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THE INTEGRITY AssESSMENT of defective pipelines represents a practically important
task of structural analysis and design in various technological areas, such as oil and
gas industry, power plant engineering and chemical factories. It is very essential
to evaluate the load-carrying capacities of defective pipelines in order to judge
safely their working life. In this paper, an iterative algorithm is presented for the
kinematic limit analysis of 3-D rigid-perfectly plastic bodies. A numerical path
scheme for radial loading is adopted to deal with complex multi-loading systems.
The numerical procedure has been applied to carry out the plastic collapse analysis of
pipelines with part-through slots under internal pressure, bending moment and axial
force. The effects of various shapes and sizes of part-through slots on the collapse
loads of pipelines are systematically investigated and evaluated. Some typical failure
modes corresponding to different configurations of slots and loading forms are studied.
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1. Introduction

PLASTIC LIMIT ANALYSIS plays a significant role in the integrity assessment of de-
fective pipelines. The plastic limit load, which determines the carrying capacity
of structures, is an important parameter in performing the two-criteria assess-
ment of structural integrity [1). In the ASME stress classification framework for
pressure vessel design, stresses are classified as the primary, secondary and peak
stresses, different admissible values are provided for different stress modes, and
the admissible value of primary stress corresponds to the stress state under the
limit load. Therefore, the knowledge of limit loads of mechanical components
and structures is useful to the designer to address the modes of failure associated
with load-controlled effects.

However, the determination of limit loads is by no means an easy task, es-
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pecially for complex configurations and loading systems. Therefore, the problem
how to determine the limit load efficiently and accurately has attracted the atten-
tion of many researchers. With the progress in the finite element technique and
mathematical optimization theory, the simplified analysis methods for the com-
putation of plastic limit load have been developed rapidly, such as the GLOSS
r-node method of SESHADRI and FERNANDO [2], the elastic compensation method
of MACKENZIE and BOYLE (3], the thermoparameter method [4] and mathemati-
cal programming methods [5 - 10], etc. The mathematical programming methods
can determine the load-carrying capacity of a rigid-perfectly plastic body, which
do not concern the loading process and can overcome the difficulties by step-
by-step elastic-plastic analysis. The lower and upper bounds of limit load for
a perfectly rigid-plastic body can be approached by mathematical programming
processes based on the static and kinematic theorems of limit analysis. In com-
parison with the lower bound analysis, there are more difficulties in the upper
bound limit analysis. Because of the nonlinearity and nonsmoothness of the ob-
jective function, many existing solution methods for mathematical programming
problems cannot be used directly for an upper bound analysis. Although the
numerical difficulties have been overcome by some investigators, such as Hun [7],
Liu [8], CHEN [9] and ZHANG [10], these methods were mainly presented for
single loading or simple 2-D structures. The numerical algorithms for the limit
analysis of 3-D structures under multi-loading systems need further study and
development.

Pipelines are widely used in various fields such as the petrochemical industry,
energy and electric power engineering, etc. During their operation, many local
defects such as part-through slots shown in Fig. 4 can be produced by corrosion,
mechanical damage or abrasive surface cracks. These defects may jeopardize
the integrity (i.e. reduce the load-carrying capacity) of pipelines and sometimes
even lead to severe industrial accidents. The integrity assessment of defective
pipelines is a very important research subject, with a significant and extensive
application background in the pipeline industry. Part-through slots, which can
be commonly found on the surfaces of pipelines, are classsified as a type of 3-D
volumetric defects. They can result not only in stress concentration, but also
in the cracks under fatigue loads. Because of the lack of systematic theoretical
analyses as well as satisfactory experimental results, the effects of part-through
slots on the strength of pipelines are at present still unclear. The current testing
codes and standards for the pipelines in service provide severe limitations to the
allowable values of part-through slots. Unnecessary welding treatments of part-
through slots required by the codes, are not only resource-consuming processes
but also can produce more severe welding defects. Therefore, some serious and
systematic attempts should be made to investigate the effects of part-through
slots on the load-carrying capacities of pipelines. These attempts are expected
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to provide some more scientific and reasonable approaches for defect assessment
and treatment, which will significantly reduce the resource consumption in defect
treatment but still guarantee the operation safety of the pipelines. Unfortunately,
only few research efforts on the plastic collapse analysis of pipelines with various
part-through slots have been made up to now.

In the present study, a kinematic approach to the limit analysis of 3-D struc-
tures is proposed by means of a direct iterative algorithm. A radial loading
path scheme is presented to deal with multi-loading systems. Furthermore, by
using the present algorithm, the plastic collapse analysis of defective pipelines
is performed under the combinations of two loads of three possible types: in-
ternal pressure, bending moment and axial force. The defects considered here
include part-through spherical, ellipsoidal and rectangular slots. The limit loads
of pipelines are computed for a comprehensive range of geometric parameters. The
effects of various shapes and sizes of typical part-through slots on the collapse
loads of pipelines are investigated. Some typical failure modes corresponding to
different dimensions of slots and loading conditions are analyzed.

2. The radial loading path scheme

To present a loading path scheme used in the numerical limit analysis, we take
here as an example a biaxial loading system composed of P; and P;. The loading
scheme used here is applicable to a more general muti-loading system. As shown

P =
in Fig. 1, let the slope of the ray be tanf = -;PE, ie. Py = Pitanf (0 << g),

where the variation of tan# corresponds to different loading paths which are de-
pendent on the multi-loading systems. At each computation of the limit load
multiplier performed by an iterative algorithm (see the next section for the de-
tails), take some slope of the loading path tanf, namely, fix the relative magni-
tudes of different loads P, and Po. When 6 changes from 0 to 90 degrees, the
limit state at each last iteration composes the complete limit load interaction
curve as shown in Fig. 1. In particular, when @ is equal to 0 or 90 degrees, the
iteration solution is the limit load solution corresponding to Py or P,. For a
rigid-perfectly plastic material, this scheme of loading path can be extended to
the limit analysis under the combined action of three loading systems.
For generalized loadings (Py, Pa), we have:

(Py, P3) = (P, Patanf) = P(1,tanf) = uP1p(1, tanf)
where pis a weight factor of generalized proportional loadings, Pjq is the base
load of Py. If the generalized limit load multiplier is denoted by v, the generalized

plastic limit solution is:
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(2.1) (P, Pa)1, = v(P1, Pa)o = vP1o(1, tanf),

where v can be computed by a direct iterative algorithm as shown in the next

section.
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F1G. 1. Radial loading path under two loading systems.

3. Iterative algorithm

Consider a 3-D rigid-perfectly plastic body V with the boundary S. The
individually varying multi-loading system Z P,. (m is the number of loadings)

is applied on S;, and the displacement cons.r;?,raint u; = 0 is imposed on S,,. The
plastic incompressibility condition u; ; = 0 is satisfied in the body V. On the basis
of the kinematic theorem of limit analysis and the finite element discretization
technique, we have

(3.1) (X Pn) U< ZN: / WpdV

E=1v;

where Wp is the rate of plastic energy dissipation, Py, is the m-th equivalent
nodal load vector corresponding to P,,, U is the nodal velocity vector, and N is
the number of elements.

Adopting the von Mises yield criterion and Gauss integration method, one
has

(3.2) V(X Pmo) Us \/goyzielpﬂ/umium

where [ is the set of all Gauss integration points, p; is the integration weight, |J|;
is the Jacobian determinant |J| at the Gauss integration point #, v is the general-
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ized limit load multiplier, P, is the equivalent nodal load vector corresponding
to the m-th base load of P,,,, K; is the stiffness matrix at the Gauss point i,
and o, is the yield stress of material.

The above inequality leads to the following discretized mathematical pro-
gramming formulation:

Y = miny : \/gayziefpstTKiUwh,
(33) 8.1. (Eump) U=1,
UT(KL’),‘ U=0Viel,

where the abbreviation “s.t.” means “subject to”, and the volumetric stiffness
matrix KY, for each element can be expressed as

(3.4) ¢, = (BS)TBY,
in which the volumetric strain matrix is Bf, = divIN® and N¢ is the shape

20
function matrix for each element. For convenience, the constant factor \/;oy is

omitted temporarily in the following discussion.

Obviously, Eq. (3.2) is a non-linear mathematical programming problem, thus
it is difficult to find an efficient search direction and the property of upper bound
can not be guaranteed. Furthermore, the objective function of Eq. (3.3) is non-
smooth. It is difficult to treat the rigid portion because of the singularity of the
derivative of objective function over rigid zones. To overcome those difficulties,
we perform a series of iterations to solve Eq. (3.3). At each iteration, the rigid
and plastic zones are distinguished and the objective function and constraint
conditions are suitably modified. Namely, before proceeding with the (7 + 1)-th
iteration, we examine the strain value of every integration point and divide the
set I of all integration points into the rigid zone subset R; and the plastic zone
subset P; 1, i.e.:

I =RjUPjp,
(3.5) Rjq = {i € I, U] K;U; =0},
Py = {i € I, U] K;U; # 0}.

The determination of set R; and Pj is essential for removing those points
at the rigid state from the sum of integration points of the objective function, so
as to ensure that the next iteration can proceed normally. Meanwhile, we can also
physically find the distribution of the plastic and rigid zones during the iterative
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process by Eq. (3.5). The following iterative formulation is then constructed to
solve Eq. (3.3) directly:

e mm Z,Ep pilJiU" K;U UTK; U

JUTKU;
s.t. (Zumg)T U=1,

UT(Ky)iU=0 Vie P,

UTK,U=0 VieR;
where Uj is the nodal velocity array at the j-th iteration.

In the formulation (3.6), the additional constraint condition (3.6)4 imposed
on the rigid zone and the incompressibility condition (3.6)3 imposed on the plastic
zone can be introduced by the penalty function method. The normalization con-
straint (3.6)2 can be enforced by the Lagrangian multiplier method. By applying
the optimality conditions of the augmented objective function, the problem (3.6)
is equivalent to solving the following linear algebraic equations:

Y icpilKU = AT, Pro,

(ZumU)T U=1,

where A is the Lagrangian multiplier, and

(3.7)

K:
h L R, el
- [ T 17T,
(3.8) K ={ \/UTKU;
A K; Vi € Rj,

in which A, and As are the penalty factors. In practice, the typical values of A,
and Aj vary from 10° to 10'2. Solving Eq. (3.7), we get the nodal velocity array
U; at step j, and then compute the generalized limit load multiplier v; by using
Eq. (3.3);-

The iteration is initiated as follows:

. A ; ' T ;
min : Zie!pJJLU KU,

(3.9) it (ZumU)TU =

UT(Ky);U=0 Viel
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From Eq. (3.9), we can obtain the initial values of Uy and vyp.
The above iterative process is terminated when the following convergence
criteria are satisfied:

i = %l o yor,
vj

(3.10)
1U;+1U;|

< VOL2,
ol =

where VOL1 and VOL2 are the desired accuracies of the calculation.

The authors of this paper have shown that the above iterative process leads to
the limit load multiplier v and to a collapse mechanism U through a convergent
sequence with monotonically decreasing v;.

4. Applications

4.1. Cylindrical shell joined-both ends to rigid plates subjected to radial pressure and
independent axial load

The geometry of a cylindrical shell joined at both ends to rigid plates, sub-
jected to radial pressure and independent axial load and the arrangement of finite
element mesh, are shown in Fig. 2.

L

PYvyy

Fic. 2. Cylindrical shell joined at both ends to rigid plates, subjected to a radial pressure
and an independent axial load, together with the finite element mesh used in this study.

. L2 PR - Dl |
Let w? = , where o, is the uniaxial yield stress.

2R’ P T on’ " T 2rRo,h
HopGE and PANARELLI [11] solved this problem and presented both the lower
and upper bound approximations of limit load for a von Mises material. ZHANG
[10] also presented the solutions of this problem using the limit analysis and
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considering initial constant loadings and proportional loadings. The results of
our solution fall between the lower bound and upper bound given by HODGE and
PANARELLLI [11], and are in a good agreement with the solutions of Zhang, as
shown in Fig. 3. Obviously, this indicates that the proposed radial loading path
scheme is reasonable and feasible and the above numerical procedure is effective.

i p ——— This paper
......... [11] lower bound
...... [11] upper bound

B ) ®  Zhang [10]

Fi1G. 3. The limit load interaction curves obtained by different methods.

4.2. Plastic collapse analysis of defective pipelines under internal pressure, axial tension and

bending moment

4.2.1. Determination of plastic limit load. The geometry of defective pipeline
subjected to internal pressure (P), axial tension (N) and bending moment (M)
is shown in Fig. 4. The defects considered here are part-through slots of various
geometrical configurations. The engineering situation considered here has a prac-
tical important background in the pipeline industry. Here the axial tension (V)
includes the independent axial tension N; and the additional axial tension N3 in-
duced by an internal pressure P, i.e. No = PrR?, where R; is the inner radius of
a pipe. Using the proposed numerical algorithm,we perform the plastic collapse
analysis of a cylindrical pipe with different shapes and sizes of part-through slots
under internal pressure,bending moment and axial force(more than 1.000 exam-
ples have been computed here). The material is assumed to be rigid-perfectly
plastic. The radius ratio kk (i.e. the ratio of the external to internal radius) of
the pipe is 1.20. The pipe thickness is T = 20 mm. The yield stress o, of the
material is 245 MPa.

http://rcin.org.pl



ON THE LIMIT ANALYSIS OF DEFECTIVE PIPELINES UNDER COMPLEX LOADINGS 637

“Ba e
A

v YL L, ////////
(’\T o \

P

N /¢ A 4 j
177/7/7/7/7 ////L///,»
| &

"

FiG. 4. Geometry of the pipeline with a part-through slot subjected to internal pressure,
axial tension and bending moment.

Considering the symmetry of structure, we take a quadrant of the pipeline
with four kinds of slots and discretize it by 3-D 20-node isoparametric finite ele-
ments. For various sizes of pipes and part-through slots, the finite element analy-
sis meshes are defined by using 500-1000 elements and 600-1500 nodes. The cor-
responding displacement constraints are imposed on the symmetric boundaries.
In order to optimize the numerical efficiency and accuracy, the finite element
mesh should be chosen appropriately for a cylinder with a slot so as to make the
distribution of the elements around the slot as even and neat as possible, and
more dense than those located in other parts of the cylinder.

We define the following non-dimensional parameters:

m = M/My, My =4R2T0y,

P 9 Ry
4.1 WD < PR - AL R T
i i

n = N/Ny, Npo=m(R2— R%)oay,

+ Ry

and the wall-thickness T = Ry — R;.

The rectangular slot is analzed first because this kind of slot is relatively
dangerous. For the pipeline with a rectangular slot under an internal pressure,
we compute the limit loads of pipes for the combinations of the depth of slot
C/T =0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, the width of slot a/7 = 0,
0.02, 0.04, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and the length of slot
A/vﬁ =0, 0.2, 0.4, 0.6, 0.8, 1.0. The calculated results are shown in Fig. 5.
We can see that the width of the slot has some effect on the limit loads of pipes.
When the depth of the slot is relatively small (e.g. C/T < 0.2), variation of the
width of the slot has a small effect on the limit loads of pipes; when the depth
of the slot is relatively large (e.g. C/T > 0.5), the variation of the width of

with the mean radius of a pipe R =
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the slot affects the limit loads of pipes remarkably. With the depth of the slot
increasing, the effects of the width of the slot on the limit loads of pipes are more
pronounced. We can also see from Fig. 5 that when the width of the slot exceeds
a critical value (e.g. a/m > 0.65) for relatively large axial length of the slot,
variation of the width of the slot has a small effect on the limit loads of pipes.

1.0

Cr=0.1
CT=02
CT=03
C/T=0.4
CT=0.5
CT=06
C/T=0.7
oT=08
CT=0.9

T— """---.._:

0.8 =l
\\

-
o8 \\\—
0.4 N

0.2

AERRERES

(=]

0'%.0 0.2 0.4 0.

8 1.

oT=0.1
CIT=0.2
Cr=0.3
CT=04
Cr=05
CIT=0.5
CT=0.7
/=08
=04

EEEE LR & &

u‘%,o 01 02 03 04 05 06 07 08 09 10

%
(®) 06VRT

Fi1G. 5. Effects of the width of a slot on the limit moments of pipeline under a bending
moment.

For the pipeline with a rectangular slot under a bending moment, we compute
the limit loads of the pipe for the combinations of the circumferential length of
the slot a/7 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, the depth of the
slot C/T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and the length of the slot
A/VRT =0, 0.2, 0.5, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0. The calculated results
are shown in Fig. 6. We can see that when the axial length of the slot exceeds a
critical value (e.g. A/v/RT = 1.46), the variation of the axial length of the slot
has no effect on the limit moment of pipes.

The plastic collapse loads of pipelines with four different shapes and sizes
of part-through slots under the combined action of an internal pressure, axial
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tension and bending moment are computed and analyzed here. The limit load
interaction curves of pipeline under the combined actions of internal pressure and
bending moment, bending moment and independent axial tension, and internal
pressure and independent axial tension, are respectively plotted in Figs. 7 - 9.
From these three figures, we can obviously see that the small area slot has a
little effect on the limit load curves of the pipelines. The axial slot affects greatly
the limit loads of pipelines under an internal pressure, and affects slightls the
loads under the combined action of bending moment and axial force. On the
contrary, for the circumferential slot, the limit loads of pipelines are affected
more under the combined action of bending moment and axial force than under
the internal pressure. For a large area slot, the corresponding failure mode is
not a global collapse but a local collapse, and hence the limit loads of pipelines
decrease considerably.

1.0
09 2 3
0.8 —— CIT=0.1
0'7 < —o— (/T=02
¥ —— CT=03
, 0.6 —— C/T=04
L | 1 —— CT=0.5
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0.3 — =07
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v
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F1G. 6. Effects of the axial length of a slot on the limit moments of popeline under a
bending moment.
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F1G. 7. The limit load interaction curves of pipeline under internal pressure and bending
moment.
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F1G. 8. The limit load interaction curves of a pipeline under axial tension and bending
moment.

Some conclusions can also be drawn here. The effects of ellipsoidal and axially
rectangular part-through slots on the limit loads of pipelines, which are induced
by an internal pressure, are much greater than those induced by a bending mo-
ment. Therefore, the pipeline with the above two defects is relatively safe under a
bending moment. But under the action of an internal pressure, the load-carrying
capacity of a pipeline decreases considerably due to the axial rectangular slot.
For the pipeline under the action of a bending moment or an axial force, an
axial slot is safer than a circumferential slot. For the pipeline under an internal
pressure, an axial slot is more dangerous. Furthermore, on the basis of these so-
lutions of limit load interaction curves, the integrity assessment of pipeline with
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various kinds of slots can be performed by the widely used integrity assessment
procedures such as Nuclear Electric’s (the former CEGB in the UK) R5 and R6
(the standards and codes of assessment of defective structures).

—a—rn0 defect
WP —e—small slot
—+—axial slot
—o—circumferential slot
—o—large slot

0.0 0.1 0.2 03 04 0s 06 07 u. 09 10 11

FiG. 9. The limit load interaction curves of a pipeline under internal pressure and
independent axial tension.

4.2.2. The failure modes. For the pipeline with a small area slot, when the
internal pressure reaches the limit load, most regions of pipe are found to yield
except some regions near the outside surface, which are still in rigid states, where
the shaded area represents the plastic region. Large areas of plastic deformation
develop in the pipe. When the pipeline reaches the limit state under a bending
moment, most of the pipe starts to yield except the middle regions. When the
limit state is reached under an axial force, almost the entire pipe becomes a
plastic region. This failure mode is a global collapse, which is similar to that of a
pipe without defects. Therefore, a small area slot has a small effect on the limit
loads of a pipe under the above loading systems. For the pipeline with an axial
slot, we can see from Fig. 10 that when the limit load is reached by an internal
pressure, the part of pipe near the slot starts to yield and the other part of pipe
is still rigid. In this case, with the rigid regions near the slot going into yielding,
a local plastic hinge is formed around the slot. The ligament of the slot bulges
towards the outside, and a local leakage may occur within the slot of the pipe.
When the pipe with an axial slot reaches the limit state under the action of a
bending moment, the corresponding failure mode is a global collapse and almost
the same as that with a small slot. When the pipe with an axial slot reaches the
limit state under an axial force, a large region near the slot goes into yielding and
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extends in the direction of 45 degrees to the axial direction. These failure modes
can also confirm the previously calculated results for the limit loads of the pipe
with an axial slot, namely, the axial slot has a great effect on the limit load of
pipe under an internal pressure and has a small effect under a bending moment
and an axial force.

Fic. 10. Failure mode of a pipeline with an axial slot: a) under internal pressure;
b) under bending moment; ¢) under axial tension.

For the pipeline with a circumferential slot, when the pipe reaches the limit
state under an internal pressure, bending moment or axial force, the failure mode
of the pipe is generally a local collapse. The local character of failure mode is
more pronounced in the pipe under a bending moment and an axial force. This
demonstrates that the circumferential slot has a greater effect on the limit load
of the pipe under a bending moment or an axial force, and has a relatively small
effect under an internal pressure.

For the pipeline with a large area slot, we can see from Fig. 11 that the failure
mode is again a local collapse around the slot. This demonstrates that a large
area slot has a greater effect on the limit loads of pipelines.

(a) (b) (c)

Fic. 11. Failure mode of a pipeline with a large area slot: a) under internal pressure;
b) under bending moment; ¢) under axial tension.
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5. Conclusions

By using an iterative algorithm for kinematic limit analysis of 3-D structures,
a plastic collapse analysis of pipelines with part-through slots has been performed
here under internal pressure, bending moment and axial force (more than 1.000
examples have been computed). The main conclusions can be drawn as follows:

1) The proposed iterative algorithm is efficient and reliable for performing
the plastic collapse analysis of 3-D problems with complicated geometric forms
and loading conditions.

2) The failure modes for defective pipelines include a global collapse and a
local leakage. Corresponding to the former, the plastic load-carrying capacity of
a pipeline is less affected. Corresponding to the latter, a plastic hinge is gener-
ally formed around the slot and the plastic load-carrying capacity of a pipeline
decreases. Which failure mode occurs actually at the limit state for a defective
pipeline should be determined by the size, position and orientation of the slot.

3) For the pipeline with a rectangular slot under an internal pressure, the
width of slot has some effect on the limit load-carrying capacity of pipes, which
is great, especially when the depth of slot is relatively large. The effects of
the width of slot on the limit loads of pipes should not be neglected when the
assessment of the remaining strength of pipes with slots is performed. For the
pipeline with a rectangular slot under a bending moment, when the axial length
of the slot exceeds a critical value (e.g. 1.46v/RT), the variation of the axial
length of the slot has no effect on the limit moments of the pipes.

4) The small area slot has a small effect on the plastic load-carrying capacity
of a pipeline, which collapses globally. For a pipeline with a large area slot,
the corresponding load-carrying capacity decreases considerably due to a plastic
hinge around the slot at the limit state. A local leakage generally occurs within
the slot in this case. It is relatively dangerous to use such a pipeline. The axial
slot has a great effect on the limit load of a pipeline under an internal pressure,
and has a small effect under a bending moment and an axial force. The conclusion
is opposite to the above for the circumferential slot.
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