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VARIOUS EXISTING CONSTITUTIVE equations aiming at the description of the time-
dependent deformation behavior for a wide range of stress below and over the elastic
limit, i.e. the yield stress, are reviewed in detail. It is suggested that the plastic
stretching and the creep stretching have to be treated as independent quantities
since they have substantially different physical properties, and that a stress goes out
from the yield surface at a high rate of deformation since a plastic deformation is
suppressed by a high viscous resistance, and then the yield surface is kept unchanged.
The subloading surface model |1 — 3] would satisfy these requirements since it does
not premise that a stress is on the yield surface even in the plastic loading process.
In this article, based on the extended subloading surface model [4] which is capable
of describing not only monotonic but also cyclic loading behavior, the generalized
time-dependent elastoplastic constitutive equation is formulated allowing the stress
go out from the yield surface by letting the plastic deformation be suppressed at a
high rate of deformation and introducing the creep stretching which proceeds with
time in addition to the elastic and the plastic stretching,

1. Introduction

DEFORMATION OF MATERIALS depends on a rate of deformation, i. e. time in gen-
eral, and thus the description for the time-dependent deformation behavior is of
importance for the analysis of practical problems in engineering. The wiscoelastic
model is applicable to the description of deformation behavior of materials at a
low stress level but inapplicable to that at a stress level higher than the elastic
limit, i.e. the yield stress. Then, various constitutive equations aiming at describ-
ing the time-dependent deformation behavior for a wide range of stress from the
low stress level below the yield stress to the high stress level over the yield stress
have been proposed. In this article they are first reviewed in detail, and then
it is revealed that a satisfactory one capable of describing the time-dependent
behavior of materials for any stress has not been proposed up to the present.
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It should be noted that a plastic deformation based on the mutual slip be-
tween microstructures is suppressed under a deformation at a high rate causing
the increase of viscous resistance acting between microstructures. Therefore,
when a large deformation is induced at a high rate, the stress would go out from
the yield surface since the deformation proceeds elastically, the plastic deforma-
tion being suppressed by the increase of viscous resistance, and thus the yield
surface being kept unchanged. The subloading surface model [1 — 4] does not
premise that the stress is on the normal-yield surface (conventional yield surface)
even in the plastic loading process. In this model the subloading surface is in-
troduced, which passes always through the current stress point even if the stress
exists inside the normal-yield surface and is similar to the normal-yield surface,
and it is assumed that the subloading surface approaches to the normal-yield
surface in the plastic loading process. Based on this assumption, the extended
consistency condition for the subloading surface is formulated, and applying the
associated flow rule to the consistency condition, the plastic stretching induced
by the rate of stress on or inside the normal-yield surface is formulated so as
to describe the smooth elastic-plastic transition. 1t fulfills the continuity con-
dition and the smoothness condition which are the mechanical requirements for
constitutive equations [5 - 7].

The author [8] extended the initial subloading surface model [1 - 3] with
the isotropic hardening so as to describe the time-dependence, while this model
is limited to the description of monotonic loading behavior since the similarity-
center of the normal-yield and the subloading surfaces is fixed in the origin of the
stress space. Besides, based on it, the time-dependent elastoplastic constitutive
equation of soils was formulated and its ability to reproduce the time-dependent
behavior of real soils was verified. However, the initial subloading surface model
is not capable of describing the cyclic loading behavior, in which the similarity-
center of the normal-yield and the subloading surfaces are fixed in the origin of
stress space. On the other hand, the extended subloading surface model |4] with
the translation of the similarity-center due to the plastic deformation would be
the only model capable of describing not only monotonic but also cyclic load-
ing behavior pertinently among the existing models as was reviewed in detail in
the previous article [6]. In this article, the extended subloading surface model
is extended so as to describe the time-dependent deformation behavior by al-
lowing the subloading surface to become larger than the normal-yield surface,
and introducing the creep stretching which proceeds with time. That is, the
generalized formulation of the time-dependent subloading surface model is given
in this article. It falls within the framework of the elastoplastic-creep constitu-
tive equation. Further, based on it, the constitutive equation of metals with the
isotropic-kinematic hardening is formulated where the pertinent creep equation is
formulated and its adequacy is verified by comparing it with experimental data.
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2. Reviews on the existing time-dependent models

Various approaches for describing the time-dependent deformation behavior
for a wide range of stress below and over the yield stress have been attempted
in the past. They could be classified into the elasto-viscoplastic model and the
elastoplastic-creep model. An inelastic stretching (i.e. the symmetric part of ve-
locity gradient) is treated as a single quantity, called the viscoplastic stretching, in
the elasto-viscoplastic model. On the other hand, it is decomposed into the plastic
stretching and the creep stretching in the elastoplastic-creep model. Therefore, the
elasto-viscoplastic and the elastoplastic-creep models are often called the unified
model and the superposition model, respectively, by the other names. Besides, the
elasto-viscoplastic model could be further classified into the over-stress model of
PERZYNA [9 — 11| and the nonstationary flow surface model of OLSZAK and
PERZYNA [12, 13].

2.1. Elasto-viscoplastic model (unified model)

The deformation can be classified into the reversible, i.e. elastic one with
the loading-path independence and the irreversible, i.e. inelastic one without the
loading path-independence. The latter can be classified further into the plastic
and the creep (viscous) deformation. Here, it should be noted that the plastic
stretching does not proceed always, being dependent on the direction of stress
rate or stretching, but the creep stretching proceeds always with an elapse of
time as illustrated in Fig. 1 for the decrease of stress under the stress control
condition. Thus, the switching condition whether or not a stretching is gener-
ated, i.e. the loading criterion is required for the plastic stretching but is not
required for the creep stretching. Therefore, the plastic stretching and the creep
stretching have to be formulated as independent quantities different from each
other contrary to the unified model, i.e. the elasto-viscoplastic model. Thus, it
should be concluded that the unified model has the fundamental importance in
the mechanical framework itself. However, let the basic properties of the over-
stress and the nonstationary flow surface models in the unified model be further
examined in detail below.

Switching:
Loading criterion
is required.
Stress Stress Stress
Ol Elastic strain 0 Plastic strain 0 Creep strain

F1G. 1. The responses of the elastic, creep and plastic deformation to the decrease of
stress under the stress control conditions.
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2.1.1. Over-stress model. HOHENEMSER and PRAGER [14] have extended
the BINGHAM'S [15] one-dimensional elasto-viscoplastic model to the three-
dimensional stress state by replacing the slider with the Js-yield condition and
incorporating the potential flow rule, while the Bingham model is the modifica-
tion of the Maxwell’s viscoelastic model by replacing the dashpot with the parallel
combination of the dashpot and the slider as the threshold for the inception of
the movement of the dashpot. The over-stress model [9 — 11] can be regarded as
the generalization of the HOHENEMSER and PRAGER’S [14] or more explicitly the
PRAGER’S [16] elasto-viscoplastic model by replacing the Ja-yield condition with
the general yield condition. It has the following basic structure.

i) The viscoplastic stretching is not related to the stress rate but to the
stress, while it is related to the stress rate in the elastoplasticity. Thus, both
the direction and the magnitude of viscoplastic stretching are independent of the
stress rate but dependent of only the state of stress. This is the basic property of
the Newtonian (viscous) fluid, while the viscoplastic stretching can be regarded
as the viscous stretching with the threshold given by the yield condition. On the
other hand, the plastic stretching is related to the stress rate in the elastoplasticity
where the direction of the plastic stretching depends on the state of stress but
the magnitude depends on the rate of stress.

ii) A loading criterion in terms of stress rate or stretching is not imposed to
the viscoplastic stretching.

iii) The viscoplastic stretching is induced only when a stress is outside the
yield surface.

Therefore, the Bingham model and the over-stress model are substantially
different from the elastoplasticity. Needless to say, the over-stress model cannot
reduce to the elastoplastic constitutive equation at any rate of deformation.

Thus, the over-stress model is incapable of describing

1) the plastic stretching which requires the loading criterion, while the creep
stretching can be described, and

2) the inelastic deformation when a stress is on or inside the yield surface,
contrary to the fact that the time-dependent behavior is generated independently
of the yield condition, and thus the stress relaxation and the creep deformation
cannot be predicted satisfactorily (for instance, the creep and the relaxation after
a stress decreased to the interior of the yield surface by a quick unloading cannot
be described).

The Bingham model and the over-stress model may be regarded as the mod-
ification of the Maxwell model by limiting the creep (viscous) stretching so as
to be not generated in a low stress level below the yield stress (cf. Fig. 2). In
order to cover the above defect 2), an unrealistically small yield surface is often
used. This treatment results in the fact that the mechanical response reduces to
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the viscoelastic behavior of the Maxwell model incapable of describing a plastic
deformation, however.

Y A Large
Stress Stress Stretching
Slrctch.ing Small
ﬂ-
* Modification  yielq | __
Small stress| o
/ Elastic
'l
1 -
=—-—
ol Strain 0 Strain
Maxwerr model Bingaam model

F1G. 2. The deterioration of the Maxwell viscoelastic model by BINGHAM [15].

The over-stress model could be applied to the description of the deformation
of metals at high temperature, wet clays, etc. in the state of stress over the
yield stress, in which creep deformation is dominant. However, the deformation
of metals at room temperature, dry sands [17], etc. in which plastic deformation
is dominant, cannot be described satisfactorily by this model,

2.1.2. Nonstationary flow surface model. This model [12, 13| has the follow-
ing basic structure.

i) The nonstationary flow surface is incorporated, which is extended from
the vield surface so as to depend on time by modifying it to include the vari-
able describing a time-dependent alteration of the yielding property of material,
in addition to the stress and internal variables, premising that viscoplastic de-
formation proceeds only when a stress exists on the nonstationary flow surface.
Here, it should be noted that any rate tensor of stress or deformation is not
incorporated in the equation of the nonstationary flow surface.

ii) The viscoplastic stretching is derived by applying the associated flow rule
to the consistency condition obtained by the time-differentiation of the nonsta-
tionary flow surface. Therefore, the magnitude of the viscoplastic stretching
depends on the stress rate, whilst the magnitude of the creep stretching depends
on the state of stress. The stiffness tensor which relates the stretching to the
stress rate is dependent of state variables, i.e. the stress, internal variables and
time, but independent of any rate variable.

Therefore, this model is incapable of describing

1) the creep stretching the magnitude of which is independent of the stress
rate,
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2) the inelastic deformation when a stress exists inside the nonstationary
flow surface and thus the stress relaxation and the creep deformation cannot be
described satisfactorily (for instance, the creep and the relaxation after a stress
decreased into the interior of the nonstationary flow surface by a quick unloading
cannot be described), and

3) the prompt response in the alteration of stiffness (modulus) due to the
abrupt change of the rate of deformation, since the nonstationary flow surface
is not influenced by the rate of deformation (for instance, an abrupt increase of
stress rate, i.e. an abrupt rising of stress (an almost elastic response) induced
by a prompt increase of stretching cannot be described realistically). Thus, the
application of this model has to be limited to the monotonic loading without a
large variation of the rate of deformation.

Eventually, it should be concluded that the unified model, i.e. the elasto-
viscoplastic model, is incapable of describing the time-dependent deformation
behavior in the general state of stress.

2.2. Elastoplastic-creep model (superposition model)

The elastoplastic-creep model assumes that the stretching is additively de-
composed into the elastic, the plastic and further the creep stretchings. That
is, the plastic stretching and the creep stretching are formulated as indepen-
dent quantities different from each other. Therefore, the fundamental defects
involved in the elasto-viscoplastic model can be avoided in the elastoplastic-creep
model. However, the existing models (cf. e.g. [18 — 20]) in the framework of the
elastoplastic-creep model are incapable of describing the deformation behavior at
a high rate realistically, since they are not taken account of the fundamental fact
that a plastic deformation is suppressed with the increase of rate of deformation.

3. Time-dependent subloading surface model

The subloading surface model will be extended so as to describe time-
dependent deformation behavior in the framework of the elastoplastic-creep
model in this section.

3.1. Decomposition of stretching

A solid material is the assembly of solid particles, e.g. crystals in metals and
soil particles in soils. Thus, the macroscopic deformation of solid materials con-
sists of the deformations of each solid particle itself and the mutual slips between
the solid particles. The deformations of each solid particle itself, exhibiting stiff
and reversible characteristics, lead macroscopically to the elastic deformation ex-
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hibiting the loading path-independence at usual stress level. On the other hand,
the mutual slips between the solid particles or irreversible rearrangements within
them (e.g. dislocation movement) lead macroscopically to the irreversible defor-
mation exhibiting the loading path-dependence. Then, let the stretching D be
additively decomposed into the elastic stretching D® and the inelastic stretching
D!, i.e.

(3.1) D =D° + D',

where the elastic stretching D¢ is given by

(3.2) D‘=E'G.

O is a stress, (°) indicates the proper corotational rate with the objectivity [21,
22| and the fourth-order tensor E is the elastic modulus given in Hooke’s type as

2
(3.3) Eijr = (K = EG) 0ij0kt + G(dikdjt + 0qdji),

where K and G are the bulk and the shear modulus, respectively, which are
functions of stress and internal state variables in general and d;; is the Kronecker’s
delta, i.e. §;; = 1 for i = j and d;; = 0 for 7 # j.

The mutual slips are induced by overcoming the frictional resistance and
thus the macroscopic deformation due to the mutual slips has been described
as the plastic deformation. Now, consider the situation that there exists a vis-
cous medium between solid particles. The mutual slips are induced not only by
overcoming the frictional resistance leading macroscopically to the plastic de-
formation but also with the elapse of time leading macroscopically to the creep
deformation. Here, note that the creep deformation proceeds always with the
elapse of time but the plastic deformation ceases when the stress becomes lower
than the frictional resistance exhibiting the frictional switching, i.e. requiring the
loading criterion. Therefore, the plastic and the creep deformation have to be de-
scribed as independent quantities of each other. Thus, let the inelastic stretching
be additively decomposed into the plastic stretching D? and the creep stretching
D¢, j.e.

(3.4) D! = D? + D°.

Here, note that the plastic deformation is suppressed with the increase of the
deformation rate causing the viscous resistance, and that the stress can go out
from the yield surface since at a high rate of deformation the elastic deformation
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proceeds, whilst a plastic deformation is hardly induced and the yield surface is
kept unchanged.

3.2. Normal-yield and subloading surfaces

Assume the yield condition:

(3.5) f(6,H) = F(H),
where
(3.6) 0=0 -«

The second-order tensor & is the reference point on or inside the yield surface,
which plays the role of the kinematic hardening variable as it translates with the
plastic deformation. The scalar H and the second-order tensor H are isotropic and
anisotropic hardening variables, respectively. Let it be assumed that the function
[ is homogeneous of degree one in the tensor @, satisfying f(s6) = sf(&) for
any nonnegative scalar s. Then, if H = const, the yield surface presents its
similarity. An example of H is the rotational hardening variable for soils [23],
while the kinematic hardening is not applicable to soils since the yield surface for
soils always involves the origin of stress space.

Hereinafter, the elastoplastic constitutive equation will be formulated in the
framework of the unconventional plasticity defined by DRUCKER [24] as the ez-
tended plasticity theory such that the interior of the yield surface is not a purely
elastic domain but a plastic deformation is induced by the rate of stress inside
the yield surface. Thus, the conventional yield surface is renamed as the normal-
yield surface, since its interior is not regarded as a purely elastic domain in the
present model.

Now, let the subloading surface [4] be introduced. This surface always passes
through the current stress point o and keeps the similar shape and the positioning
of similarity to the normal-yield surface.

The similarity and the positioning of similarity require the followings.

i) All lines connecting the point on or within the subloading surface and the
conjugate point on the normal-yield surface join at the specified point, i.e. the
similarity-center s.

ii) The ratio of length of an arbitrary line-element connecting two points on
or inside the subloading surface and that of an arbitrary conjugate line-element
connecting two conjugate points on or inside the normal-yield surface has the
same value, called the similarity-ratio, denoted as R, which is also the same as
the ratio of sizes of these surfaces.
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Here, note that the similarity-center has to lie inside both the normal-yield
and subloading surfaces, since these surfaces are not allowed to intersect to each
other, whilst the subloading surface plays the role of loading surface.

The approaching degree to the normal-yield state can be described by the
ratio of the size of the subloading surface to that of the normal-yield surface, i.e.
the similarity-ratio R of these surfaces. The similarity-ratio will be denoted as
R, while R = 0 corresponds to the most elastic state in which the stress coincides
with the similarity-center, and R = 1 to the normal-yield state in which the stress
exists on the normal-yield surface. Then, it holds that

(3.7) 0y= {0~ (1-Ris}  (0-s=R(gy~s)),

where 0y on the normal-yield surface is the conjugate stress of the current stress
o on the subloading surface (see Fig. 3).

Normal-yield surface

Subloading surface
Fic. 3. The normal-yield and the subloading surfaces at a high rate of deformation.

By substituting Eq. (3.7) into Eq. (3.5) with replacing o in Eq. (3.5) with
0y, the subloading surface is described as

(3.8) f(o,H) = RF(H),

where

(3.9) 0 = 0-«(=R(oy - «x)),

(3.10) 0 = s—R(s—-a) (x—s=R(x-s)).

o on or inside the subloading surface is the conjugate point of & on or inside
the normal-yield surface. In calculation, first R is determined from Eq. (3.8)
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with Eqgs. (3.9) and (3.10), by substituting values of o, H, &, H and s, and
thereafter & is found from Eq. (3.10). The four internal variables H, &, H and
s are introduced in the present model.

The evolution of internal structure of materials is caused by the inelastic
stretching D, and thus the evolution equations of H, H and & are homogeneous
of degree one in D*. Here, assume that they are linear functions of D', i.e.

H = tr{fy(o, H,H, &,s)D'},
(3.11) H = fy (0, H,H, a,s)D',

& = f,(0, H,H, &, s)D",

Il

(-) standing for the material time-derivative. Thus they can be additively decom-

. 0 0 i (8] o
posed into the plastic parts H?, H?, and «” and the creep parts H, H® and ¢
by Eq. (3.4) of decomposition of the inelastic stretching.

3.3. Evolution of similarity-ratio

It is observed from experiments that the stress asymptotically approaches
the normal-yield surface in the plastic loading process D # 0, and it has to be
postulated as it was described in the foregoing that the plastic deformation is
suppressed with the increase of the deformation rate causing the viscous resis-
tance. The stress can go out from the normal-yield surface since at a high rate
of deformation, the elastic deformation proceeds without a plastic deformation
causing a variation of the normal-yield surface. Therefore, the subloading sur-
face can expand over the normal-yield surface. Thus, let the following evolution
equation of the similarity-ratio R be assumed.

(3.12) R=U'D?|| for D? # 0,

where U' is additively composed of the monotonically decreasing function Ug of
the similarity-ratio R and the monotonically increasing function Up(> 0) of the
magnitude ||D]| of stretching, i.e.

(3.13) U* = Ug(R) + Up(|DI)),
satisfying
Ur = +o0 for R=0,
(3.14) Up =0 for B=1;
(Up < 0 for R> 1)
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and
(3.15) Up=0 for|D]| =0.

||| stands for the magnitude, i.e. | T|| = 1/tr(TTT) for arbitrary tensor T, tr ()

denoting the trace and ( )T the transpose. Note that R = 0 for R = 1if ||D|| =0
but R > 0 even for R =1 if ||D|| > 0. The function U is illustrated in Fig. 4.

Uf

F1G. 4. The function U*® in the evolution rule of the similarity-ratio R.

3.4. The translation rule of similarity-center

The similarity-center s is required to translate with the plastic deformation
in order to describe realistically the cyclic loading behavior exhibiting the Masing
effect [6, 25, 26]. The translation rule of s is described below.

The following inequality must hold since the similarity-center s has to exist
inside the normal-yield surface.

(3.16) f(8,H) < F(H),
where
(3.17) =8 —iok

Let the ultimate state f(8, H) = F/(H) be considered, in which the similarity-
center just exists on the normal-yield surface, and thus the risk that the similarity-
center goes out from the normal-yield surface has to be avoided. The time-
differentiation of Eq. (3.16) in the ultimate state gives:

(3.18)  tr [% (§+%{tr(% ﬁ) —F}é)] <0
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The inequality (3.18) or (3.20) is called the enclosing condition of similarity-cen-
ter.

In the ultimate state f(8, H) = F(H), the vector o, —s(= (0 —s)/R) makes
an obtuse angle with the vector df (8, H)/ds which is the outward normal to the
surface, called the similarity-center surface, that passes through the similarity-
center and is similar to the normal-yield surface, provided that the normal-yield
surface is convex. Noting this fact and considering the fact that the similarity-
center moves only with the plastic deformation, let the following equation be
assumed so as to fulfill the inequality (3.18):

(3.19) 3-% {tr(a—fé"&;l—m) —F}é=ctr(ﬁD‘) ;

provided that the inelastic stretchig D? satisfies

(3.20) tr(ND') > 0

in the ultimate state f(8§, H) = F(H), where c is a material constant influencing
the translating rate of the similarity-center and

(3.21) G

O—38,

wwH}

(3.22) N o)

4Pf“H“nM|

which is the outward-normal of the subloading surface. The translation rule of
the similarity-center is now derived from Eq. (3.19) as follows:

(3.23) 8= ctr(_N”D*)g+ rx+F{FH—t (%% ﬁ)}s

where
d_F
dH’

It is conceivable that the similarity-center s approaches the current stress o as

(3.24) Fl=

can be seen from the simple case of the nonhardening state (&=IE-)I= 0,F =0),
although the evolution rule (3.23) is assumed to fulfill the requirement (3.18) in

the ultimate state f(§, H) = F(H). Here, note that $ can be additively decom-

posed into the pla,stlc part sp and the creep part sc by the additive decomposition
of D¢, H, H and &.
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3.5. Plastic stretching

The time-differentiation of Eq. (3.8) is given by
- ot A 1o
325) (Y CH o _ (0f@H) 2\  (0f(GH) o
Jdo a0 8o
= RF + RF'H

By substituting Eq. (3.12) into Eq. (3.28) one has the eztended consistency condi-
tion for the subloading surface:

(9f(G,H) o of (o, H) df(0,H) o
(3.26) tr (—6—6_— U') —tr ( 00' ) + tr (T H)
= U!||D?||F + RF'H,

where

o o

(3.27) ®= R « +(1 — R) s ~U!||D?||s

=]

from Eqs (3.10) and (3. 12) & can be additively decomposed into the plastic

part o _7’ and the creep part a by the additive decomposition of & and .
Now assume the associated flow rule
(3.28) DP =)N (A >0),

where A is the positive proportionality factor. Substitution of Eq. (3.28) into the
extended consistency condition (3.26) leads to

tr(N (Dr)—tr(ﬁ'o?i‘:)—{F,H‘ 5L (M )}ar(ﬁa)

(320) A= F _RF oo ,
MP
where
—t _ . [ ([F,.» 1 of(0,H) , Ut
(3.30) M,=tr [N({Fh, RFt (—BH h +R o +a”

hP, h? and a” are functions of the stress, plastic internal state variables and N
of homogeneous' degree one, while these functhns a:re related to the plastic parts

HP, HP and O of the internal variables H, H and & cx by

(3.31) R =
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o
(3.32) & = “T=RaP+(1—R)zP—U‘s,
&
p:_
(3.33) o =
» 1 of (3, H)
pzs_z ‘7 p R e _ __i._ » &
(3.34) 2 = ~=cO+a +F{Fh tr( 3 h)}s

since these rate variables include A in homogeneous degree one.
The stretching is given from Eqs. (3.1), (3.2), (3.4), (3.28) and (3.29) as
(335) D=Elg

tr(N cor) —tr(N Eoc) - {EH“ - itr (%{;H) Hﬂc) } tr(No)
N + D°.

The positive proportionality factor in the associated flow rule (3.35) is expressed
in terms of the stretching D, replacing A by A, as follows:

+

(3.36) A=

FI “RF"\" oo
M, + tr(NEN)

The inverse expression of Eq. (3.35) is given from Egs. (3.1), (3.2), (3.4), (3.28)

and (3.36) as

tr(ﬁED)—tr{ﬁE&q‘”)_{E Po o oy (BI(E,H) He

) } tr(NO) — tr(NED°)

(3.37) o= ED

D) ) - { it~ e (2T 5 ) - e

—f e
M, + tr(NEN)

- EN — ED".

Note that the stretching D cannot be expressed analytically in terms of the
Q
stress rate O since the right-hand side of Eq. (3.35) includes D but inversely,

0
the stress rate o is expressed analytically in terms of the stretching D as seen
in Eq. (3.37). Besides, the constitutive equation (3.35) or (3.37) is of the so-
called rate-nonlinearity since it includes the magnitude of stretching |D||. The
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rate-nonlinearity would be the basic property of the constitutive equation for
time-dependent deformation for a wide range of stress below and over the yield
stress in which the stiffness modulus depends on the rate of deformation.

3.6. Loading criterion

A loading criterion would not be necessary for the creep stretching since it
proceeds always with the elapse of time. On the other hand, taking the fact that
A has to be positive, let the following loading criterion for the plastic stretching
be assumed [27].

DP£0:4>0,
(3.38)
DP=0:A<0.

It should be noted that the constitutive equation formulated in the foregoing
reduces to the time-independent subloading surface model when ||[D| — 0 and
D¢ = 0. Here, note that the time-independent elastoplastic deformation would
hold approximately in the case of the moderate rate of deformation for which the
function Up in the plastic modulus and the creep stretching are negligible.

4. Constitutive equation of metals

Based on the equations formulated in the preceding section, the constitutive
equation for metals will be formulated in this section.

We adopt the subloading surface of the von Mises type with isotropic kine-

matic hardening [27], while the hardening variable 1/2/3||D?|| is extended so as
to account for the hardening due to the creep deformation:

(4.1) \/7”0*” (H=0),

(4.2) o= atr(ND')(= a|Di||), a= m% ~ ke,

(4.3) F = Fy[1 + hi{1 — exp(—haH)}],

(44) H= \/gt.r{ﬁr"ni) (f’fﬂ = \/gtr ND”) ( \/i\ = [l[DpII)
He= \/gtr(ﬁDc)) ,
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where 1
(4.5) ' =0 -0nl, Om = §mrﬁ.

ki, ko, hy and hs are material constants, and Fj is the initial value of F'.
Let the function Ug satisfying Eq. (3.14) and the function Up satisfying
Eq. (3.15) be given by

(4.6) Ur = —ulnR,
and
(4.7) Up =& In(1 + &| D)),

where u, &1 and & are the material constants.

The following generalization of Norton’s creep law to the multi-axial case with
the temperature effect by OpQVIST [28, 29] has been often used for the relation
of creep stretching and stress.

L E_ "U.” - __Qc L
(438) pe= /3 e

where C is the material parameter, 7 is the material constant, o, is the stress-
valued parameter, Q. is the activation energy, R, is the gas constant, T' is the
absolute temperature and o* is the deviatoric stress. However, C cannot be
a material constant with an objectivity since it depends on the selection of o.
Assuming that the direction of the creep stretching is the outward-normal of the
subloading surface, let Eq. (4.8) be modified for the present model as follows:

(4.9) D = \/gcm i (_ ) N,

where C' and n are material constants, whilst Eq. (4.9) fulfills Eq. (3.20).
The following relations are derived from Egs. (4.1) - (4.4).

Qe
R.T

(4.10) N e |6f("o’")

2
o W = 2 L e B L0
il oo RCERE

2
¥ =
v=y3

The measured and predicted uniaxial loading behavior under various axial
rates of deformation of 2,/4Cr-1Mo steel (SA 387, Gr. 22) at 600° C (test data
after INOUE et al. [30]) are shown in Fig. 5. The material constants and initial
values in the prediction are selected as follows:

Isotropic hardening: hy = 0.3, hs = 20;
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Kinematic hardening: k) =0, ko = 0;

Evolution rate of similarity ratio: u = 1,500, & = 30, & = 5,000 s;
Evolution of similarity center: ¢ = 0;

Elastic moduli: K = 140,000 MPa, G = 100,000 MPa;

Creep: Cexp{—Q./(R.T)} = 0.00002 s, n = 4;

Initial values: Fy = 305 MPa, &y = 0 MPa, sy = 0 MPa (initial isotropy).

400
Axial
stretching
1%/s
/,»— 10°
-2
200 ’ s 10
=
g [ 10
P /4
- |
< Experiment
------ Theory
100
0
0.00 025 0.50 0.75 1.00
Axial strain (%)

FiG. 5. Uniaxial loading behavior under various rates of deformation (test data after
INOUE et al. [31]).

The difference of deformation behavior due to the rate of deformation is
predicted quite well. The phenomenon that the rise of axial stress is weakened
as the axial stretching decreases is predicted well by selecting the high value 4
for the material constant n on the influence of the similarity-ratio R.

5. Concluding remarks

The subloading surface model which would be the only model capable of
describing pertinently the cyclic loading behavior among the existing models, is
extended so as to describe the time-dependence in this article. The creep stretch-
ing is added to the elastic and the plastic ones in the algebraic sum. Thus, it
falls within the framework of the elastoplastic-creep constitutive equation, which
could be regarded as a natural extension of the traditional elastoplastic consti-
tutive equation.
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The novel features of the present constitutive equation are as follows:

1) The subloading surface is extended so as to be able to become larger
than the normal-yield surface at a high rate of deformation. Here, it should be
noted that there would not generally exist any surface which bounds the state
of stress in the stress space. Therefore, the concept of the bounding surface of
DAFALIAS [31] must be abandoned in the general deformation process with time-
dependence, while in reality a stress goes out from the bounding surface at a high
rate of deformation.

2) The plastic stretching is formulated so as to be suppressed by the increase
of the rate of deformation through the evolution rule of the similarity-ratio. Thus,
a quick response to an abrupt variation of the rate of deformation or stress is
described.

3) The novel loading criterion is incorporated, which is defined by the sign of
the proportionality factor in terms of stretching in the associated flow rule.

4) The Norton-Odqvist creep equation of metals is modified so as to have the
objective material constant.
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