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A NUMERICAL PrROCEDURE for simulating the equilibriumn shapes of precipitates in
two-phase materials, such as Ni-base alloys, is presented. Assuming a periodic
arrangement of precipitates, a unit cell is analyzed to take particle interaction in
3D into account. Using the concept of generalized driving forces as the source of
morphological evolution, a necessary condition for an equilibrium shape is derived.
In the derivation of the driving force, elastic strain energy arising from the elastic
misfit of the two phases and interface energy is considered. Both phases are assumed
to be linear elastic but anisotropic and different from each other. The periodic
cell problem is numerically solved by the Boundary Element Method. Numerical
simulation for material parameters which mimic Ni-base allovs shows the influence
of particle size, stiffness ratio of the two phases, volume fraction and external load
on the resulting equilibrium shapes.
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1. Introduction

IN HIGH TEMPERATURE applications such as turbine blades, the Ni-base alloys
are frequently used. Due to their superior mechanical and thermal properties
they are also termed super-alloys. These single crystal materials possess in gen-
eral a cuboidal microstructure of 4'-precipitates embedded in a Ni-matrix. The
morphology on the micro-level strongly influences the mechanical and thermal
material properties on the macro-level. Diffusion processes within the crystal
lattice change the micromorphology at elevated temperatures and in the presence
of stress fields. This phenomenon is called rafting and has been experimentally
investigated for many years (see for example [1 - 4]). Due to their industrial
importance, there has been a great effort of theoretical investigations of these
two-phase materials, see for example [5 - 13]. Many of the theoretical inves-
tigations lead to numerical simulations which revealed the influence of certain
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material parameters. In general, the modelling efforts of the microstructure can
be divided into three groups:

— The first group of researchers treats the two-phase material via a Monte-
Carlo simulation [14 — 18]. The different phases are identified by different “atoms”
and generating a Boltzmann weighted chain of exchanges, the global energy min-
imum is found corresponding to an equilibrium configuration. This method is
however very time-consuming and only a few 3D results have been published so
far [19].

~ In the second approach, a concentration or order parameter is introduced
to distinguish the two phases. Often the assumption of elastically homogeneous
phases is made to apply the method of Fast/Discrete Fourier Transforms (see
for example [20 — 24]). The model requires the accurate resolution of very steep
gradients. Therefore a very fine numerical grid is required. Due to the numerical
effort only very few 3D results are known to the authors [25].

— In the third approach, which is pursued by the authors, the two-phase ma-
terial is treated with a sharp interface model. The numerical implementation of
this model can be done efficiently by using a Boundary Element Method [26 - 32].
In 3D, results were obtained for a fairly general set of material parameters [33,
34], however until now particle interaction has been neglected in 3D. With the
periodic cell arrangement, this shortcoming is to be overcome and more realistic
simulations are expected.

In the following, the periodic cell arrangement is taken as the first step to take
particle interaction into account. From 2D calculations if is known that neighbor-
ing particles can disturb the stress field around a precipitate significantly [32] and
therefore influence the equilibrium shape. The periodic arrangement is chosen for
two reasons. Firstly due to its physical relevance, as many Ni-base alloys display
a rather regular periodic microstructure, secondly for its efficient implementation
of 3D interaction effects. In this context, it must be mentioned that, with the
computational power available to the authors, a complex structure of more than
two nonperiodically interacting 3D particles is at the moment not computable.
On the other hand, the simulation of a periodic arrangement predicts the effect
of the volume fraction of the precipitate phase on the micromorphology. This is
generally believed to be an important factor [35 — 37| together with the particle
size and the external loading situation.

2. Micromechanical model

2.1. Periodic unit cell model

Considered is a periodic arrangement of unit cells, each consisting of a par-
ticle B (v'-phase) embedded in a matrix (y-phase). The normal vector n points
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from the interface 9B into the matrix phase (see Fig. 1). The elastic properties of
the precipitate and the matrix are assumed to be given by the elasticity tensors
Cin/out respectively, which are allowed to be generally anisotropic. A possible
lattice misfit between the 4'-phase and the matrix is taken into account by an
inelastic eigenstrain €” in the precipitate phase, which is assumed to be constant
in the precipitate. Therefore the stress o can be computed by Hooke's law in the
two phases
Coute in the matrix phase,
(2].) o= {Ci" 0 4 H
(e —€ ] in the precipitate phase,

where ¢ is the linearized strain tensor. The interface OB between the precipi-
tate and the matrix is perfectly coherent, thus the jump in the displacements u
vanishes on the surface dB:

(22) [u] =0, where [(:)]= ()"~ ()™
Periodic cell arrangement Unit cell
IS ne
N T

Bm::

/
Iy

P=rfulyulrjuryurfury

F16. 1. Periodic arrangement of unit cells with precipitate.

On the exterior boundary of the cubic cell, the displacements u and tractions t
have to satisfy periodicity conditions in order to ensure periodic filling of the
entire material space. The cell boundary is denoted by I' with its associated
outward unit vector given by np. The displacements u on two opposite cell
boundaries T'F (see Fig. 1) satisfy

(2.3) ulp+ —ulp-=v; for i=1,2,3,
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where the three vectors v; are still undetermined translations. The periodicity
conditions for the tractions are given by the following set of equations:

(2.4) tlp+ +t|p- =0 for i=1,2,3.

In the absence of external loads, the mechanical equilibrium of the periodic
cell arrangement leads to three vector equations

(2.5) ftdA:O for i=1,2,3
rf

to determine the unknown translations v;. Equation (2.5) needs to be modified in
the case of an external load o®. However with the use of an equivalent eigenstrain

(2.6) sgq = ¢? — [C}o™

instead of the physical eigenstrains ¢, Eqgs. (2.1) — (2.5) can still be used. A
detailed discussion of equivalent eigenstrain is given in [38, 39)].

2.2. Variational principle and equilibrium conditions

In the absence of external loads, the total potential of the system is given by
the sum of the elastic strain energy

(2.7) B = /WdV + / W dV, where W = %a . g
Bin Bout
and the interface energy
(2.8) BN = / dA.
a5

Here the interface energy is assumed to be given by a constant interface energy
density 7s. For coherent interfaces the assumption of constant interface energy
density is a good approximation (see |26, 28, 29|, and related works for details
and values of v5). In [27] the authors discuss the possibility of determining s
inversely by comparing experimental results with the simulated behaviour. Mass
conservation dictates that the particle volume

(2.9) Vi = / dV =W

Bi“
remains constant V. Equilibrium is defined by extremizing the total potential for
a given particle size V. This constraint is expressed by an augmented Lagrange
functional

(2.10) E(u,0B,)) = E® + E™ 4+ A (Vs - Vo) ,
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with the Lagrange multiplier . Applying calculus of variations with respect to
the displacement field u, the morphology 8B and the Lagrange multiplier A leads
to

(2.11) 0F = /5WdV+ / 5WdV-—/(|[W]+mys—)\)6ndA
Bin Bout aB

+dA (Ve — W) =0,

where dn is the morphological variation of the interface @B in the normal direction

and k denotes twice the mean curvature (taken to be negative for a sphere)

regarding the change of interface area. Applying the divergence theorem to the
precipitate and matrix phase yields

(2.12) 6 = — f dive - dudV — / dive - dudV + / onr - dudA

Bin Eﬂ\lt
I
= [[cm ) dA —f(uW]y + 5k = A) ndA + 8X (Vs — Vo) =0,
a8 I a8

where the integral I over I' vanishes on account of (2.3) and (2.4). The jump
term II can further be simplified by the help of

(2.13) [ab] = (a)[b] + [a](b), where ((-))= = ((-)*"* + ()),

B =

therefore leading to
(2.14) I = [on : u]] = (on) - [0u] + [on] - (du).

As a consequence of the coherency condition (2.2), the jump of the displace-
ment variation is given by

(2.15) [6u] = —[Vu]n én,

which follows from the Lemma of Hadamard, (see [9] for details). Also note that
[on] = [o]n, thus Eq. (2.12) can be rewritten as

(2.16) 6E =— / dive - dudV — / dive - dudV — /ﬂa]]n- (0u) dA
Bin Rout anB

= f (W] = [Vu]n - {on) + &5 — A) dndA + A (Vg — Vo) = 0.
aB

For arbitrary and admissible variations du, dn and dX, the following conclusions
can be drawn:
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(i) Mechanical equilibrium in the bulk phases:
(2.17) dive =0 in B and B°%.
(ii) Mechanical equilibrium on the interface:
(2.18) [eln=0 on 9B.

(iii) Morphological equilibrium condition:
(Note that (2.18) has been used to deduce that (on) = on)

(2.19) w=[W]-n:([Vu]'o)n+&y =X ondB.
(iv) Volume constraint:
(2.20) Ve = V.

In the following, mechanical equilibria (2.17) and (2.18) will be assumed to
be satisfied. The remaining morphological variation d;,, with respect to the shape
and the Lagrange parameter is

(2.21) bl = —/(Tn _ ))6ndA + 6 (Ve — Ve) = 0.
aB

The driving force 7, in the morphological equilibrium (2.21) can be related to
Eshelby’s concept of a force on an interface [40]. Writing

(2.22) To=n-[P]n+k, where P=W1-(Vu)le

with P being the energy-momentum tensor as defined by Eshelby, this identity is
obvious. It is mentioned here that 7, can be regarded as a configurational force
using the terminology of Gurtin [9]. In the considered inclusion problem, the
generalized driving force 7, can be expressed by the strains e on the inner side
of the interface (see [30])

(229)  7a=—5[(C"+[Cle)n] - 27! [(C"e + [C]e) n]

+ %e (e~ % (e = €%) : C" (e — £°) + ek,

where the components of the acoustic tensor Q of the matrix material are given by

(224) Qik - C?}}C‘mjn;.

The computation of 7, requires the solution of the inhomogeneous inclusion
problem. In Sec. 3 the solution procedure by a Boundary Element Method is
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explained. It should be emphasized, that the computation of the driving force
on the interface is independent of the specific arrangement of particles, because
orly local quantities are involved. The effect of a periodic arrangement enters
tte calculation of the driving force only through the solution of the elastic field
problem, namely through the value of the strains e.

Equation (2.19) is a necessary condition for a shape to be in morphological
equilibrium, however it must be mentioned that this condition is not sufficient.
This issue is discussed for example in [41 - 43] on the basis of analytical inves-
tization, and numerical simulations in [27, 31] confirm this result. In order to
perform the variation (2.21) in an algorithmic setting, the shape of the inclusion
is given by a set of qy,...,qy shape parameters. These shape parameters can
be a general description of the interface dB, but in the calculation they coin-
cile with the distance of the Boundary Element nodes from the origin of the
coordinate system. This choice of shape parameters proved to be fairly general,
as it covers the range from spheroids to cuboids, which are experimentally ob-
served. Expressing the normal variation dn in (2.21) by variations of the shape

parameters dqi,...,0qy leads to a nonlinear system of equations
ox
Fila-amd) = - [(m-Ngo-ndd = o,
q1
anB
2.25 - .
(2.25) B
Fum(q,...vqm,d) = — [ (—A) B—-ndA = 0,
qMm
on
FM+1(Q1:-'-3QJ\41A) = Vs —W = 0.

Here the terms F\,..., Fjs are the work conjugated quantities of the respective
shape parameters qy,...,qy. This system of M + 1 nonlinear equations for M
shape parameters and the Lagrange multiplier A is solved using a quasi-Newton
solver. For details in the solution procedure, the reader is referred to [44]. The
general setting is equivalent to that of a shape optimization with a geometrical
constraint, i.e. constant particle volume. In the terminology of optimization the
total potential of the system is the target function.

3. Boundary Integral Equation Method

The solution of the inhomogeneous inclusion problem can be found by ap-
plying the Boundary Integral Equation of elastostatics, which is discretized by
Boundary Elements. It is a natural choice for the boundary variations considered
here. The advantage of this method is, that the unknowns are shifted from the
irterior of the considered domain to its boundary, which reduces the problem
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dimension and size. The standard integral equation for linear elastic problems
follows from [45] to be

(3.1) KmmuryfTu—ymwMA=fuu—ynww&
A A

with x representing the source point and y the observation point, as well as
1

K = -1 for a smooth surface. The fundamental solutions for the tractions and

the displacements are expressed through T and U respectively.

3.1. Anisotropic fundamental solution

Since the lattice structure of the different phases in general shows anisotropic
behaviour, the analytic fundamental solution for the isotropic case, known as the
Kelvin problem, cannot be applied. A method to calculate these quantities nu-
merically is proposed by [46] and incorporated to handle anisotropic behaviour.
According to [46], the fundamental solution for the displacements can be ex-
pressed as follows

1
(3.2) U= m(}(ghﬁb);
with the kernel ,
(3.3) G(o1,02) = [ M (al)) o
0
and the argument of the integral
(34) Mﬂc = Ct—jk;zjz; |Z| =1

Fi1G. 2. Anisotropic fundamental solution.
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Figure 2 provides a geometric representation of the quantities in Eq. (3.3).
The function G(6,,60,) depends on the orientation of the vector y — x but not
on its length. Since G is a smooth function, discrete values for the domain
0 <0 <mand 0 < 0 < 27 can be calculated. Instead of performing the
integration in Eq. (3.3) for every pair (x,y) appearing in the problem, quadratic
interpolation between the discrete values for the angles 6; and 65 is utilized.
This approach increases the computational speed when integrating the Boundary
Integral Equations. A similar procedure can be used to find the fundamental
solution for the tractions and is described in [46].

3.2. Boundary Integral Equations

Applying the boundary element method to the problem of periodically ar-
ranged precipitates leads to two distinct problems for the matrix- and the particle-
phase. Incorporating the jump Eqgs. (2.2) and (2.18), the displacement- and the
traction-vector are defined as

(3.5) u"=u""=u on 9B

and

(3.6) —out = ¢in = ¢ on JB.

Following the general procedure, derivation of the boundary integral equations
proposed by [45] yields three integral equations, two for the matrix boundaries
OB and I" and one for the particle boundary dB:

(3.7) K™u- / T wdA + / fpaut. o qd
anB 5

+ / U tdA — / UtfdAd =0 on 0B,
onB r
38) KFu'- / oty dA / T u" dA
anB
+/U°“‘tdA —/U‘mlt“dA =0 on I,
aB P

39) K" u+ /Ti" udA — /Ui" tdA=K"u’ + /Ti" u’dA on JB.
aB aB

aB
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To achieve a complete system of equations, the periodicity conditions (2.3), (2.4)
as well as the traction boundary condition for the unit cell (2.5) have to be con-
sidered. The integral equations are then discretized using 4-node elements with
a bilinear interpolation of displacements, tractions and geometry. The discretiza-
tion leads to a non-symmetric linear system of equations for the displacements
and tractions on the interface and on the cell boundary. In the calculation of
equilibrium shapes, the following discretization has been used:

Number of nodes | Number of elements
Cell boundary I’ 218 216
Particle boundary 9B 866 864

This system has to be solved repeatedly with a new particle geometry in the
optimization process. About 25 — 50 iterations are needed in the quasi-Newtonian
process to obtain the convergence.

4. Results
4.1. Nondimensionalization

For the numerical implementation of the problem it is useful to scale the
different quantities in an appropriate way. This increases the numerical efficiency.
According to [33], the following positive scalars are defined for the 3D case:

(4.1) I* = Y/ Vs,

(4.2) ' =max, €3],

1=
(3) "= o [+ o+ ot — Bt — B — B+ 3 (R + BB+ )]
The characteristic length of the particle {* is defined by the particle volume,
and £* describes the maximal absolute value of the eigenstrains. The effective
shear modulus pu* characterizes the average stiffness of the anisotropic matrix
material, here given by its Voigt constants. Following the procedure used in [31],
a dimensionless formulation for all quantities of the system can be derived in

conjunction with the dimensionless particle size
‘21*

fei
Ys

Since L can be regarded as the ratio of the systems elastic strain energy E® to the

interfacial energy E'™, a physical interpretation is possible. If E'™ approaches

zero, L becomes very large and the particle shape is determined by the minimum

of the elastic strain energy. In contrast, for a small value of L the influence of

F'" is dominating, which leads to a sphere as an equilibrium morphology.

(4.4)
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4.2. Verification

To check correctness and accuracy of the computations, the numerical results
have to be compared with analytic solutions. However, if considering periodic
arrangements of anisotropic misfitting particles, no analytic solution exists. To
justify the calculations, some tests as well as comparison with 2D results were per-
formed. For the test simulations the elastic behaviour is assumed to be isotropic
for both phases with the material parameters

where #1"/°Ut is Poisson’s constant and p"/°"* denotes the corresponding shear
modulus. Positive eigenstrains

(4.6) e?=¢'1  with & =0.001

are applied and the volume fraction f of the inclusion compared to the total
volume is assumed to be v
e Bin
(4.7) =

VBlul

=12.5%.

In the first calculation, the inclusion is shifted off the matrix center towards
one face of I' to control the assembling of the system matrix for nonsymmetric
problems. Such a shift should not alter the stress distribution. For the dimen-
sionless particle size L = 6 is chosen. As Fig. 3 shows, the stresses are repeated
periodically on the matrix boundary for the symmetric as well as for the non-
symmetric problem.

0.223456

0.115989

0.0085233
~0.0989428
~0.206409
-0.313875
~0.421341

F1G. 3. Resolved normal stresses on the matrix boundary for shifted particle.
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For the second test, demonstrating the influence of the matrix boundary to
the radial strains on the interface, a value L = 3 is assumed. If sufficiently small
volume fractions are considered, the periodic arrangement is assumed to have a
negligible influence on the inclusion. Thus for f — 0 the strains on the interface
are expected to converge to the corresponding values for the single inclusion
problem. Assuming isotropic material behaviour, this problem can be treated
exactly and is known as Eshelby’s solution. The difference in the radial strains
is given by -

(4.8) 7,

ECQ

where €* denotes the reference strains for the single inclusion problem, and &
are the radial strains for periodic arrangement. Figure 4 shows the position of
three different points (P, P, P3) on the particle surface, for which the deviation
is calculated. On all three points the radial strains show the same qualitative
behaviour, for decreasing volume fraction the difference Ae also decreases and
approaches zero for f — 0.

P}‘—P3 DDOB Ace for Pl-P;g

F1G. 4. Difference in radial strains as a function of f.

4.3. Equilibrium shapes

In this section the influence of different parameters on the equilibrium mor-
phology will be discussed. In order to mimic the mechanical behaviour of Ni-base
alloys, the elastic constants of Nickel in Voigt notation are used (see [47]):
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(2465 1473 1473 0 0 0 )
1.473 2.465 1.473 0 0 0
, 1.473 1473 2465 0 0 0 g, N
(49) C"=C"= .10 5
0 0 0 1.247 0 0 mm
0 0 0 0 1.247 0
\ 0 @ @ @9 0 127/

A dilatational eigenstrain tensor as given in Eq (4.6) is assumed. Due to the
fee-lattice structure, the elastic properties show cubic orthotropy. To visualize
the elastic behaviour Fig. 5 shows a 3D representation of the directional Young’s
modulus. The material possesses a high stiffness along the diagonal direction,
whereas along the coordinate axis Young's modulus is lower.

F1G. 5. Directional Young’s modulus of material as given in (4.9).

As the computations are quite time-consuming and a lot of parameters inftu-
ence the equilibrium shape, attention will be restricted to some basic parameters,
such as volume fraction, particle size, stiffness ratio of particle to matrix material
and loading. Of special interest is the influence of the volume fraction f and the
particle interaction in 3D. However, these are only the first results that cannot
cover the complete relevant parameter range.
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4.3.1. Resolved normal stresses on the cell boundary. Before considering
particle morphologies, the importance of the volume fraction f to the normal
tractions on the cell boundary is discussed. In Fig. 6 negative normal tractions
for f = 50% can be found at the center of each matrix face, while in the vicinity
of the edges positive values appear. This is evident because the matrix material
is under compression in the region where the interface of two adjoining particles
are close together and leads to a convex cell shape if the assumption of a periodic
arrangement is neglected.

031627
0.251254
0.186238
0.121222
0.0562058
—-0.00881028
~0.0738264

F1G. 6. Resolved normal stresses on the matrix boundary for different volume fractions.

Considering small volume fractions, Fig. 6 shows that the distribution of the
normal stresses has changed. For f = 10% the positive tractions appear in the
center, while at the edges negative values can be found. To explain that, the
material behaviour due to orthotropy must be recalled. As a consequence of the
high stiffness in the diagonal direction, the displacements on the interface along
the diagonals are basically translated to the corners of the matrix boundary,
leading to a concave deformation of the unit cell. To satisfy the conditions for
periodically arranged particles, positive tractions have to be applied in the center
of each face of T'.

4.3.2. Influence of particle size and volume fraction. In the following, the
influence of the particle size L as well as the importance of the volume fraction f
will be discussed assuming the same elasticity tensor in the matrix and particle.
In order to characterize the particle shape,

d
(4.10) =
1, the shape is a sphere. A value of n =
shows the equilibrium shapes for different

is introduced (see Fig. 7). For n
V/3 characterizes a cube. Figure

7
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combinations of the two parameters. The particle becomes cuboidal if L increases,

this can be understood. A large particle minimizes the elastic energy by orienting
large parts of the interface normal to the soft directions of the material - here
normal to the coordinate axis. The interface energy is less dominant at large
sizes, thus it rounds off only small regions at the edges and corners to cube-like

independent of f. Recalling that L denotes the ratio of elastic to interface energy,
shapes.

[=T15%

50%

f:

fF=01%

n=1.1987

n = 11723

n=1.3877

n = 1.2418

n = 1.2868

Fic. 7. Equilibrium shapes for different values of L and f.

http://rcin.org.pl



678 R. MUELLER, S. ECKERT AND D. GROSS

When keeping the particle size L constant and increasing the volume frac-
tion f, the particle first tends to a more sphere-like morphology but for even
higher values of f, the particle looks more cuboidal. To give an explanation, the
two components E®4" and E€°% contributing to the total elastic strain energy
have to be considered. For increasing f, the value of E¢h°%" decreases, so that the
contribution of E® to the total energy also decreases and the particle tends to
a more sphere-like shape. This effect is relevant for volume fractions f of about
40 - 50%. Increasing the volume fraction further the particle shape becomes
cube-like again, due to the geometrical constraint. A cube-like shape is the only
way to place more particle material inside the periodic unit cell. The qualitative
behaviour of the equilibrium shapes due to the variation of the parameters L and
[ agrees with the 2D results of [31].

1.5 I —A—— equal stifiness

—&— particle 20% stiffer
—B— particle 20% softer

1.45

1.3

=

1.25

T i ot L T ) A o Vo (ot I L 1 G P o

0.1 0.2 0.3 0.4 0.5 0.6 0.7

F1G. 8. Shape parameter v as a function of f for different stiffness ratios.

4.3.3. Influence of particle stiffness. 1t is known from experimental obser-
vations and numerical simulations that the stiffness ratio of particle to matrix
material is of great importance. In Fig. 8 the shape parameter n is plotted as a
function of the volume fraction f for the stiffness ratio C'" = 0.8 C°", C* = Co%
and C™ = 1.2C°"*. The particle size is assumed to be L = 9. Comparing the
three stiffness ratios, the soft particle is more cube-like than the stiff inclusion
as long as the volume fraction f is small, whereas for large volume fractions f
the stiff particle is more cuboidal than the soft inclusion. This behaviour is also
found in [31] for the 2D case. All three stiffness ratios reach a minimal value of
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the parameter 7 for volume fractions of 40 — 50%. For large volume fractions f,
the particle shape is mostly determined by the material parameters of the inclu-
sion. So a stiff particle leads to higher values of E®" from which the cuboidal
shape follows. When considering small volume fractions, the matrix material
determines the equilibrium morphology. If the particle is assumed to exhibit stiff
behaviour, the matrix material is comparatively soft and as a consequence, the
inclusion shape looks more sphere-like.

4.3.4. Influence of an applied load. 1In the last example, the influence of
an applied load on the equilibrium shape is considered for increasing volume
fractions. The elasticity tensors are chosen to be C'" = 0.8 C°"* and L = 3, the

N ’
remote stress field of} = 50 —= I8 applied. To describe the particle shape, the
min
quantity

(4.11) e

a+b
is introduced, where a and b define the principal axis of an oblate cuboid (see

Fig. 9). If a = b, the parameter p equals zero, describing the particle shape with
cubic symmetry, whereas for values 0 < p < 1 an oblate shape is achieved.

f=0.1%
1'.'.: :f‘f)\
Y Ea
p M
AERR
- el
i o =Tl
W I
el #y
et
i L 1
B o2 CE]
I

Fic. 9. Equilibrium shapes under external loading for different volume fractions f.
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Expressing the external load by equivalent eigenstrains leads to higher values
for the eigenstrain tensor in zj-direction. If the inclusion is assumed to be soft
compared to the matrix material, an oblate particle shape minimizes the domi-
nant energy E€°% with the z;-axis being normal to the flat face of the particle.
An increasing volume fraction supports this effect, therefore p increases, until a
volume fraction f = 25% is reached. Even higher values of the volume fraction f
lead to large deformations of the matrix material in the regions where 9B and
I are close together, which in turn cause higher values of E®°Ut, This energy
can be reduced if the distance between the matrix and the particle boundary is
increased, so smaller values for p are the consequence. The occurrence of oblate
particle shapes in tensile loading is called rafting. It has a great technical rele-
vance as the rafting process alters the general elastic behaviour of the considered
structure.

5. Conclusions

The theory of equilibrium shapes in two-phase materials has been recast for
a periodic cell arrangement. A variational principle was used to derive necessary
conditions for an equilibrium shape. Material parameters that resemble Ni-base
alloys were used in the simulation with Boundary Elements. The influence of
some important parameters on the equilibrium shape was discovered by parame-
ter studies. Although not the complete physically relevant parameter range was
analyzed, some conclusions can be drawn:

e With increasing particle size the equilibrium shape becomes more cube-like.
This is in agreement with results for the isolated particle.

o In the case of no applied loads, increasing the volume fraction makes the
equilibrium shape more spheroidal as long as the volume fraction is lower
than 40 — 50%. Above this critical volume fraction, the particle becomes
again more cuboidal. Thus up to volume fractions of about 10 — 15%, the
particle interaction is not relevant for the equilibrium shape.

e For reasonable stiffness ratios of particle to matrix material, the character-
istic behaviour is not altered drastically.

o In the case of applied loads, the rafting tendency increases with increasing
particle interaction until a volume fraction of about 25%. Increasing the
volume fraction further leads to less oblate shapes. However, in this regime
particle coalescence which was neglected in this analysis, might become
relevant.
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