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AN ANALYTICAL METHOD for calculating notch tip stresses and strains in elastic-plastic
bodies subjected to non-proportional loading sequences is discussed in the paper.
The method is based on the incremental formulation relating the hypothetical linear
elastic and elastic-plastic strain energy densities at the notch tip, and the material
stress-strain behavior simulated according to the Mroz-Garud cyclic plasticity model.
Two formulations involving the strain energy density and the complementary strain
density are discussed in the paper, and they appear to give the lower and the upper
bound estimates for the elastic-plastic notch tip strains. Each formulation consists of
a set of incremental algebraic equations that can easily be solved for elastic-plastic
stress and strain increments, knowing the increments of the hypothetical elastic
notch tip stress history and the material stress-strain curve. The validation of the
proposed model against finite element data obtained for non-proportional loading
is also presented. The method is particularly suitable for fatigue life analysis of
notched bodies subjected to multiaxial cyclic loading paths.
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Notations
Aesz  normal strain increment in the critical plane
.i\efj plastic strain increments
dij Kronecker delta, é;; =1 fori = jand 6;; =0 for i # j
Aef,  elastic strain increments
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Aeﬂ elastic-plastic strain increments according to ESED method

Aﬁ, elastic-plastic strain increments according to Neuber’s rule
Ae?F  equivalent plastic strain increment according to ESED method

AerY  equivalent plastic strain increment according to Neuber's rule
Aafy increments of pseudo-elastic stress components

Ack  actual elastic-plastic stress increments according to ESED method
Acgll  actual elastic-plastic stress increments according to Neuber’s rule
Aol equivalent stress increment according to Neuber’s rule

ASS; symmetric tensor of the pseudo-elastic stress state

ASf  symmetric tensor of elastic-plastic stress state acording to the strain
energy density increment

AW tensor of elastic strain energy density increment

AW,-:,‘? tensor of elastic-plastic strain energy density increment

AQ;  tensor of elastic total strain energy density increment

A.Q.-‘f tensor of elastic-plastic total strain energy density increment

AT symmetric tensor of elastic total strain energy density increment

ATY  symmetric tensor of elastic-plastic total strain energy density increment

E modulus of elasticity

&% equivalent plastic strain

€bq equivalent plastic strain determined by the ESED method

el elasto-plastic notch-tip strains obtained from the ESED method

€is notch tip strain components obtained from linear elastic analysis
eﬁ elasto-plastic notch-tip strains obtained by the Neuber method

Efj plastic components of the notch-tip strain tensor

£i nominal strain

ESED equivalent strain energy density

v Poisson’s ratio

f & axial load

T torque

R radius of a cylindrical specimen

Si deviatoric stress components

Ten equivalent stress

o actual stress tensor components in the notch tip

a5 notch tip stress tensor components obtained from linear elastic analysis
ol notch tip stress tensor components obtained from the ESED model
0,-‘}’ notch tip stress tensor components obtained from the Neuber solution
O nominal stress

af nominal (average) stress in the net cross-section due to axial load P
Oo parameter of the material stress-strain curve (yield limit)

oy yield limit

t wall thickness

Tn nominal shear stress in the net cross-section
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1. Introduction

FATIGUE ANALYSES of machine and structure components require a detailed
elastic-plastic stress-strain analysis at critical locations, such as notches, where
the stress concentration occurs. In most cases the stress state in the notch tip
region is multiaxial. However, if one of the stress components is the dominant
one, it is often assumed that uniaxial stress or plane strain state prevails at the
notch tip. Such an approximation might be satisfactory in a wide variety of
practical applications but there are cases where all the stress and strain com-
ponents have to be accounted for. This is particularly true when several loads
are applied simultaneously and the stress components at the notch root change
non-proportionally. For example, axles and shafts may experience combined out-
of-phase torsion and bending loads.

The main focus of this paper is to present a method for calculating multiaxial
elastic-plastic stresses and strains in notched bodies subjected to proportional and
non-proportional loading histories.

2. Loading histories

Fatigue cracks most often initiate at the notch tip where the highest stress
concentration occurs. Therefore, most fatigue analyses are focused on the deter-
mination of fatigue life of the material volume adjacent to the notch tip, which is
under the effect of the local notch tip stress-strain history. The notch tip stresses
and strains are dependent on the notch geometry, the material properties and
the loading history applied to the notched body. If the various cyclic stress com-
ponents are in phase and change proportionally with each other, the loading is
called proportional. When the applied load causes the directions of the principal
stresses and the ratio of the principal stress magnitudes to change after each load
increment, the loading is termed non-proportional.

If plastic yielding takes place at the notch tip then almost always the stress
path in the notch tip region is non-proportional, regardless of whether the remote
loading is proportional or not. However, the remote proportional loading does
not make the notch tip stress tensor rotate and therefore, it makes the stress
analysis easier in spite of the fact that some non-proportionality of the notch tip
stress history may occur.

The non-proportional loading/stress paths are usually defined by successive
increments of appropriate load/stress parameters and therefore all calculations
have to be carried out incrementally.
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3. The stress state at the notch tip

If the dimensions and external loads applied to a body are such that the
plane stress state dominates in the body, then the stress state at the notch tip is
uni-axial (Fig. 1a), providing that the surface at the notch tip is stress-free. If the
notched body is in the state of plane strain (Fig. 1b), the notch tip stress-strain
state is fully characterized by only two principal non-zero stress components and
two non-zero principal strain components.

For the case of general multiaxial loading applied to a notched body, the
state of stress near the notch tip is tri-axial. However, the stress state at the
notch tip is bi-axial because of the stress-free notch tip surface (Fig. 1c). Since
equilibrium of the element at the notch tip must be maintained, i.e. o923 = 032
and 93 = €39, there are in general three non-zero stress components and four
non-zero strain components. There are seven unknowns altogether and a set of
seven independent equations is required for the determination of all the stress
and strain components at the notch tip. The material constitutive relationships
provide four equations, leaving three additional relationships to be established.

(a) Plane Stress (b) Plane Strain (c) General
0 0 0 0 0 @] [0 0 0
o,;={0 o, 0 o,=|0 o 0 0;,=|0 0, oy
0 %00 0 0 0 oyl 10 o5, Oy
CIURET & 0 O] (e, 0 0
&= 0 &y 0 g=(0 & 0 g,=|0 &y &y
0 0 e 0 0 O] L0 &y &y

F1G. 1. Stress state at a notch tip (notation): a) body in plane stress; b) body in plane
strain; ¢) general bi-axial stress state.
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4. Material constitutive model

In the case of proportional or nearly proportional notch tip stress path, the
Hencky total deformation equations of plasticity can be used in the analysis,

_ It 7 Squ

(4.1) Eij = ———0jj — —O’kkcs,'j iE 58:;51_1;.

E E

The material constitutive model of incremental plasticity, most frequently used

in the case of non-proportional loading paths, is the Prandtl-Reuss flow rule

associated with the von Mises plastic yielding criterion. For an isotropic body,

the Prandtl-Reuss relationship can be expressed as:

1+v v 3 Ael,

(4.2) AEU' = TAJU = —Aakkéij o

The multiaxial incremental stress-strain relation (4.2) is obtained from the uni-

axial stress-strain curve by relating the equivalent plastic strain increment to the
equivalent stress increment, such that

(4.3) ael, = —L—'—)Aoeq.

The function, by = f(0e,), is identical to the plastic strain-stress relationship
obtained under uniaxial loading.

5. The load-notch tip stress-strain relations

The load in the case of notched bodies is usually represented by the nominal
or reference stress being proportional to the remote applied load or by the pseudo-
elastic stresses at the notch tip which would exist there in the absence of plasticity.
In the case of notched bodies in plane stress or plane strain state, the relationship
between the load and the elastic-plastic notch tip strains and stresses is most often
approximated by the Neuber rule [1] or the Equivalent Strain Energy Density
(ESED) equation [2]. It was shown later [3, 4] that both methods can be extended
to multiaxial proportional and non-proportional modes of loading. However,
the multiaxial Neuber and ESED [3, 4] models are not the only methods for
determination of multiaxial elastic-plastic strain and stress states at the notch tip.
HorrmAN and SEEGER [5] and BARKEY et al. [6] also proposed similar methods.
All of the approximate methods consist, in general, of two parts, namely: the
constitutive equations and the relationships linking the fictitious linear elastic
stress-strain state (o7;, €f;) at the notch tip with the actual elastic-plastic stress-
strain response (o7, €{;) as shown in Fig. 2.
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88

Fi1G. 2. The linear elastic and elastic-plastic strain and stress states in geometrically
identical bodies.

The Neuber and the ESED rule [2, 3] for proportional loading, where the
Hencky stress-strain relationships are applicable, can be written in the form of
Egs. (5.1) and (5.2), respectively,

[ g oo Nl
(3‘1) 05€ = Oi3€45,
5 G
[ - R E . E
0 0

The ESED method is based on the equivalence of the strain energy density as
shown in Fig. 3a. The Neuber rule represents the equality of total strain energy
shown graphically in Fig. 3b. Detail discussion of the incremental Neuber rule
(5.3) and the ESED equation (5.4) and their use for calculating the elastic-plastic
notch tip strains and stresses can be found in reference [4]:

— Incremental Neuber’s rule

e e e LT N N N
(5‘3) JIJAEIJ+EEJAUIJ —-i’T,:J' AE:? +6"JAG1J'
— Incremental ESED equation

: e PR | o E
(5.'1) JU AE” = UIJAEU

http://rcin.org.pl



ELASTIC-PLASTIC STRESS-STRAIN ANALYSIS OF NOTCHES... 595

CA / G
X o
Aoy Acyf i
~_¢ Uu_ _L__.EU_ i
¥ 5 A
Ao A ()'UE- . L\.cu“} c,l-
i AgfF AgN
: =2
|
Agf ,gﬁ Agf
2 - /
! 1 e . I A >
! & & ® ! & g %
(a) (b)

Fic. 3. Graphical representation of: a) Incremental ESED method; b) Incremental
Neuber's rule.

The overall energy equivalence in the form of Eq. (5.3) or (5.4), relating the
pseudo-elastic and the actual elastic-plastic notch tip strains and stresses, has
been accepted in general, but the additional conditions necessary for the complete
formulation of the problem are being the subject of controversy. HOFFMAN and
SEEGER [5] assumed that the ratio of the actual principal strains at the notch
tip is to be equal to the ratio of fictitious elastic principal strain components
while BARKEY et al. [6] suggested to use the ratio of principal stresses. The data
presented by MOFTAKHAR [7] indicate that the accuracy of the analysis based
on the principal stress or principal strain ratio at the notch tip depended on the
constraint at the notch tip. Unfortunately, it is very difficult to define criteria
enabling the proper choice of those additional conditions.

The accuracy of the additional energy equations presented by SINGH et al.
[4] seems to be less dependent on the geometry and constraint conditions at
the notch tip and therefore, the analyst is not forced to make any arbitrary
decisions while using them. However, they have a theoretical drawback indicated
by CHU [8] because they do not have tensor properties and thus the estimated
elastic-plastic notch tip strains and stresses depend on the system of coordinates.
The dependence is not very strong and with suitably chosen system of reference,
it could be sufficiently accurate for engineering applications. Nevertheless, it
is possible to formulate an axis-invariant system of equations similar to those
discussed in references [4, 8.
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6. Multiaxial equivalent strain energy density equations

The strain energy density equations can be written in terms of equality of
components of two tensors AW} and AWg representing inner products of the
stress tensor o and the corresponding strain increment tensor Aeg;. The strain
energy density increment, AW;}, called here the strain energy density tensor in-
duced by the pseudo-elastic stress and strain increments at the notch tip (Fig. 2a)
can be determined as:

The actual strain energy density tensor, AWIE‘ , resulting from the actual elastic-
plastic stress and strain increments at the notch tip (Fig. 2b) can be also deter-
mined as the inner product of the current stress tensor and the strain increment
tensor,

(6.2) AWE =af - Aek.
J J

In the case of the notch tip surface free of stress (Fig. 1c), tensors (6.1) and
(6.2) can be presented in the matrix form with all elements in the first column
and the first row being equal to zero:

0 0 0

e e e e . e e
059455, + 053Ae5, 05, Ach3 + 0534653

and
0 0 0

E_ BAE + BEAE ~EAE 4 EAE

(6.4) AWy = | 0 0334e5, + 0330e3; 035053 + 0534¢e5;
BAE v BAE BASE s B AE

0 o34¢e5 + o53des, 035Ae53 + o334e5;

The physical meaning of the diagonal terms in matrix (6.3) and (6.4) is obvi-
ous because the two products in each diagonal term represent the strain energy
density increments contributed by individual stress components and the corre-
sponding strain increments. The sum of diagonal terms in both tensors represents
the increment of the strain energy density. The meaning of the off-diagonal terms
is less clear but they can be interpreted as increments of the virtual strain energy
density increments analogously to the term used in the virtual energy method
well-known in solid mechanics stress/load analyses. The product, o5,A€5;, in
the term W; in matrix (6.3), can be interpreted as the virtual strain energy
increment contributed by stress, 05,, on the strain increment, Ae§;, induced by
the shear stress, 05;. The second product, o53A4€§;, being a part of the same
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term, W33, can be analogously considered as the virtual strain energy density
increment contributed by the shear stress component, 055, on the normal strain
increment, Aef,, induced by normal stress components, o5, and o§;.

Tensors (6.3) and (6.4) are in general non-symmetric. However, they can
easily be made symmetric by taking the average of the sum of both off-diagonal
terms.

(6:)) ASSJ =

0 0 0
(055 + 053) Aess + 053(Aes, + Aehs)
2

=10 032 Ae5; + 05345,

(055 + 083) Aels + 053(Aefy + Aejg)

0 5 05,433 + 053 Ae5,
and
E
0 0 0
B B E E
_ 1o 0B AcE, + oB AcE, (of; + of3) Ak +2023(-4sz2 + Aeg;)
E E\AE E ( AE E
O3 + 033) Ay + 033(Acs, + Ae: . :
0 (035 + 033) Aezs + 053(Aez) 33) B AcE: 408, Ach,

2

Analogously to the hypothesis proposed in references (2, 3, 4], it is assumed
that the strain energy increments at the notch tip in the pseudo-elastic and
the elastic-plastic body (Fig. 2) of identical geometrical shape and subjected to
identical loads, are equal. Such a hypothesis can be written in terms of the
equality of tensors (6.5) and (6.6),

et E
(6.7) AS5; = ASE.

The hypothesis written in the form of Eq. (6.7) results in three independent
equations relating the pseudo-elastic strain and stress components and the actual

elastic-plastic stress-strain response at the notch tip in the elastic-plastic body
(Fig. 2).

(6.8) 059 Ae5, + 053 A€53 = U%AE% + agAEQE;,,
(6.9) 033053 + 053Ae53 = c§3A53‘% + 0253.46533,
(6.10) (055 + 053) Achs + 053(Acsy + Acs) = (095 + 053) Ay

E E E
+093(Aey; + Aess).
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Equations (6.8) - (6.10) can be supplemented with four constitutive equations
obtained from the general constitutive relationship (4.2).

v 3 [ . AP
(6.11) Aell = —— (Ao + Aofy) — (0% + 053) —-,
E 2 o
1 1 - AePE
(6.12) Aek, = §(Aa§§ —vAok) + 5(20532 - ag%,)—g;i,
eq
E 1 E E s E Asﬁf
(613) 5533 = —‘(A0'33 = VAO'zQ) =} —(2033 — 0'22)'—'—'5-*,
E 2 Ocq
SO S ALY
(6.14) Acl = Taag + 57;"‘-0;3,

eq

where:
E\2 E E _E E\2
(0£)? = (05) + (033)® — 053033 + 3(033)?,

i [a{’:z - Jﬁ){Acr-g — AU;‘;’%] + 30%.402"%

E
Aoeq s O'N 3
eq
E
AePE = df(oeq)dcrﬁ
eq E eq’
doeq

Equations (6.8) — (6.14) form a set of equations enabling the determination
of all the elastic-plastic strains, (Aek;, Ak, As‘%, Asé%), and stress increments
(0%, 0%, 0L;) based on the pseudo-elastic stress history at the notch tip. A
graphical representation of the incremental ESED method is shown in Fig. 3a,
where the strain energy densities are represented by the vertical bars of the
trapezoidal shape whose areas, according to Eqs. (6.8) — (6.9), must be equal.

7. Total strain energy density equations

A set of equations similar to Eqgs. (6.8) — (6.10) can also be written in terms of
the total strain energy density, i.e. the sum of the strain energy density and the
complementary strain energy density, analogously to the well-known Neuber'’s
rule [1]. The tensor representation of the increments of the total strain energy
density in the notch tip of linear elastic body (Fig. 2a) can be written as

Ta) 2% = 05, - Acl; + Acly - €5
1] ik kj ik " ki
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Analogously, the tensor representation of the total strain energy density incre-
ments at the notch tip of geometrically identical elastic-plastic body (Fig. 2b)
can be written as

(7.2) ARl = ol - Aey + Aol] - ef;.

Tensors (7.1) and (7.2) are non-symmetric but they can be converted into
two symmetric tensors T;; and T,?' , respectively. Similarly to the strain energy
density tensor (6.1) and (6.2), the sum of the diagonal terms of tensors T} and
Tif represents the increment of the total strain energy density, i.e., the strain
energy density plus the complementary strain energy density. The off-diagonal
terms can be interpreted as the virtual strain energy density and the virtual
complementary strain energy density, analogously to the formulation discussed
above. It is then postulated, similarly to the original Neuber concept, that in the
case of localized plastic yielding in the notch tip region the symmetric tensors
are equal,

= N

It can be shown that Eq. (7.3) reduces to the well-known Neuber’s rule [1, 2| in
the case of uni-axial stress state, and to the model proposed by MOFTAKHAR et
al. [3] for multiaxial proportional loading. Because all the necessary relation-
ships are formulated in terms of tensor equations, it is hoped that the proposed
methodology is, contrary to the previous models [4], axis-invariant.

In the case of one surface free of stress, as it often occurs in notches (Fig. 1),
the tensorial equation (7.3) leads to three independent equations relating the
pseudo-elastic and the elastic-plastic strain and stress increments at the notch
tip:

(7.4) 052 Aehy + Aasyesy + 053 Aess + Aassely = 0 Aogy + Aofyed)

N A_N N_N
+0934€93 + Aopsens,
—r-) e Agt Act.e8 e Agt Ae'-‘e—NAN-i-.ﬂNN
(7.5 03340833 + A033E33 + 093893 + Q093893 = T334€33 033€33
; N_N
+a§345‘2v3 + Acgzeas,
(7.6) (059 + 033) Aess + (A5, + Aoss)ehs + 055 (Acsy + Aess)
N N N N Ny\_N
+A053(59 + £33) = (029 + 033) Aeaz + (Ao + Aozz)ens
N AN N NN N
+093(Aegy + Aeyy) + Aoy (e + E33)-

Equations (7.4) - (7.6) and the four constitutive equations (7.7) — (7.10) below
form a set of seven equations necessary for complete formulation of the notch tip
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stress-strain problem.

v 1 Asp
(7.7) Ae) = ——(Aod + Aoy) — = (095 + 033) )
E 2 creq
AE
(7.8) A = E(Aﬂzz vAo) + (2022 Usa)wa
eq
N_ LW o T E gt LA
(7.9) Aegy = —(Ao3z —vAoy) + 5(2033 — 099) —x
E 2 Teq
14w 348 N
A Act = T Agi L S
(7.10) £33 F QB t3—§ oN 023,
where:
(00g)* = (09 + (033)% — 03033 + 3(033)?,

N N _ AgN N AN
eq Og; 3
df (o2y)

N
doA

At =

In the case of uni-axial or plane strain state at the notch tip, the set of

seven equations reduces to two equations as proposed originally by NEUBER [1].

The equivalence of the increments of the total strain energy density is graphically

shown in Fig. 3b, where the energies are represented by the horizontal and vertical
rectangles whose areas are assumed to be equal.

8. Comparison of the calculated elastic-plastic notch tip strains
and stresses with finite element data

Comparison of the calculated notch tip stress-strain histories to those ob-
tained by means of the finite element method assessed the accuracy of the pro-
posed incremental Neuber rule. The validation of the ESED method was outside
of the scope of this paper. The elastic-plastic results from the finite element ana-
lysis of Ref. [4] were obtained using the ABAQUS finite element package. The
geometry of the notched element was that of the circumferentially notched bar
shown in Fig. 4. The nominal torsional stresses, 7,, and tensile stresses, onp,
were determined basing on the net cross-section according to Eq. (8.1).

2T

F
(81) OnF = =75 and Tn = m

(R — t)?
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The basic proportions of the cylindrical component were p/t = 1.0 and R/t =
23.333 resulting in the torsional and tensile stress concentration factor Kp =
083/ = 1.82 and Kp = 0§3/0nr = 2.80, respectively. The ratio of the notch
tip hoop stress to axial stress under tensile loading was 0§3/05, = 0.2179.

=1 - ﬁ N>

RA=23.333 i g

=3 mm / 2

:
|

FiG. 4. Geometry and dimensions of the notched bar tested under non-proportional
tension and torsion loading.

The linear segments shown in Fig. 5 approximated the material stress-strain
curve used in calculations. The curve segments are defined by coordinates (e — o)
of each transition point, namely: 0—0, 0.0039 —200 MPa, 0.00317 —249 MPa and
0.029 — 530 MPa. The remaining standard elastic constants were E = 200 GPa,
v = 0.3, oy = 200 MPa.

The first set of data was obtained for non-proportional monotonic loading
history (no unloading) shown in Fig. 6. The pseudo-elastic axial stress, o§,,
and the torsional shear stress, o§;, at the notch tip represent the loading path.
The specimen of Fig. 4 was loaded incrementally from zero to the load level
corresponding to 0§, = 108.89 MPa and ¢5; = 161.06 MPa and then the axial
stress was further increased to the level of 0§, = 344.10 MPa while the shear
stress was decreased to 053 = 120.78 MPa, as shown in Fig. 5.
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Material stress-strain curve

600
500 A
400 A
300 -

Stress (MPa)

200 4
100 -+

0 0.01 0.02 0.03
Strain

F1G. 5. The three linear segments material stress-strain curve used for the analysis of
strain and stresses under the monotonic non-proportional loading path.

Elastic notch tip stress path
™ 180 -
o
= 160 4
" 140 -
b
o 120 +
® X
2 100 1 notch tip yield
a 80 -
=1
= 60 -
g
2 40
S 20
ﬁ 0 T Ll T 1
0 100 200 300 400

Axial notch tip stress, o2;° (MPa)

Fi1G. 6. The monotonic non-proportional torsion-tension load path.

The local pseudo-elastic stress path at the notch tip shown in Fig. 6 was
used as the input to calculate the elastic-plastic notch tip stress-strain response.
The appropriate ‘elastic’ stress increments were inputted into Eqs. (7.4) - (7.10)
representing the total strain energy density (Neuber) approach. The calculated
strains and stresses were subsequently compared with the elastic-plastic finite
elemen: data. The strain components, €99 and £93, and the stress components,
099 and o3, that were calculated using the method described above, are shown
in Figs. 7 and 8. Note that the results from the model and the finite element
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analysis are identical in the elastic range. This could be expected since the model
converges to the elastic solution in the elastic range. Just beyond the onset of
vielding at the notch tip, the strain results that were predicted using the proposed
model and the finite element data begin gradually to diverge. However, the
method gives reasonably good estimation of the notch tip stress-strain behavior.
It can be concluded that the incremental total strain energy density (Neuber)
method over-predicts the actual notch tip strains. The investigations up to date
have revealed that the actual notch tip strains are always within the band defined
by the two methods decribed above, and the average values of the two limits may
be used as a good approximation of the actual stress-strain state at the notch

tip.
300 -
250 -

200 A

150

Axial stress gz (MPa)

100 A -o— FEM
—+— Neuber

0 0.0005 0.001 0.0015 0.002 0.0025

Axial strain €22

F1c. 7. The axial stress and strain, g2 and 22, at the notch tip, generated by the
monotonic non-proportional loading path.

In order to predict the notch tip stress-strain response of a notched component
subjected to multiaxial cyclic loading, the incremental equations discussed above
have to be linked with the cyclic plasticity model as described in Ref. [9]. The
MRrG67 [10] model modified by GARUD [11] was used with the incremental Neuber
model discussed above. The analysis was carried out for a constant amplitude
multiaxial proportional cyclic loading history shown in Fig. 9. The loading his-
tory is represented by the excursions of three pseudo-elastic stress components.
The maximum and minimum stress values were 285.9 and —85.77 MPa for the
axial stress o5y, 62.30 and —18.69 MPa for the hoop stress 053, and 195.18 and
—58.55 MPa for the shear stress of;.

http://rcin.org.pl



140 4

120 4

100 A

80 -

60 -

Shear stress oz (MPa)

40 -

—+— Neuber
20 4
-o—FEM

0 <~ T T T T T T v d
0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016
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Fi1G. 8. The shear stress and strain, 23 and £33, at the notch tip, generated by the
monotonic non-proportional loading path.

Pseudo-elastic notch tip stress path
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FiG. 9. The multiaxial cyclic loading history.

[604]

http://rcin.org.pl



Material stress-strain curve
400

Stress o (MPa)

200 +

0.0 0.01 0.02 0.03

Strain

F1G. 10. The two linear segments material stress-strain curve used for the analysis of
strain and stresses under the multiaxial cyclic loading path.
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Fig. 11. The axial stress and strain, o990 and 99, induced by the multiaxial cyclic
loading path.
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The material stress-strain curve was that one composed of two linear seg-
ments (Fig. 10) defined by € — o coordinates of the transition points, i.e. 0 — 0,
0.001 — 200 MPa and 0.06135 — 450 MPa. The elastic constants were the same
as previously. The elastic-plastic notch tip strain-stress histories are shown in
Figs. 11 and 12. It can be noticed that both the axial and the shear strain were
over-predicted by the Neuber-based approach, similarly to many previous reports
concerning the Neuber rule. However, the over-prediction might be acceptable in
many practical applications, where the time available for the analysis is limited.
It is worth mentioning that the ABAQUS program required 30 hours CPU time
while the total strain energy density-based calculations were completed within
a fraction of a second for the same number of load increments run on the same
computer.

150 -
100 -
T
(-8
£ 50 -
2 -o-FEM
= —4— Neuber
[
-]
"
= 0 T T 1
2 { 7 0.002 0.0025 0.003
w
50 -
-100 -

Shear strain ez

F1G. 12. The shear stress and strain, o,3 and &£,3, induced by the multiaxial cyclic
loading path.

9. Conclusions

Two methods for calculating elastic-plastic notch tip strains and stresses in-
duced by multiaxial loading paths have been proposed. The methods have been
formulated using both the total strain energy density and the strain energy den-
sity relationships. It has been found that the generalized Neuber’s rule, which
represents the equality of the total strain energy density at the notch tip, gives
an upper bound estimate for the elastic-plastic notch tip strains. The method

http://rcin.org.pl
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has been verified by comparison with the finite element data obtained for non-
proportional loading path and nonlinear stress-strain material model. The accu-
racy of the proposed method was satisfactory, particularly where the notch tip
stresses are of primary importance.

The calculated notch tip strains and stresses can be subsequently used for

estimating the fatigue damage and life prediction for multiaxial cyclic loading
histories.
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