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BRAKE SQUEAL RESULTS FROM friction-induced vibrations. This phenomenon is con-
sidered here and interpreted as a flutter instability of the steady sliding solution of an
elastic solid in unilateral contact with friction with a moving obstacle. A mechanical
analysis of the governing equations is given, in particular to obtain the steady sliding
solution. The stability analysis of this solution is discussed. A numerical analysis
by the finite element method is performed in order to compute the steady sliding
solution and to discuss its stability for an automotive disk brake. The validation of
the numerical procedure is examined in relation with some analytical results of the
literature,

1. Introduction

THE PROBLEM OF BRAKE NOISES has been intensively discussed in various exper-
imental or theoretical investigations up to the present time. Different kinds of
noises and vibrations can be identified in common drum or disk brakes following
their frequencies (e.g. [2, 12]). Brake squeals result from high frequency vibra-
tions (greater than 5000 Hz) and have a relatively pure spectrum composed of a
few main frequencies accompanied by some harmonics. Although a brake squeal
does not affect the mechanical behaviour of the brake, it is less and less accepted
by the passengers. The conditions under which a squeal occurs are relatively well
known. Most experiments showed that the brake squeal is more excited at low
than at high speeds (less than 30 km/h). Squeal occurs only over limited ranges
of brake pressure and is most prevalent at low temperature (less than 150° C).
The source of noise is attributed to the vibrations of brake components such
as drum or pad and disk, and brake noises are generated mainly by the sliding
phenomena.
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646 F. MoiroT AND Q. S. NGUYEN

Our objective is to present in this paper a mechanical analysis of brake squeal.
The principal interpretation is the fact that brake squeal is a consequence of the
flutter instability of the steady sliding solution of the pad on the disk for a disk
brake. This analysis leads to the system of governing equations to be considered
and enables us to determine the steady sliding solution. The fact that the disk
is in rotation can be easily taken into account since the system remains in small
strains. The determination of the steady sliding solution is discussed as a function
of the coefficient of friction. In particular, the conditions ensuring the existence or
the uniqueness of the steady sliding solution are discussed since for high friction,
the steady sliding solution may be not unique or does not even exist.

The stability of a steady sliding solution is considered in the second part. Per-
turbed motions of the mechanical system of pad and disk near the steady sliding
solution are introduced. Under the assumption of a slip regime, the dynamic
solution can be simplified and the perturbed slip motions can be considered.
Stability analysis with respect to these motions can be discussed and leads to the
solution of a generalized eigenvalue problem with unsymmetric mass and rigidity
matrices. This non-symmetry is due to the presence of friction as well as of the
disk rotation. The existence of an eigenvalue with a positive real part and a
non-zero imaginary part implies necessarily an instability by flutter of the steady
sliding solution.

The numerical aspect of the problem is considered in the third part. The
steady sliding solution can be determined by solution of the nonlinear problem
in the vehicle reference by iterations. Once this solution is obtained, its stability
analysis can be performed. The adopted procedure is based upon a modal basis
of free vibrations. The generalized eigenvalue problem is solved in this basis
of functions and the eigenvectors are generated by a finite number of the first
vibration modes. The numerical procedure is first validated on the problem of
contact with friction of infinite elastic layers which has been discussed analytically
by ADAMS [1] and by MARTINS ef al. [10]. Then an example of disk brake is
considered.

2. Governing equations

The system of disk and pad is considered in the vehicle axes (Oz), which is
a Galilean reference set, since the vehicle motion is assumed to proceed at con-
stant velocity. In this reference, the pad is an elastic solid P in small deformation.
For simplicity, it is assumed that this solid is under the action of implied dis-
placements (by the brake action) and contact forces with the disk on a potential
contact surface S. If uf’(z,t) and 0¥ (z,t) denote respectively the displacement
and stress at the point z and time ¢, the dynamic equations for the pad P are
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(2.1) of =L:VuP, Divel —puf =0, V z€ P, of -nf =R,
V €8

In this expression, R is the reaction of the disk D, which is related to the relative
displacement and velocity of the two solids following the unilateral contact and
Coulomb’s law of dry friction with a constant coefficient of friction, although
more elaborated models can be proposed, e.g. [2, 13].

Let w be the rotation velocity of the disk around the axis Ozj. It is convenient
to consider the rotating axes (OX), where OX3 coincides with Oz3. The equa-
tions of motion of the solid D in axes (OX) are simply the dynamic equations of
an elastic solid at small deformation in a relative reference

(2.2) ©=L:VU, DivE—py=0, V X€D,
with
(2.3) Y=+ + 2wk AV, = —wPr + Uy +2wk AU,

where D), denotes the undeformed volume of the disk in these axes, and Y =
Y(X,t), U=U(X,t) are respectively the stress tensor and displacement vector.
It is necessary to adopt the vehicle axes (Oz) and a change of variables must be
introduced. This change of variables can be expressed in terms of the cylindrical
coordinates as shown in Fig. 1:

0 %4
> A \ mt :
p K i

Fi1G. 1. A model of disk brake.

(24) X=(né¢z2), =(r62), 6=9¢+wt

The change of variables

(2.5)  u(r,8,zt) =U(r,0 —wt,zt), U ¢, zt)=ulrd+wtzt)
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648 F. MoiroT AND Q. S. NGUYEN

(2.6) of(r,0,2t) =Z(r,0 — wt,z,t), I(re,zt)=o0c(r¢+uwtzt)
gives in the Galilean axes (Oz)

(2.7) o=L:Vu, Dive—=pgy=0, ¥ z€D,

(2.8) y = w(—r + w00 +2k A ttg ) + 2w (w00 +K Ay ) + gy
with the boundary condition

(2.9) c-n=-R, V€S8,

and implied displacements along the axis of rotation Oz3. It is also important to
give the expression of the material velocity v(z,t) in this reference system. From
the expression of the velocity of a material point in the rotating axes

v=Ve+V,=wkAr+U,,
it follows that

(2.10) v(z,t) = wlk AT +ug) + Uy .

The conditions of unilateral contact and dry friction of the solids P and D
can be written now. On the surface S of contact, which is assumed initially
without the normal gap, the condition of non-penetration is

(2.11) [uly = —u)-n>0, V z€8.

The unilateral contact condition gives

(2.12) [uly 20, Ry >0, [uly Rw=0, V z€S.
The relative velocity of material points in contact is

(2.13) w(z,t) = u, (z,t) —v(z,t) = [u] —wk AT —wuy.
Coulomb’s friction law can be written as

(2.14) w=v Ry, op=|Ry||-fRnv <0, v<0, vp=N0.

The previous expressions for v and w show that a possible approximation of
the solution is obtained by assuming that the relative velocity is due simply to the
rotation of the disk, and one can retain in the dynamic equation of the disk only
the centrifugal forces and neglect all other terms of rotation. This approximation
A consists in writing

(2.15) v =—wir+uy, w(zt)= [u],t —wk AT
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3. Steady sliding solution

The steady state solution is obtained when u(z,t) does not depend on f.
Thus, the steady state solution is governed by the following equations:

(3.1) of =L:VuP, Dive’ =0, V z€eP, o - n=-R, V z€8,
(3.2) o=L:Vu, Divo—py=0, Y z€D, o-n=-R, ¥ z€S8,
(3.3) ¥ = w(=r + u,99 +2k A uyg)

together with Eqgs. (2.11), (2.12), (2.14) and the following expression of the rela-
tive velocity
(3.4) w(z,t) = —w(k AT +uy).

The approximation A consists in solving the following equations:
(35) ¢ =L:Vuf, DiveP =0, VzeP, o' - n=-R, V¥V z€85,
(3.6) 0 =L:Vu, Divo+pw?r=0, Vz€D, o-n=-R, ¥ z€S,

together with Egs. (2.11), (2.12), (2.14) with w(z,t) = —wk A r. Within this
approximation, since the relative velocity is not zero, the transverse reaction Ry

has the direction of —7 with 7 = %ﬂ” Finally, the steady sliding solution is
given by Eqgs. (2.11), (2.12) and

(3.7) o =L:Vuf, Dive’ =0, V zeP, o - n=—-Ryn+ fRnT,

8 =

(38) o=L:Vu, Divo+pw?r=0, YV €D, o0-n=—-Ryn+ fRyT,
Y z€S8S.

These equations can also be written in the form

(3.9) /VHP : L:Vu dV + / Vu:L:VéudV — /wzr 0u dV
D

P D

'i"/(RN[C?U]N + fRNT - [du]T) dS =0,
S

together with (2.11) and (2.12). To understand the mathematical nature of the
problem of steady sliding in the approximation A, let us consider the associated
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discrete problem obtained from these equations after discretization by the finite
element method, for example. If U = (Un,Ur,Uz) denotes for each solid the
degrees of freedom representing respectively the normal, tangential displacements
of the contact surface and other complementary displacements in the solid, the
governing equations are, for each solid,

Kny Knt Knz Un Ry
Krny Krr Krz Ur | =| f[®]|Rw~ |,
Kzn Kzr Kgzz Uz Fz

where ® denotes the appropriate matrix. The elimination of Uz leads to a matrix
equation in terms of A = UF - U

]- 5%
Ar fl®]Ry + FPr |-

Finally, the normal displacement Ay is related to the normal reaction Ry by
(3.10) lknn — knrhppkrn)[An]) = [I — fknrkrp®][RN] + (9],

(3.11) Ak >0, Rk >0, AK RE. =0, Yk=1,m.

knn  knt
krn  krr

This is a linear complementary problem, (cf. COTTLE et al. [5], Isac [7] or
KLARBRING [9]):

(312)  [AN]=[A][R¥]+[F], Ak 20, R§>0, AY Ry =0,
with
(3.13)  [A] = [knn — knrhppkrn] ™ = f kv — knrkppkon] ™ kvrkpp@).
It should be recalled that for a given [F], this problem has one and only one
solution if the matrix [A] is a P-matrix. This property means that [A] satisfies
the condition of P-positivity
(3.14)  [A] is a P-matrix <« 3 i such that Z XiAj; X; >0
J
V X #£0.
In fact, the existence of a solution is still ensured if [A] satisfies only a co-P-
positivity condition:
(3.15) [A] is a co-P-matrix <« 3 i such that Z X;Ai; X; >0
J
V X#0, X >0.
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As usual, for a vector, the compact notation X > 0 means the component-wise
condition X; > 0 for all . This condition is similar to the P-positivity condition
but is concerned only with vectors of nonnegative components. It has been
established for a matrix not necessarily symmetric that

(3.16) Positive-definiteness = P-positivity = Co-P-positivity,
(3.17) Positive-definiteness = Co-positivity = Co-P-positivity.

For symmetric matrices, it is also true that P-positivity and positive-definiteness
are equivalent,
(3.18) Positive-definiteness < P-positivity.

When the full expressions (3.3), (3.4) of v and w are taken into account, the
discussion can be done in the same spirit and leads again to a complementary
problem.

The significance of the quadratic form [Ry]7[A][Rn] is very simple. It repre-
sents the work done by the normal reactions Ry Ay of the system when subjected
to the contact reaction R = Ryn + f Ry7 and to homogeneously implied dis-
placement. The condition of positivity states that for any non-zero distribution
of normal reactions, the work done by this distribution is positive. The condition
of co-P-positivity is much weaker, it states that for any non-zero and positive
distribution of the normal reactions, there exists at least one strictly positive
normal displacement associated with a strictly positive normal reaction.

The contribution of the rotation terms to the rigidity matrix of the solid D
corresponds to some additional symmetric matrices, since the following expres-
sions hold:

(3.19) /u,gg Ou dV = —/’u,g g dV
D

(3.20) / kAug)-dudV = /det[k,u,g ,0u] dV = [ — det[k, u, du,g ] dV
D D D

= /det{k, Sug ,u] dV.
D

After partial integration with respect to 6 in the interval [0, 27], these expressions
are symmetric with respect to (u,du). Under the assumption of small rotations,
w remains sufficiently small, the contribution of these additional terms to the

rigidity of solid D does not change its positivity.
The fact that the co-P-positivity condition is satisfied depends on the con-
sidered problem. Even for elastic solids at small strains, it is not difficult to give
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652 F. MoiroT AND Q. S. NGUYEN

simple examples showing that the possibility of steady sliding does not exist for
a sufficiently high friction coefficient.

4. Stability analysis of the steady sliding solution

The stability of the steady sliding solution is obtained from the behaviour of
the perturbed motions of the system near the considered steady solution. This
discussion is a priori difficult since a small perturbed motion near the steady
solution is not necessarily governed by linear equations. It is well known that the
unilateral contact and Coulomb’s laws are non-smooth and cannot be linearized
at the steady state, e.g. [3, 8, 10 — 11, 14 - 20]. It is assumed first that the
steady sliding solution satisfies on the contact surface S the condition of effective
contact

(4.1) Ry(z) >0 VzeS.

It is then expected that a small perturbed motion cannot lead to a separation
of the contact at any point of S, at least at the early time. This remark enables
us to consider only in-contact motions of the solids on the contact surface S, to
avoid the difficulties related to the unilateral aspect.

Even in these motions, it is necessary to separate the slip regime w # 0
from the stick regime w = 0. The problem of stick-slip motions has been much
discussed in the literature. In particular, for a simple oscillator, the modification
of the initial frequency has been considered, (cf. for example POPP and STELTER
[18]) for a velocity-dependent coefficient of friction. The stick-slip motion has
been computed for a three-dimensional oscillator by CHO and BARBER [4]. The
stick-slip motions play an important role in most contact problems (cf. ZHARII
[20]), in particular in the study of noise emission. However, the presence of stick-
slip motions is a source of difficulty and in this stability analysis, only the slip
motions will be explored. Under this restriction, the equations of motion can
be effectively linearized near the steady sliding solution. Let u* and o* be the
differences

(4.2) ' =u;—u, 0 =0p—0,,

where u,, 0, refer to the steady sliding solution, and uy, o, to the perturbed mo-
tion. For small perturbations, u* and ¢* are governed by the linearized equations
at the steady sliding state. Thus, the following equations hold for the slip motions
in the vicinity of the steady sliding state:

(4.3) o*P =L.:vu*P, Dive** —pu*’f y=0V z€ P, 0¥ -n=—-R",
Y €65,
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(4.4) o*=L:Vu', Dive*-py"=0, V¥V z€D, ¢ -n=-R*,
V z€S5,

(45) F}"‘ = ""JQ(u.aﬂﬂ +2k A 'U.*,g ) %+ QW(H-,M +k A 'U.*,;_ ] =t u'stt ’

(4.6) [u*]ly = 0.

In these equations, the tangent reaction R} is related to the normal reaction R}
by the linearized expression of the equation

w
Ry = —fByi—,
[l
which gives
4.7) Rp = —fRy7 - fRN(= “ ” "‘l‘i B‘a with
(4.8) w* = [u*y] —wu'y.

These equations can also be conveniently written under the variational form of
the virtual work equation. For the solid P, the classical equation

(4.9) /pu'P,“ Bu dV +/vu*” :L:VoudV = /R" . du dS
P P S
is obtained. For the solid D, the following equation holds:

(4.10) /pu',“ du dV + 2w[p(u‘,gt du + det[k, u*,; , du]) dV
D D

—+—/Vu* : L: Véu dV + w? /(u',gg -bu + 2detlk, u"p,d0u]) dV

—/R‘-c‘iudS.
s

In this equation, it should be noted that the terms involving u*, are skew-
symmetric while the terms involving u*,;; or u are symmetric. If the solution
is searched for in the form (u*, R*) = (d(z),r(x)) exp st, the eigenvalues s and
eigenvectors d must satisfy the equation:

(4.11) sQ/pd”-éu dV+]VdP :L:VéudV = /r-éu ds
P

P 8§
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654 F. MoiroT AND Q. S. NGUYEN

for the solid P. For the solid D, the following equation holds:

(4.12) s* / pd® - du dV + s 2w / p(dP g -6u + det[k,d”, du]) dV
D D

! f VdP : L: Véu dV + w? / (—=dP g -Su,g +2 detlk, dP g, 6u]) dV
D D

=—/r-5uds.

S

After discretization by the finite element method with the nodal shape functions

Ni(z)
(4.13) d(z) =) diNi(a),
i=1

the following matrix equations hold:
(4.14)  ([M7)+ [KPD[A"] = [r7), (s*[MP]+ s[G"] + [KP]

+[KPE)[aP] = —[r"]
with [dF] = [dp,dpr,dn]T, [dP] = [dn,dpr,dp]T, where the notation
dy,dpr.dp refers to different nodal values of solid D, respectively to the normal
and tangent nodal displacements on the contact surface, and to other nodal dis-
placements elsewhere. Note that [G%] is skew-symmetric and [K#] is a symmetric
matrix. Thus, the effect of rotation of D is finally expressed by a gyroscopic term
and by an additional symmetric rigidity. The force matrices [r”] and [r”] are
related by

[rP] = [0,7p,vn]%, [rP] = [rn,rr, 0] .

From the expression for R}, the following equation holds:

[rr] = f[®][rn] + fs[A][dpr — dpr] + f[Brlldpr] + f[BN][dN],

where [A], [Br], [By] are some appropriate square matrices. From the expression
of [rn]

[rn] = (*[ME] + [KRD[A"] = ~($[MR) + s[GR ] + [KR) + [KR ])a®),

rr and ry can be written in terms of the displacement [d] =
[dp,dpr,dn,dpr,dp]T. Finally, the eigenvalues s and eigenvectors [d] must sat-
isfy the condition

(415)  {s*([M] - f [m]) +([G] - f [€) + [K) + [K"] ~ f [K]} [d] = [0],
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with
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0 0 0 0 0
0 Q) 0 0 0
[Gl=]0 0 GFy GNr GRp |
0 0GRy Gl G,
|0 0 Gfx GBr GPp |
[0 0 0 0 0
0 0 0 0 0
(K% = |0 0 KRF KRf KR§
B0 KRN KPE K2R
0 0 KB% Kpf Kpp |

This eigenvalue problem can be written as
(4.16) (s* [M] + s [Z] + [K])[d] = 0,

[M] = [M] - f [m], [2]=[G]-F[0, [K]=I[K]+[K"]-f [k

Thus the presence of friction breaks the symmetry of the mass and rigidity ma-
trices in the eigenvalue problem to be solved. Since the numerical solution of this
non-symmetric problem of dimension n is time-consuming, a reduction of the di-
mension of the problem is necessary. Thus, it is interesting to consider the basis
of vibration modes Dy of the ideal associated system defined by the equations
(of dimension n)

(4.17) (s6[M] + [K])[D] = [0]

Let Dy, k = 1, m denote the first m vibration modes. The reduction of variable
consists in searching for [d] in this basis:

(4.18) [d)=[Di Dy ... Dullgs -aml” = [Cllg)

Finally, the eigenvalue s and eigenvector [g] are defined by an eigenvalue problem
of dimension m

(4.19) (s*[M] + s[2] + [K])[q] = [0],
M) =[C)"[M][C), [2]=[C)"Z)[C), [K]=[C]"[K][C).
The solution of (4.19) leads to the complex eigenvalues s; and complex eigen-

vectors Q. Since u*(z,t) = Nij(z) R (1, ar CijQk; expsit), it is concluded
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that the steady sliding solution is unstable if there exists an eigenvalue with a
positive real part. Although it is not necessary, the choice of this modal basis
is interesting since the dynamic behaviour of the system is well generated by a
small number of modes, in practice m < n.

5. Validation of the numerical procedure

The proposed numerical procedure is first validated on a sample problem
which is the sliding of a rigid plate on an elastic infinite layer, (cf. Fig. 2). The
problem was analytically discussed by MARTINS et al. [11] for the case of an
elastic half-space, and by Apams [1], MoiroT [12] for the case of two elastic
layers. The case of an infinite layer is interesting since a closed-form solution
can be obtained for any coefficient of friction, in contrast with the case of the
half-space.

rigid plate

——

elastic layer

0H
magm

2=

IEEREFLSFS
i

ae

e [ LT

mode 5, 14 283 Hz moxde 6, 14 283 Hz

mode 10, 18323 Hz. mode 11, 18 323 Hz

F1G. 2. The sliding problem of a rigid plate on an infinite elastic layer and the vibration
basis.
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5.1. Sliding of a rigid plate on an elastic layer
The governing equations are

(A + 21) g0 +pttyyy +(A + p)Vsay = ptisu

(A + 2u) v,y +p0,52 +(A + p)Uyzy = pVsue,
with boundary conditions

uw(z, —h,t) = v(z,—h,t) =0,
and interface conditions on S
0—v20, gy <0, (6—-v)oyy =0 V =z, y=0,

go=|cr,,y|—foyy§0, W —uy=vogy, v>0, vp=0.

The steady sliding solution exists for all f,

u=40f (y+ h)A f2p sign (W), v=24é(y+h).

The eigenvalue problem (4.16) has been discussed for a solution u* of the form

u" =R exp(st)exp (kz)U(y), keC, seC.

It has been shown that there exists s with R(s) > 0 for any f > 0, thus the steady
sliding solution with friction is always unstable. The mechanism of instability
can be understood by the study of the trajectory of the eigenvector s(f) in the
complex plane as a function of f. For f = 0, all modes are double. When f
increases from 0, most eigenvalues remain purely imaginary while some of them
are splitting into two complex, simple eigenvalues with a non-zero real part.

5.2. Numerical validation

The modal basis Dy, k = 1,m, is first computed by the solution of the
Eqgs. (4.17). As usual, these frequencies of vibration can be obtained with great
precision. The relative error of the computed frequencies as a function of the
mesh size is less than 1% for the 30 first frequencies with the mesh 12 x 36.
Figure 2 presents some modes and the associated frequencies of vibration.

The solution of the Eq. (4.19) for a chosen basis Dg, k = 1,m can be done
following the standard methods available for example in the Nastran code. Hes-
senberg's method seems to give good numerical results. It is recalled that Hes-
senberg’s method is obtained in two steps, a reduction to a Hessenberg matrix
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and an iteration by a QR algorithm. This method gives all eigenvalues and the
associated eigenvectors are obtained by inverse iterations.

The variations of the frequencies as functions of the friction are computed
with . = 200 and with the 12 x 36 mesh, and n = 829. These frequencies are
obtained with error smaller than 3% compared to the exact values. It is found
that good results can be obtained with a small number of modes, in practice
m = 200 is sufficient. These results confirmed numerically the observation that
the steady sliding solution is unstable by flutter when friction is introduced.

FiG. 3. Flutter instability of the steady sliding solution of the pad-disk system. The
real parts of some unstable modes are presented.
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6. Numerical results for a disk brake

A disk brake is considered with a finite element mesh using 17860 nodal
points, n = 53580 is the number of degrees of freedom. The pad is submitted to
a uniform pressure on the upper face. Under the approximation A, the steady
sliding solution can be obtained within 3 iterations. The associated normal pres-
sure is strictly positive on the whole contact surface, thus the assumption of
effective contact is satisfied. The solution of (4.19) is again done using a basis of
functions composed of m = 200 first vibration modes of the perfect system. For
f = 0.4, the unstable modes among the first 70 eigenmodes are modes 19, 24,
30, 32, 40, 48, 51, 56, 60, 63, 66, 68 of frequencies 5275, 6483, 8574, 9113, 11418,
11951, 12610, 13721, 14716, 15302, 15534, 15746, respectively. The real parts of
the most unstable modes 32,48, 51, 68, 63, 66 can be found in Fig. 3.

7. Concluding remarks

It is expected that, in the spirit of Hopf’s bifurcation, after a flutter instability
the dynamic response of the system will eventually become periodic with different
phases of stick, slip and separation regimes, as it can be observed in various
examples of the literature, (cf. [12 - 20]). Brake squeal results as a consequence
of this periodic regime. The frequencies of the periodic responses, if they exist,
are however not directly related to the flutter modes although they may remain
close. From the analysis of the mechanism of flutter, our analysis leads already
to some suggestions in order to impede such an instability.
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