:

(2.4) u’ = u,, re S
and
(2.5) PE.nC =1, r € S5;.

For the examination of the contact/separation conditions in the proposed zone
of contact, we shall consider the projection of the displacement in a prescribed
direction only (e.g., normal to the surface n.). The contact normal vector n,
determines the points @1, Q2 on the corresponding surfaces S! and S?, where
the two surfaces may contact each other (see Fig. 1). Therefore the contact
surface will be denoted by S.. We denote the displacement projected in the
direction of n. by ufy= u®- n., the normal stress by o, = n®-T¢- n° and the
initial gap between bodies by h. We define the distance (gap) after deformation

(2.6) d=d(u)=u¥ —-ul+h >0,
and the contact pressure

(2.7) p=-n"T'n, = n?T%n, = —n'T'n! = —n2T%n? > 0.
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Fic. 1. Normal displacements u’, (e = 1,2).

Denoting the contact zone by C and the separation (gap) zone by G
(S = CUG), we have

(2.8) g p >0, reC,
(2.9) a >0, p=0, re€ G,
(2.10) pd = 0, r€S,.

From the condition of frictionless contact we have zero tangential stress
(2.11) 7" =eS-TF-n%=10, resS;,

where ef is a tangential unit vector.
If one of the bodies - let us suppose it to be the first one — can move as a
rigid body, the equilibrium equations for this body must be satisfied

(2.12) F:Fo—fpncdS:O, M=M, - /rxncpdszﬁ,
o g1

where F,, M, are the resultant force and moment at the origin of the coordinate
system, and r is the position vector, “x“ is the symbol of a vector product.
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3. Weak formulation

3.1. Principles based on the total potential energy

For investigation of the normal contact problem we can use the principle of
minimum potential energy II (u) subject to two types of kinematic conditions:
u=u,onre€ S,andd>0onr€S,.

Formally

(3.1) min{lI(u)| w=u,, res, d>0, res},

which must be solved satisfying the variational inequality 0IT > 0. The detailed
mathematical discussion of this variational inequality and other variational prin-
ciples can be found in books by HASLINGER et al. [5], KiIKucHI et al. [16] and
in the paper by TELEGA [17].

Here

2
62 Tw=Y4;[(AW-4)-D-(AW-A4,) av

e=1 Ve

+[A(u)--TOdV—/u-de—/u-todS
‘..'C

Ve Sy

Practically, instead of the problem (3.1) we can use another method, in which the
contact constraints can be introduced via the Lagrangian multipliers or penalty
terms. In the Lagrangian multiplier technique we are taking the variation of the
following functional

(3.3) L4 = clA (u,p) = I (u) - /pd{u) ds
Se
with respect to u and p satisfying the conditionsu=u, reS,, p>0 re S
respectively, that is
(3.4) LA =0, =Lz,
In the penalty method we have the next functional

(3.5) LPE = £PE () = T (u) + %fc;\r (d~ (w))*ds,
5
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where ¢y >> 0 is the penalty parameter, and d~ denotes the negative part of d.
From the variational equation 8, £L”¥ = 0 we have a formula for contact pressure

(3.6) p=—cyd (u).

As ey — oo we have d~ (u) — 0, that is the d > 0 condition can be satisfied
approximately. The correct choice of the penalty parameter is essential, because
the condition number of the coefficient matrix increases as the penalty param-
eter increases. Using p-version finite elements [15, 18], ey ~ 100E — 1000E is
recommended, where E is the Young modulus.

Combining the Lagrangian method and penalty method we have the aug-
mented Lagrangian functional in the form:

(3.7) EW=owmrﬂum—[mmnﬁ+§/qﬂaw?w'
C C

where p is the Lagrangian multiplier, which is kept constant during an iteration
loop. From the variational equation d, LAY = 0 we have a formula for the normal
contact stress

(3.8) on =0k =—(p—cnd(u)).

During the iteration process, the contact pressure is updated using the formula:
(3.9) p¥) = <P(k"” —cnd (n”")) .

where the operation < - > is defined by

(3.10) 0 = 5 0+ 1ol

In the (k + 1)th iteration loop the contact surface is subjected to p*) as an
external load in the variational formula:

(3.11) 8,70 (ul+D) =g (ul+))

= / 5d (u) (pt'ﬂ gl (u“‘“))) ds = 0.
c
3.2. Principle based on the modified complementary energy

Introducing the Green’s function H®(x,x’) and the normal displacement
Uy 10ad due to the given loads, the rigid body displacement of the punch (body 1)
projected in normal direction is

(3.12) up (x) = [Ar + Ay x r(x)] - ne (x),

http://rcin.org.pl



ITERATIVE METHODS FOR SOLUTION OF CONTACT OPTIMIZATION PROBLEM 691

where Ap = [Ap1 Ap2 Apg] is the rigid body translation vector, Ay =
[Am1 Am2 Aas) is the rigid body rotation vector. Then we have the following
functional to be minimized:

(3.13) LC = LC (p, Ar, Am) = %/ fp(x) (Hl (x,x')

S. St

+H? (x,x)) p(x') dS'dS + [p (4} j0ad — UN.joad + h) dS
Se

—Ap-F = Ay - M.
The following variational equations and inequalities can be written:
(3.14) S BC =1

which give the equilibrium equations for the punch (body 1) performing rigid-
body displacement, and

(3.15) 5L°>0, p>0 =x€8;

represent here the contact and separation conditions (2.8) - (2.10).

4. Discretization of the functional

4.1. Approximation of the displacement and contact pressure fields

The displacements of the contacting bodies are approximated in the usual
form

(4.1) u® = u’(x) = N°(x) q°,

where the shape functions consist of nodal points modes, side modes and internal
modes, and q¢ is the vector of displacement parameters [15]. The p-version
computation is based on this approximation resulting in high degree of accuracy.
The strain vector is given by the following formula:

(4.2) Af 5 £f =¢(x) = 0u® = B® (x) ",

where B€ (x) is the strain-displacement matrix. The stress vector can be ex-
pressed as

(4.3) T¢ = 0° = 0° (x) = o, (x) + D (x) (B® (x) q° — €} (x)),
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where D® (x) is the constitutive matrix, €5, of are the initial strain and stress
vectors, respectively. Using (4.1) — (4.3), the total potential energy (3.2) can be
written in discretized form:

In
(4.4) I1¢ (u) -+ I1® (q°) = §qef (KCqt—267),
where
(4.5) K® = / B*"DB¢dV

v,

is the element stiffness matrix,
(4.6) £t = / NTbeaV + / NTt, dS + f B (D%¢ - ¢5)dV
Ve se Ve

is the element load vector, and T' denotes the transpose of a matrix.
The approximation of the contact pressure by a function of class C? is rec-
ommended

(4.7) p=px)=PT (x)p=[A P, .]p, x €S,

where p is the column matrix of contact pressure at the nodes, P; is the coordinate
function of the i-th node.
The gap occuring after deformation is computed by the following projection:

(4.8) d=u} —ul +h=-L'(x)q' + L?(x)q® + h = L(x)q + h,

where the matrix of shape functions L¢(x) is constructed by the use of N€ (x)
and the definition of the normal displacement uf. The vector of displacement
parameters for the whole system is given as q7 = [q”‘ q"n‘] ;

The last integral in the functional (3.3) can be approximated in the following
way:

(4.9) /pd ds = pT/PL dS q + pT/Ph dS = —p’ ([G' G?] q—-h)
Se Se Se

= -p’'Gq+p'h =p’d,

where d = —Gq-+h and the penalty term in (3.7) can be written in the discretized
form
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_1IT
(4.10) -;-/CN (d(u))*‘dsz%q’f /[ LI;T ]CN [-L'L?] dS q
C‘

-

le'I‘ 1 A Cll _Cl'2
+ 2 h dS } + const = =q
2 _Q2l (2

; 1 y
+q7 [ f?,h ] + const = —2-qTCq + q” fj+const,

where C is the contact stiffness matrix.
From the integral (3.7), the load vector f; which corresponds to the contact
pressure is

il 7
(4.11) /d(u)pdS—»q /[ L27 ]pdqu
(v 5]

gl "
f2p =q f.
P

Substituting (4.7) into (2.12) we have the equilibrium equation

(4.12) fr—Gip =0,

where fp is the external load vector and

B n:(x) P (%)
(4.15) Gp= / [ - ) e el Eile) . ]ds
[

is the geometrical matrix.

4.2. Discretized functionals

Finally the discretized form of the £54 and £AV functionals are written as:

(414) £ =L (qp20)=) {%q‘*TK“qC = q”f‘*} +p" (Ga—h),
€

/ 1 Dk
415) £ = AV (q) = LafTKea® — afTeel + 2oTC

+qT (£ — fp) .

By substitution of (4.7) into (3.13), the modified complementary energy has the
following discretized form:

oy =5 1
(4.16) L€=L"(p20,))=;p Hp+p'1- A" (Grp —fr),
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694 1. PAczELT

where
H= / / P (x) (H (x,x) + H? (x,x')) PT (x) dS'dS = H'+H’
S. S
is the influence matrix, and
= / P (4} 10ad = Njoad + 1) dS
Se

is a displacement vector due to the external load and initial gap.

4.3. Systems of algebraic inequalities

Seeking the extremum of the functions (4.14), (4.16) and taking the Kuhn-
Tucker conditions into consideration, the following formulae can be written

LA LA
(4.17) a;qe =0, d= _ng >0, p >0, p’d =0,
o, c i
(4.18) %:0, d=%%zo, p>0, pid=0.

If the determinant of matrix K¢ is not zero, the vector q° can be expressed from
the following equation

Lk

(4.19) o

=0 =Keq8+ GeTp _fe‘

and we may substitute it into the inequality (4.17). After some straightforward
transformations the compliance matrix is written as

(4.20) H°=G*(K°)~' G,

the displacement vector is

(4.21) ufyes = —G® (K°) ' £,

and using (4.20) and (4.21), we have the gap in a discretized form
(4.22) d= (H'+H?) p+ uf,q + g + h > 0.

Let us consider the contact problem when the punch (body 1) has performed a
rigid body translation, that is detK' = 0.
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a) #

F1G. 2. Two variants for dividing the punch (body 1) into two parts denoted by a and
b, (the variant b is recommended).

Let us partition (4.17) of the body 1 in such a way

1 1 1 1
Kia K q GT f,
423 aa ( [ a ] + [ f] = a :
23) [ Kie K ] qb G/ e fy
that the matrix block K}, is not singular (see Fig. 2). Expressing q} from the

first equation and substituting it into the second one, we have an equation in the
reduced form:

(421) K:!edqf}» b Gl].g(lp == fr]eda

where

r 1
K|1-ed = | Kpp — Kpa (Ktm)_l Kab] )

r Al
GL; o= _GE - Kpa (Kao.}-] Gg] s

fl, = [f - K (K *lf]1
red — |1 b(:( aa) a

Passing to the target (body 2), three Eqgs. (4.19) - (4.21) remain valid in their
original forms. Then

1

q
£ af’LA 1 1 2 T
(4.25) d=- o5 =-Gq+h=-[G! G} G*]| q} | +h
2
q

= _Gl iqfl) 26 (H] + H2) P e u]zoad+ulioad+h 2 0‘

rec
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where : 1

H' = Gclx (K}m)_ GéTl ulloa.d = "‘Grlz (Ktlm)‘_
Knowing Eqgs. (4.24) and (4.25), the system of inequalities to be solved has the
form

£

H'+H? *Grl‘ed p “izoad i ulloa.d +h d
(4:26) 1T 1 i 1 ¥ [ 0 } :
“Gred -Kred 9 fred
p0,. d>0, p'd=0
The matrices H® (e = 1,2) are constructed by the solutions of loads P;

(¢t=1,..., KONT) applied to both of the bodies [19]. The rigid body displace-
ments and rotations should be constrained and the P; load must be equilibrated
by appropriately chosen external loads.

There is another approach, when the matrices are blocked as it is shown in
Fig. 2b, that is G} = 0, which involves also H!= 0 for the punch (body 1). The
size of the vector g} can be reduced to the degrees of freedom located on the
contact surfaces in a similar way as it is applied in the sub-structural technique.
From (4.18) we have the following inequality system which is formally similar to
(4.26):

30 H‘_j e el e,

PEO- dEO‘ pTd:-O
The algebraic system of equations associated with (4.15) can be written as follows:

K!+cH _Cl2 q! fl"'f}lz - f;
(4.28)

Il

-C*  K?*4+C% | | ¢ 27 + £2

where the matrix C¥ is modified to fulfill the contact/separation conditions.

The iterational KALKER procedure [11, 20| with the control of the sign of p
can be applied for solving (4.26) — (4.28). The contact conditions are checked
in the Gauss or Lobatto integration points of the contact elements during the
solution of (4.28). Knowing the updated contact pressure p'*+1) the integrals
(4.10) and (4.11) can be computed again, that is we have a new penalty (contact)
matrix C, and new vectors f, and f,. The (k + 1)th displacements are obtained
from the solution of (4.28). The procedure is terminated when the following
condition is fulfilled:
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/|p(k+1) g p(k)| s

Se

(4.29) <1075

/ ks
S
REMARKS

1. Since d(u) is computed in a local coordinate system, the elements which
have boundaries on the contact surface, must be transformed from the global
coordinate system to the local one. The transformation is performed by the least
squares fitting [18].

2. When the p-version is used, then accuracy is typically high enough for
singularities to induce oscillations in the numerical solutions. The oscillations
are minimized when nodes are located at the boundary of the contact zone. In
the contact problems when the ends of contact zone are not situated in nodal
points, the derivatives of the shape functions cannot have the appropriate jumps
there. By moving the nodal points to the ends of the contact zone C, the jump
in the derivatives can be represented in the discretized problem. The positioning
technique can be found in [18]. j

3. The system of inequalities (4.26) and (4.27) is a Linear Complementary
Problem, which can be solved by different algorithms as given e.g. in [21, 22| and
[23].

4. In the work [24], a two-level algorithm is employed for solution of the
contact problem using Lagrangian multipliers.

5. Contact pressure optimization problems

In optimization problems, the design parameters are usually concerned with
material parameters, shape, characteristic dimensions (wall thickness, cross-
sections), support system, loads, inner links, reinforcement and topology MROZ
[25]. The sensitivity analysis is related to optimal design problems where design
variables are to be determined by requiring minimization/maximization of the
objective function subjected to specific design constraints. The references [5, 26,
27, 28] are using the sensitivity analysis for solution of the contact optimization
problems.

The contact pressure optimization was investigated for the elastic punch and
rigid target problem in case of linear elasticity. It was proved that designing
the shape of a rigid body in contact with a fixed linear 2D elastic body by
minimizing the potential energy under an isoparametric constraint, results in a
uniform contact pressure distribution (3, 29, 30].
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At some situations when the shape of an elastic body with a flat rigid foun-
dation is chosen, the displacement gradients must be small [31].

In many earlier works [2, 7, 32], the maximum contact pressure was chosen
as the objective function, but it was not differentiable. The articles [5, 29, 30]
and [4] are using the total potential energy as a cost function, and the integral
of the gap function as the isoparametric constraint. It is interesting that such a
cost function is differentiable despite the fact that the mapping from design to
state (displacement, stress) is not.

In many practical problems the bodies are in contact, therefore the elimi-
nation of the stress singularities is an important engineering task. In order
to overcome this problem, application of the contact pressure control is recom-
mended, which assures smooth contact pressure distribution as well as zero value
on the border of the contact zone. We note that the constant contact pressure
does not satisfy these conditions. This work extends the results of [12, 13, 14] by
including rigid-body displacement and rotation of the punch.

5.1. Control of the contact pressure

In our optimization problems we suppose that the bodies are in contact on
the whole sub-domain §2, of the contact zone S, = . The contact surface is
modified so that the following function is held for the contact pressure

(5.1) p (%) = v (X) Pmax, x € £,

where the chosen control function must satisfy the condition 0 < v (x) < 1, and
Pmax = max p(x), x = [s t], where s and ¢ are surface coordinates in the
region 2.

In the sub-domain Q,, (2 = Q.U Q,.) the satisfaction of the following in-
equality is required:

(52) X (x) =V (x)pmax = P{x) > 0, X € Qpe.
Let us define a function V (s) of class C' in the subregion Q.:

Vig)=0, D=3l

o= JTls=L) ]
V("”“’[(Lri])] “‘2[( )J S,
(63) V(s)=1, ILs<s<Ls,
e P =TT (s—L3) 1° _
e s g ] e gy ¢ mmesw
V(s)=0, Ly<s<L.
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dVv
In this case i e 0 at s =L, and s = Ly (see Fig. 3).
S

1

081 4

06} A

04} R

o2t -
0 . ; = . : . . L
10 20 30 40 50 60 70 80 %0

0 100

V(s)

s [mm]
F1G. 3. Function V(s) in Q. L, = 10, Ly = 30, L3 = 60, Ly = 80, L = 100.

In 2D contact problems v(s) = V(s) in Q.

In 3D contact problems it is supposed that the punch (body 1) is subject
to rigid body translation and rotation, €2, is a line s, and the rotation vector is
perpendicular to this line. We define the controlling function along the line s in
the following form: .

(5.4) v(s)=V(s) (1+8(3)"),

where B can be determined from equilibrium equations of the punch, n strongly
influences the shape of v(s); it is recommended to choose it from the interval
10 £ n £ 15. In the direction ¢ we introduce a simple function o (¢) = 1, thus
the controlling function is defined on Q as

(5.5) v(x)=v(s)v(t).
5.2. Formulation of the optimization problem for axisymmetric bodies

The axially symmetric problem shown in Fig. 4 is discretized by p-extension
elements. The geometry of the punch is given by inner radius R, = 20 mm and
outer radius Ry = 120 mm. There are 5 elements in radial direction (nelr = 5),
and 3 elements in axial direction (nelz = 3). The order of approximation is p = 8
using the truncated space [15]. The following four problems have been analyzed:

P1. The displacement w, is prescribed on the top surface of the punch.
Using the controlling function with given parameters L; (j = 1,...,4), the shape
optimization is performed on the punch, keeping its unloaded original length fixed
in axial, direction. Denoting by Ah the gap function, the optimization problem
is given by variable s = R — R,

(5.6) min {pmaxlp > 0, d=d(p,u,Ah) =0, x=v(8)Pmax —p(s) =0,
minAh = 0}.
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P2. Applying the displacement and controlling function of problem P1, the
shape optimization is performed on the punch yielding a given value of compres-
sive force F),

Ry
(5.7) min{Praxip>0, d=dip,u,Ak)=0, x=0 Fp=21r/deR
Ry

P3. The punch is loaded by constant pressure p = 100 MPa on its top
surface. Let us determine the shape of the punch using a controlling function
with parameters Lo — Ly = 20 mm, L3 = 80 mm, Ly = 100 mm, and maximizing
the torque My

My

Ry
(5.8) — = 2«/3% dR,
H B

where p is the friction coefficient. It is evident that the maximum of the torque
is achieved when only the outer corner of the punch (R = Ry) is in contact, and
the minimum value occurs when only the inner corner of the punch (R = Ry) is
in contact.

Since the contact force is F, =« (Rﬁ - Rg) P, SO

(5.9) MP™ = pur (R} - R?)pRy, MP™ = pm (R§ — B}) pRy.

Prescribing the maximum of the contact pressure pmayx, the optimization problem
is formulated as follows:
M i
(5.10) max —T| p20, d=d(p,u,Ah)=0, F=F,— 2?T/deR=0,
I
Ry

x =v(s,Ly,La(Ly1); L3, Ly fixed) pmax — p (s) = 0},

where the parameters u, Lj, Ah,p are unknown.

P4. The relative angular velocity w of the punch is given. The shape of the
contact surface is optimized in order to minimize the frictional power loss by
applying the controlling function with parameters of L; =0, L =20, Ly — L3 =
20 mm. The power loss is written as

Ry
(5.11) = /Rw;zp?rR dR = Myw.
R,
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The closer is the location of the resultant of the contact pressure to radius Ry,
the smaller will be the frictional power loss, thus the optimization problem is
formulated as

(5.12) min{ﬂ%!pzﬂ, d=d(pu,Ah)=0, F =0,

x = (s, L1, Lo fixed; L3 (L4),Ls) Pmax — p(8) =0},

where the parameters u, Ly, Ah and p are unknown in the case of given pmax.

5.2.1. Iterational algorithm for the solution of P1 - P4. The above prob-
lems are discretized when we know the location of the Lobatto integration points,
where the contact conditions are checked. The discretized problems are solved
with a relatively fast convergent algorithm. The discretized quantities are de-
noted by p”‘]‘ pﬁ,’f;x, d®) An®) u%k), u:‘.\gk} in the k-th iteration loop. The
same control function v is used in problems P1, P2, and pnay is given in P3, P4.

The steps of the solution process are as follows:

1. Solution of the original contact problem : p(®, pE,?,},x, k=0.
2. k=k+1.
3. Computation of the new p*) vector from the following equation

x=vp) - pFl =0,

REMARKS

a) In the problem P2:

(k=1) _ FP i i
Pmax " = Ry = Iv.
/‘ZwR*u dR
Ry,

b) In problems P3, P4 the function v defined by new values of L; or Ly to
achieve

oL . L F,
pgfaxl} — Pmax (gl\’EIl)| <0.01, pg:axl} = ??"
v

4. Both the separated bodies are loaded by p*). In the problem P3, P4, the
punch (body 1) is supported by a vertical spring element in order to solve the

system of algebraic equations.
5. Evaluation of the vector m*) = u}\EkJ — ufék).
6. Determination of the minimum value of vector m*) — m = min (mg-k)) :
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7. In problems P1, P3, P4
Ah®) = m(*) — me, el = [ 1 U0 (et }

In the problem P2 : Ah(*) = m(®*),
8. Solution of (4.28) using the new shape due to Ah(¥),
9. Checking of the convergence condition

Ry

htol = 2?1'/

Ry

R (Ah“") - ﬂh““l))
Ahk)

dR < 0.0001 = 9.

If htol > 9, then back to step 2 else stop.

5.2.2. Numerical examples. Material properties of the problem shown in
Fig. 4 are Young modulus E = 2 - 10° MPa, Poisson’s ratio v = 0.3. The
prescribed displacement of the punch on the boundary located at Z = 80 mm is
wo = —0.15 mm. The initial gap function is k = 0.00004 - (R — 20)2. The stress
distribution computed on the initial shape is shown in Fig. 4b.

Mesh a) Initial gap h=0.00004"(R-20)*"*2 b.)

o

Z [mm]
3
1
I
|
l
i
|
|
|
|
3
3
o

80

sigma-z [MPa]

]
4=
(=]
o

70

n
o
na
<]

40 60 = 80
0
0 50 100 100 450" 50  Z[mm]
R [mm) A [mm]

mesh 5'3, k=1(-).k=2(- =) ,k=3(+),k=4{0) c.) Optimiz, with w0=-0.15 mm d.)
0.2

0.1 qu@%

& £
0.1 2
N3

2 £

(=]

7]

20 40 60 80 100 120 100 40750  Z[mm]

gap [mm]

80

FiG. 4. The mesh of an axially symmetric problem, stress distribution . in the punch,
optimal solution of the initial gap and contact pressure distribution of problem P1.
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Optimization problem P1. The contact optimization problem was solved by
the iteration of Sec. 5.2.1, using the parameters of L; = 20 mm, Ly = 40 mm,
L3 = 80 mm, Ly = 100 mm. The modified shapes AR%) of the contact surface
are shown in Fig. 4c for iteration loops k = 1,2,3,4, and the final optimal
normal stress is in Fig. 4d. The computed contact pressure maximum is ppax =

401.39 MPa and torque

L —6.39-10° Nmm for the optimal solution.
1

Optimization problem P2. The problem P2 was solved for compressive force F, =
5000 kN. The shape of the contact surface is shown in Fig. 5a, the computed
stresses op,0,,0, are in Fig. 5b, 5¢ and 5d. The computed contact pressure

M
maximum is pmax = 165.78 MPa and torque —p—T = 2.64 - 10 Nmm for the

optimal solution.

mesh 5°3, k=1(-) k=2(- -}, k=3(+),k=4(0) Optimiz. with w0=-0.15 mm and Fp=5000 kN b.)

20 40 60 B0 100 120

sigma-r [MPa]

c.) d.)

g% - g
T eteSaaty

N T 5 =2
7 N Y -100
E_’ BO Eu 80
@ -50 # @ -200

20 0 20

40 80
B0
100 ;50" 50  Z[mm] 100 50" 50  Z[mm]
R [mm] R [mm]

Fi1G. 5. Results of problem P2.

Optimization problems P3 and P4. Solving the problems P3 and P4 for given
My A

Pmax; the results of —Z denoted by (=) and — denoted by (——) are shown in
7 pw

Fig. 6, as well as the variation of the control parameters L, and Ls. The above
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optimizations were performed within 5 loops satisfying the tolerance in step 9 of
algorithm 5.2.1.

Objective func. in P3 (-),P4 (- -) Pos.length L1 in P3 (), L4 in P4 (- -)
28 : - 400
! ~
E26 - T 80 =5 S
Z24 £ ; i o
[ -] =
81 22 X
Lo o
. ~ ad
8 2 ~ ~ 40
Bl :
1.8 e -
2 ~ EA - 2p
1.6 R PG
o= 0
150 200 250 300 350 150 200 250 300 as0
pmax [MPa] pmax [MPa])

M-
F1G. 6. The results of torque -?r, and parameters Ly, L4 for problems P3 and P4.

5.3. Optimal shape design of the rollers

In engineering practice the roller is a frequently applied machine element.
The meridian curve of the roller strongly influences the maximum of the contact
pressure and its distribution, too. Due to the symmetry, a quarter of the model
will be investigated, assuming linear elasticity and frictionless contact.

Ds

F1G. 7. Geometry and the loads of the roller, and the contact surface @ = Ses x Set is
divided into small elements having dimensions Ds x Dt.

The loads of a roller consist of a resultant force F, and a couple M,; further-
more, the roller has a rigid body translation in the direction Z and rigid body
rotation around X which is perpendicular to the axis of the roller (see Fig. 7).
Since the contact region is sufficiently narrow in comparison to the diameter of
the roller R,, we shall apply the formulation which is valid for the elastic halfspace
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to produce the influence function for the roller too, taking the mirror technique
[12] into account. On the surface of the halfspace at Z = 0, the rectangular
region (Set x Ses) will be subdivided into small rectangles (Dt x Ds). Due to
the symmetry of the contact problem with respect to the axis Y, we take only
one the half of the original construction into consideration.

Elements of the influence matrix H are computed by applying the unit in-
tensity normal load on six subregions (Dt x Ds) to the roller (the punch), and
on four subregions to the quarter elastic space (the target, with 0 < Y < oo,
-0 < X <o, —oc < Z <0) in order to eliminate shearing stresses at the
bottom and top surfaces of the roller and at the side Y = 0 of the quarter space.

Here the controlling region 2. is defined as a subregion of 0 < t < Dt,
0<s< Ses.

Equilibrium equations for the roller are written as

F'= F(B,puasp Z 0) =F, pmax/v{st ) dS — /pdS—O
Qe Qe

M =M (Bapmaxrp 2 0) == Mo _pmax/Y{S]U(S,t) dS

—/Ypd.S=0,

Q!IE

where the condition x(x) > 0 must be satisfied. We obtain a formula for B
using (5.3) for V(s) =V (s, L;) (§i=1,c;4):

/ (Y,-Y)p®¥ds |
L . +f () V (s,L;) ds
0

Di 'pul!)ax

(5.14)  BU+) =

L

—/(Y,,— Y () (5, 15) (5)" ds

0

Keeping the parameters Lj, (j = 1,...,4) fixed, the pressure could be even nega-
tive in the region Q. (Y, < L/2) depending on the values of F, and M,. Therefore
keeping the parameters Ly, Ly (Lg — L3) fixed, as in problem P4, the parameter
L, is modified until the condition v(s,0) > 0 is satisfied everywhere. It is sup-
posed that the change of gap in region ;. is expressed by the function of gap’s
change Ah in region Q. Ah,. = f(Ah).
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The optimization problem is
(5.15) min {pmax| p >0, d=d(p,\,Ah) 20, pd=0 x€Q,
x=0 x€Q,, x>0 x€Qy,, F=0, M=0}.

Discretizing (5.15), in view of (4.16), (4.18), (4.27), we have a restricted linear
programming problem:

(5.16)  min {pmax/ p>0, d=Hp-GprA+1+Ah>0, p’d=0,
X=VPmax — P20 Ggp—fﬂzﬂ}.

The following algorithm is proposed to solve it.

5.3.1. Iterational process of solution of the contact optimization prob-
lem (5.16).

1. Solution of the original contact problem (p(ﬁ), Aw)) :
2. Determination of B from (5.14) in which Q,. =0, i = 1.
3. Computation of the new vector pe

© . (0)6D
; - (Pmax + pmin)
p'=[pl PL.], phk= - :

xe=v (8B L;) o -p™¥ =0 —» p@ i=i+l
If the vector pgo)'f has negative terms, the parameters Ly, L3(L4) must be
modified and go to step 2 else go to step 4.
4. k=k+1, g.=5'].
5. If k> 4 then B®*) is determined from (5.14).
6. Computation of the new p vector:

61 xe=v(o0B®) N pWiog o B

=114 Y. KYi
6.2 Xne =Y (31 t, B(k)) p(n.llcax”‘t = IJHL)” >0 = P'Elc},la

(Fo /g}(k)‘ids
(k=1)i+1 _ ae

6‘3 pmax L

Dt/u (s,u. B(*‘)) ds‘

0
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6.4
|p£§;x1],e;+1 e pg;x”'i
D) > tol =0.0005 then 7=1:¢+1go to6.1.
max

7. Computation of the residual vector in 2,
wilk) = (Hptk) g 4 1) : A = 0,
8. Determination of the maximum value of m_(?-k) =100k
m = max; (mgk)) :
9. Determination of the change in radius of the roller
Argzi‘l) = (mg‘}(khl) - me) ; eT(k,,n — [ T | | ]
10. Computation of the gap change due to the radius change
Ah®) = QAr®),
where Q is a suitable matrix accounting for the geometry of the roller and the

elements.
11. Solution of the contact problem by the new shape of the roller

dk+) = Hp+) — GpAkt) 14 AWK >0, - GEp=-fp,
p(k+1] >0, p(k-}—l)Td(-‘H-I) =0

12. Checking of the convergence condition:

ks
z:jzl

(k) (k-1)

AR — A |
5 0
ke [and)

If htol > 9 then back to step 4, else stop and the optimization problem is
solved.

htol =

< 0.0025 = 9.

5.3.2. Numerical ezample. The quarter of the roller and an elastic halfspace
are considered. The radius of the roller is R, = 60 mm. The roller is subjected
to loads of F, = 2500 N and M, = 33000 Nmm. The proposed contact region is
given by Sct = 0.6 mm x Scs = 35 mm, and it is divided into 6 x 60 rectangular
elements, Ly =0, Ly =4 mm, Ly — Lz = 4 mm.
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The contact pressure arising in case of the initial geometry is shown in Fig. 8c.
The high pressure peaks are at the end of the roller (Y = 0).

R=60,Sct=0.6,Scs=35kt=10ks=60 a.) L1=0, L2=4, L3=28.25, L4=33.25mm b,
0.01 400
0.
oo8 300
0.006

deltaR [mm]
pressure [MPa]
n
o
(=]

-
(=]
o

0.004
0.002
0

0 10 20 30 0 10 20 30

s [mm] s [mm]

without optimization c.) after optimization d.)

oo

1 t [mm]
s [mm] % s [mm] ;.

FiaG. 8. Investigation of contact for the roller and the quarter space.

The optimization problem is solved for different values of n in the controlling
function of v(s,t). The best solution was obtained at n = 13, as it gave the
smallest pressure value and the smoothest pressure distribution along the line
X = 0. In case of n > 13, the value of the pressure maximum is larger than the
value in parenthesis which is dominant around the location of s = (Ls + L3) /2.
The parameters Ly and Ly assuring positive contact pressure and the parameter
B of the controlling function are also listed in the Table 1. The kopt parameter
denotes the number of iterations, when the tolerance of 12-th step of 5.3.1 is
satisfied.

The computation was repeated for a higher density of mesh (kt = 10, ks =
60). The computed radius change is shown in Fig. 8a, the contact pressure
distribution along the line X = 0 is in Fig. 8b, and the pressure distribution
on the whole contact region is shown in Fig. 8d. The maximum of the contact
pressure is ppax= 3069.11 MPa at n = 13.
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Table 1.

n Pmax MPa Ly mm L; mm B® B¥°Pt)  kopt
1

423.63 31 35 -0.9639 0.7092 23
b 372.69 24.583 28.583 —-2419 -1.5996 33
10 368.01 23.416 27.416 -11.349 -8.203 36
11 367.24 22.833 26.833 -9.516  —6.894 35
12 367.17 22.833 26.833 —14.082 -10.483 36
13 367.11 22.833 26.833 —20.734 -15.861 36

14 372.43 (366.45)  22.250 26.250 15.334 11.765 36
15 372.17 (366.47)  22.250 26.250 22.887 17.943 36
20 394.38 (366.06)  21.667 25.667 1328.29  1038.53 36

6. Conclusions

Two types of contact optimization problems have been investigated. In the
first type, axially-symmetric problems are discretized by p-version finite elements.
The optimizations have been performed by controlling the distribution of the
contact pressure:

1. Minimizing the contact pressure maximum,

2. Minimizing the frictional power loss,

3. Maximizing the torque due to friction.

One of the advantages of using the p-version finite elements is that only
coarse meshes are needed in our examples. Since high degree of polynomials (p =
8) is applied for the approximation of the displacement field and for mapping,
the contact optimization problems have been solved with very high accuracy.
Optimization problems are solved by means of a special iterative algorithm.

In the second type of the optimization problem, an optimal shape design
of the rollers has been investigated. A new control function and a fast algorithm
are proposed. In the optimization problem the objective function is not differ-
entiable, the pressure is partially controlled in order to achieve smooth contact
pressure. The roller may be subject to rigid body translation and rotation.

Examples are demonstrating the effectiveness of the proposed algorithms.
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