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Irreducible representations for constitutive equations of

anisotropic solids II: erystal and quasicrystal classes Do, 14,
D?m+l and CZm.+ 1v

H. XIAO, O.T. BRUHNS and A. MEYERS
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D-44780 Bochum, Germany

A SIMPLE, UNIFIED PROCEDURE is applied to derive irreducible nonpolynomial represen-
tations for scalar-, vector-, skewsymmetric and symmetric second order tensor-valued
anisotropic constitutive equations involving any finite number of vector variables and
second order tensor variables. In this part, our concern is for all crystal classes and
quasicrystal classes Damt1d, Dam+41 and Copmaqe for all integers m > 1.

1. Introduction

IN cONTINUUM PHYSICS, complicated and varied macroscopic physical behaviours
of anisotropic solids are modelled by scalar-, vector- and second order tensor-
valued functions of vector variables and second order tensor variables, commonly
known as material constitutive equations. Material objectivity and material
symmetry place a combined invariance restriction under the material symme-
try group on the tensor function forms of material constitutive equations. Gen-
eral reduced forms, or representations, of material constitutive equations under
the just-mentioned universal invariance restriction, constitute a rational basis
for consistent mathematical modelling of complex material behaviours. In the
past decades, this aspect was extensively studied. Now many results for poly-
nomial representations and some results for nonpolynomial representations are
available. For detail, see, e.g., the monographs by TRUESDELL and NoLL [11],
SPENCER [10], BOEHLER [4], RyCHLEWSKI 7], ERINGEN and MAUGIN [5], KIRAL
and ERINGEN [6], BETTEN [2], SMITH [9], and the recent reviews by BETTEN [1],
RYCHLEWSKI and ZHANG [8] and ZHENG [21], ef al. Some references are listed
in Part I of this series of paper.

Although now many results in many cases are available, general aspects of
tensor function representations, especially nonpolynomial representations, are
still under investigation, which are concerned with any finite number of vector
variables and tensor variables and all kinds of material symmetry groups including
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56 H. Xi1a0, O.T. BRUHNS AND A. MEYERS

the 32 crystal classes and all denumerably infinitely many quasicrystal classes.
As compared with polynomial representations, nonpolynomial representations
are not only more general both in notion and in scope, but may furnish more
compact representations for constitutive equations, as noted by Wana [12] for
isotropic cases and by BOEHLER [3 — 4] for anisotropic cases. There are relatively
few results for irreducible nonpolynomial representations for the foregoing general
cases, except for those concerning some simple material symmetry groups (see
the related references in Part I of this series, i.e. X1A0, BRUHNS and MEYERS
[20]. Henceforth, the just-mentioned reference will be simply referred to as Part
I). In a series of work consisting of three parts, we aim to provide irreducible
nonpolynomial representations for scalar-, vector-, skewsymmetric and symmetric
second order tensor-valued anisotropic constitutive equations of any finite number
of vector variables and second order tensor variables relative to all crystal and
quasicrystal classes as subgroups of the cylindrical group Dsyp. In the second
part, we consider the crystal and quasicrystal classes Doy 14y Domaq and Copngye
for all integers m > 1.

As it has been done in Part I, we shall apply a unified procedure based on [13
- 15] and [18] to derive the desired functional bases and generating sets. For a
detailed account of such a unified procedure and for notations and preliminaries,
refer to Secs. 2 - 3 in Part I and the related reference therein.

2. Crystal and quasicrystal classes Dy, 114

The classes at issue are of the form

2kw /0 - Yerr /.
(2‘1) D'zm—i-ld(n,e) = {iRn m/ n+1’ iRak[ak =R, ?TH”H'IE

k=1,---,2m+1}.

They include the trigonal crystal class Ds; as the particular case when m =
1. Henceforth, a will be used to represent one of the two-fold azis vectors

a, -, 8omt1-

2.1. Single variables
(i) A single vector u

Each anisotropic function of a vector variable u under the group Dsyy, 414 may

be extended as an isotropic function of the three variables (u,ET]zm({Jl),n ®n)
(see Theorem 1 in X140 [15]). Applying the related result for isotropic functions
and following the unified procedure outlined in Sec. 3 in Part I, we construct the
following table.
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IRREDUCIBLE REPRESENTATIONS FOR CONSTITUTIVE EQUATIONS... a7

Vo {u,u X Ny, (8), G2mst ()3, (W)} (= Vo (w))
Skw  {ETgp (W), u A (1 X Ty (1)), 2m 1 (B)1 A Mg (1)}
(= Skwap41(u))
Sym {I,n® n, u® a.nv Goly.s I]Qm(lul)], u V(u x 1]2.,”{101)),
21 (W) (1 V11, (B) = (0 1)1V Ny, (W)} (= Symgpny (w))
Rrou, o, u, Mg, ()], a1 (W) T Ty, (0);
trH (BN, (1)), [u, Hu, Ny, (1)], @z 1 (W) 1y, (1) - Hu;

t 0o

trC,n - Cn, 1 - G, [0, Ny, (1), C 1], [, Ny, (1), CHI,

“’2:1:(&}(712111.(&)' &ﬁ -—(ll ' n)n?m(ﬁ)' & 1‘1);
{(u-0)2,| 0 2, gms2(R), (- 0)Boms1 (1)} (= Lomsr (u))

First, we show that the presented set Ipp,.ii(u) of invariants is a desired
functional basis. In fact, an isotropic functional basis of (u, En,,,(u),n ® n) is
given by

luf?, (u - n)% - (Eny,, (0)%u,u - (n ® n)(Eny, (1)),
u - (Eny, (1) (n @ n)(Eny,, (1)>u.

In deriving the above basis, many redundant invariants have been removed by
using the equalities

(2.2) (n@n)’ =n®n, (En,y,W)’n=-|u|"n
Then, using the second equality above and the identity
(2.3) (Eu)v =v x u,

as well as the decomposition formula (2.15) in Part I, we know that the first
four invariants in the foregoing basis yield the set Ip;,1(u) of invariants and,
moreover, the last invariant given before is redundant. Thus, the presented set
Ioms1(u) is a desired functional basis. It may readily be proved that this basis
is irreducible.

Next, we prove that the two presented sets Vo, 41 (u) and Skwop,1(u) supply
a desired vector generating set and a desired skewsymmetric tensor generating
set, respectively. In fact, let u x nzm(ﬁ) = 0. Then u = za; or u = zn. It
can easily be shown that the foregoing two sets obey the criterion (2.3) given in
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58 H. X1a0, O.T. BRUHENS AND A. MEYERS

Part I. Now let u x T]zm+1fﬂ) # 0. Then we have (see (2.5), (2.6) and (2.8) in
Part 1)

(1, ENyyn (1)) C Cop(Mg (1)) C Doon(n),

and therefore we have I'(u, Engm(ﬁ). n®n)=I"(u, En,zm{lnl)). From the latter
and the criterion (2.3) given in Part I, we infer that for the case for u at issue,
isotropic generating sets for the three variables (u, Enzm({i),ngnn) are obtainable
from those for the two variables (u,Engm(ﬁ)). By applying the related result
for isotropic functions we know that, for the vector-valued and skewsymmetric
tensor-valued cases, the latter are just given by the two presented sets Vomq(u)
and Skway, 41 (u).

Finally, we show that the presented set Symgy, 41 (u) supplies a desired sym-
metric tensor generating set. To this end we prove that this set obeys the criterion
(2.3) given in Part I. When u= 0, the just-mentioned fact is evidently true. Now
let ﬁ;é 0. Then the triplet (n, 101, nx {}l), denoted by (e3,e;,€s), is an orthogonal-
ized basis of the vector space V, and hence the six tensors e; Ve;, i, j =1,2,3,
form an orthogonalized basis of the symmetric tensor space Sym. It is easily

understood that the first three generators in the set Symay,41(u) yield the three
tensors €; ® e;, =1, 2, 3. Thus, we have

rank Syms,,,.;(u) =3 4 rank{G,, G2, G3},

where the G; are used to denote the last three generators in the set Syma,, 1 (u),
ie.

4]

Gy =nV(nxn), Gy =uV(uxn), Gs=azm(W)(VN - (u-njnvn),
with 1 = ﬂzm(ﬂ)‘ We have

Gi:(e1Vey) Gr:(e2Ve;) Gy:(e3Ve)
A= G22(31V82) Gg:(eg\/e;:,) Gg:{Eg\/el)
G3:(e;Ves) Ga:(eaVes) Gi:(ezVe)

0 Q2m4-1 (&) Bom+1 (ﬁ)

0O v
= 8aom+1(u) | zy?agms1(0) 0 ~y*om+1(0)

—y2Boms1(8) Thomi1(W)  —zOzmir (W)
= 8y (a2m+1 (W) 2(22*™ + (Bam+1 (W))?).
where z=u-nand y = | u |. Hence, for u# 0 we deduce
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IRREDUCIBLE REPRESENTATIONS FOR CONSTITUTIVE EQUATIONS... 59

6if A#0,

rank Symy,, . ((u) =< 4if ﬂf’zm+1(ﬁ) =0,

0

4if & = Baner(u) = 0.
From these results and
Cin(ag) if agmi1(0) =0,

I'(u) N Dypp1d = : o
Ca(ag) if z = Boms1(u) =0,

E 0 - u u .
for u# 0, as well as Table 3 given in Sec. 2 in Part I, we infer that the set
Symam,+1(u) obeys the criterion (2.3) in Part I.

Each generating set presented is minimal and, of course, irreducible.

(ii) A skewsymmetric tensor W
Skw  {W.En,,,(Wn), W(En,,,(Wn)) - (En,, (Wn))W}
(= Skwam+1(W))
Sym {I,n®n, Wn® Wn,nV Wn, W(En,,,(Wn)) + (En,,,(Wn))W
W2nV (n x n,,(Wn))} (= Symoy,.1(W))
R trH W, trH(En,,,(Wn)),trH W(En,,,(Wn)); trC,n - Cn,

(Wn)- C Wh. (é n) - Wn, trC W(En,,,(Wn)), [n, 1,,,(Wn), C W2 ‘n;
{(trW N)Z, |W11123)82m+l (Wn), (trW N}ﬂg,n+| (Wn)} (= L 4+1(W)).

The proof for the above results is as follows. Anisotropic functions of the
skewsymmetric tensor W under the group Ds,, 414 may be extended as isotropic
functions of the extended set (W,En,,,(Wn),n ® n) (see Theorem 1 in XIAO
[15]). Applying the related result for scalar-valued isotropic functions, we derive
an isotropic functional basis of the extended variables (W, En,,,(Wn),n ® n)
as follows:

trW2, [Wn|?, trW (Eny,,(Wn)), tr W (En,,,(Wn))(n & n),
trW?(En,,,(Wn))(n ® n).

In deriving the above result, many obviously redundant invariants have been
removed by using the equalities

(n®n)? =n@n, (Eny,(Wn))* = n,,(Wn) @ n,,(Wn)
—|Wn|"™1, n,,(Wn) n=0.
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60 H. X1ao, O.T. BRUHNS AND A. MEYERS

Moreover, with the aid of the decomposition formula (2.16) given in Part I,
we infer that, of the foregoing basis, the third invariant is equal to the fourth
invariant and hence redundant. The other four invariants form the presented set
Iom+1(W) of invariants.

Next, we show that the presented set Skwo,, 41 (W) is a desired skewsyminet-
ric tensor generating set. Two cases are considered. First, let W and Ens,,(Wn)
be linearly independent, i.e., either of them is nonvanishing and their axis vectors
are noncollinear. Then we have (see (2.6) in Part I)

I'(W,Eny,(Wn)) = 5; = I'(W,En,,,(Wn),n ®n).

From this fact and the criterion (2.3) in Part I it follows that for the case at issue,
an isotropic skewsymmetric tensor generating set for (W, En,,,(Wn)) supplies
an isotropic skewsymmetric tensor generating set for (W, En,,,(Wn).n ®@ n).
By applying the related result for isotropic functions we know that the former is
just given by the set Skwgy,+1(W). Second, let W and En,,,,(Wn) be lincarly
dependent. Then we have (trW?)(trH?) — (trWH)? = 0 with H = En,,,,(Wn).
Hence we derive W = cEz with z € {n,a;,---,as,+1}. Evidently, for the case
at issue, a single generator W is enough to form a desired generating set.

Finally, we show that the presented set Symuy,,.+1 (W) is a desired symmetric
tensor generating set. Towards this goal, we show that this set obeys the criterion
(2.3) given in Part I. In fact, let Wn # 0. Then the triplet (n, Wn,n x Wn),
denoted by (ey,eq,e3), is an orthogonalized basis of the vector space V, and
hence the six symmetric tensors e; Ve;, i, j = 1,2,3 form an orthogonalized basis
of the symmetric tensor space Sym. In the presented set Symam,+1 (W), the first
four generators yield e3 ® e3 and e; V e, 7,7 = 1,2. For the last two generators
in the set Symop,+1(W), denoted by G and Gg, by using the formulas (2.6) and
(2.28)2.3 in Part I we have

A= Gi:(e;vVe;) G):(exVes) ‘

| Go: (e; Ves) Gy:(eyVes)

tPrm+1(Wn)  y2aomi1(Wn)
'_yga%n-!—l (Wll) xy;ﬁ?m—H (Wl‘l)

=4 ’
= 4% (2% (Bam+1(Wn))? + y*(azm41(Wn))?)
where z = trWN and y = |Wn|. Hence, for Wn # 0 we deduce

rank{I,n ® n, Wn ® Wn,nV Wn}
rank Symy,, (W) > < =4 if A=0, ie W =cEay,
6 if A#0,
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IRREDUCIBLE REPRESENTATIONS FOR CONSTITUTIVE EQUATIONS... 61

From the latter and I'(W) N Doy 14 = Cop(ag) for W = ¢Eay # O, as well as
Table 3 given in Sec. 2 in Part I, we infer that for Wn # 0, the set Symg;1(W)
obeys the criterion (2.3) given in Part I. Moreover, it can readily be shown that
the same is true for Wn =0, i.e. W = cEn.

Either of the two presented generating sets is minimal and, of course, irre-
ducible.

(iii) A single symmetric tensor A

Anisotropic functions of the symmetric tensor variable A under the group
4]

D3y 14 may be extended as isotropic functions of the four variables (A, En,,, (A
n),En,.(q(A)),n ® n) (see Theorem 1 in X1A0 [15]). Applying this fact and
the related result for isotropic functions, one can immediately derive complete
representations for the anisotropic functions at issue. However, the results thus
obtained need not be irreducible. Removing the redundant elements zud then
following the unified procedure in Sec. 3 in Part I, we arrive at the desired irre-
ducible representations.

Skw  {Bam+1(q(A))N, EMn(q(A)), Ny (A 0), A 1A A 2n,
O2m4-1 (A l’l)N 7 Ep?n(q(A))} (E Skw2m+| (A))

Sym {I,n®n,A,An® An,nV (n X I]?m(;i n)),

A 1V (1 X T (A 1)), Dam(alA));
nV (nx1n,,(q(A))). Ae(En,,(q(A))) — (En,,(q(A)))Ae}
(E S.‘/'m?.m+ 1 {A))

R (trHN)Byms1 (q(A)). trH(ETG, (q(A))), trH(ET 50, (A 1)),
(trHN)J(A), (trHN) aams1 (A n) + trH(Ep,, (a(A)));
{n- An, trA,| A nf2, [q(A)[%, 0 A %0, By (A n),
ﬂ").m.-i-l(q{A))f
[n,R zn,ngm(x n)]} (= Ln+1(A)).

Here and henceforth, 7t,,((q(A)) and p,,(q(A)) is used to denote two vector-
valued polymonial functions of the symmetric tensor A defined by

lq(A)|™*'n,.(q(A)) if m is an odd number,

4 Pl = { |q(A)|™Aen,,(q(A)) if m is an even number,
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62 H. X1ao, O.T. BRUHNS AND A, MEYERS

{ lq(A)|" =1 Aen,, (q(A)) if m is an odd number ,
(25) ﬂm.(q{A)) = ; .
la(A)[™N,,(q(A)) if m is an even number,

In the table given, the two sets Syma,,+1(A) and Iop,41(A), cited from Xi1A0
[16] and X1A0 [17] separately, supply a desired irreducible symmetric tensor gen-
erating set and a desired irreducible functional basis, respectively. In the tables
given here and in (vi) we omit the invariants provided by the scalar products
of the symmetric tensor variable C € Sym and the presented symmetric tensor
generators. In the final general result that will be given by Theorem 4, we in-
tend to cite directly the related results recently established by the authors (Xiao,
Bruhns & Meyers [19]), which are simpler and more compact than the foregoing
invariants from the scalar product. Moreover, using the equality (2.7) below and

&) (4]
noticing that the invariant | A n|(Hn)- A n is redundant, we know the scalar

product trH(R nA K n) may be replaced by the invariant (trHN)J(A), as has
been done.

In what follows we prove that the presented set Skwo,,.o1(A) is a desired
irreducible skewsymmetric tensor generating set. First, we show that this set
obeys the criterion (2.3) in Part 1. The case when iz 0 is trivial. Let R;é 0.
By using the equalities

(2.6) AN, (q(A)) = amyi(a(A))e + Bnsi(a(A))e’,
(2.7) A o/ A% = | XoiPaAd ot JAIN,

and setting q = q(A) and D = rank Skwy,,+1(A), we deduce
( I‘ﬁ.nl({N. Em,,(q), Epm.((I)} =3 if Poms (Q) #0,
(8] 4]
rank{N,En,,,(An),nAAn} =3 if Bomsi(q) =0,
(4]
Q241 (A [l) # 0 3
D >4 A e e =
=) rank{En,,, (A n),N,Em,(q)} =3 if ao,+1(An)=0,

J(A) #£0,
rzmk{n/\ i n, E7t,, (q)} 21 if agmqr (X n) = Pom+1(q)
| = A} =0

L]
It is clear that the above four cases for A# O exhaust all possible cases. The last
case yields

(4]
A=znVa, +y(ar ®a, —a, ®a}), a =n x a, o2 +y> #0.
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This indicates that one of the two-fold axis vectors of the group Dayq14 18 an
eigenvector of A. Hence we have

Qom+1 (A n) = ﬁ?rr:-}-l(q(A)] = J(A) =0= C?h(ak) c F(A) N D?m—t—ld-

From the above facts and Table 2 given in Sec. 2 in Part I, we infer that the
presented set Skwam41(A) obeys the criterion (2.3) in Part I and hence is the
desired skewsymmetric tensor generating set. Furthermore, let A} = e V e’ and
A; = nVe. Then we have dim Skw(I'(A;) N Dyypt14) = dim Skw(S2) = 3 and

0

A; n =0 and q(A3) = 0. From these facts we deduce that the five generators in
the set Skwgn,.1(A) are irreducible.

2.2. Doy iya-irreducible sets of two variables

(iv) The Dgypq14-irreducible set (u,v) of two vectors

V' Voms1(0) U Vams1(v) U {t X Nigpy (V), ¥ X Tlgp (W)}
(= Vam+1(u,v))
Skw  Skwomy1(u) USkwomsi(v)U {uAv,
(- 0)2" Y AR X Tgp (V) + (v 0)27H G A(n X Ty, (1))}

(= Skwaimn41(u,v))
Sym  Symapm1(u) U Symg,, . (v) U {uVvy,

(u-n)2™+H ¥ V(n X 0y, (V) + (v - n)2mH uV(n x ngm(ﬁ}]}
(E Sym2m+1 (u'-' V))

R r-Vomi1(2),H : Skwgmy1(2), C : Symgp,.(2), z2=1u, v;
[r! 1L, T]?m(;})]a [I‘, Y, rlgm(ﬂ)] u-Hviu & v;
(s n)“™mtin, ngm(g),Hv] + (v -n)?™+1n, ngm(ﬁ), Hul;
(1 )27 [0, 115, (%), € V] + (v - )27+ 1, M (8), € )

Ipm1(u) U Ly (V) U {(u-n)(v-n),u- v} (= om41(u, v)).

To prove the above results, we first work out the Dy, 14-irreducible set (u, v),
specified by (see (3.1) in Part I)

I'(u,v) N Daymy1a # I'(2) N Domtra, 2 =1, V.

It is evident that u and v are linearly independent, i.e. u x v # 0. Moreover, we
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have
I'(z) N Doppy1a # Ch, i.e., rank Vopiq(z) # 3, z=1u, v.

The latter yields
a2m+1(2)((Bom+1(2))* + (- 0)*| 2)| ") = 0, z = u, v.
Hence, each vector z € {u, v} takes one of the forms
(2.8) ca, c#0; an+bnxa, a?+b>#0.
Considering the combinations of the above forms and excluding the cases
u=za, v=ya, u=an+bnxa, v=gzn+ynx a,

which violate the Dag,, 4 4-irreducibility condition for (u,v), we derive the
following three disjoint cases for the Dy, 14-irreducible set (u, v):

(cl)un=3ge, v=ga a#e cy+0;

(¢2) u=ze, v=yn x a+ zn, z(y? + 22) #0;

(c3)u=anxe+mwn, v=ynxa+zn a#e, zy #0.

Then, for case (c1) we have

rankVop 41 (u,v) > rank{u,v,v x r]i,m(ﬂ)} =3,

rank Skwoy,41(u,v) > mnk{Engm(ﬂ), ENy,,(V),u Av} =3,

rank Symy,, . (u,v) > rank(Symg,, . (1) USymy,, ., (v))

= rank(Sym(C3(e)) U Sym(Ca(a))) = 6.

In deriving the last expression above, the formula (2.4) in Part I is used. For
case (c2) we have the first expression above and

0

rank Skwomt1(u,v) > rank{Ens,,(u),u A v,En,,,(v),

U A(n X My, (1)} = 3,

rank Symy,, (u,v) > rank{I,n @ n, u®unV(nv Nom (ﬁ),

uVv,uV(nxn,, (W)} = 6.

For case (c3) we have the second expression for case (1) and
rank V:Jm-i-l (I.l, V) 2 rallk(VQ,n,+1 (u) L) V2m+1 (V})

= rank(V(C’u;(e)) U V(Clh(a))) = 31
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rank Symy,,.(u,v) > rank(Symy,, . (u) U Symy,, (V)

= rank(Sym(Cjp(e)) U Sym(Cix(a))) =6.

In the above, Eq. (2.4) in Part I is used again. From the above results we infer

that the three sets of generators at issue obeys the criterion (2.3) in Part I, and

hence they supply desired vector, skewsymmetric tensor and symmetric tensor

generating sets. Further, by considering the two pairs: u; = n and v; = e,

u = e and vy = n, we deduce that the respective last two generators in the three
presented generating sets are irreducible.

Finally, it is evident that the presented set Iy,,41(u,v) of invariants deter-

mines a functional basis of the two variables (u,v) under the cylindrical group
Doon(n).

(v) The Dgy,y14-irreducible set (W, £2) of two skewsymmetric tensors

Skw {W,Q WQ - OW}

Sym  Symop41(W) U Symy,, ., (2) U {WQ + QW,
[trQN|(trQQN)Wn V NWn + [trWN|(trWN){n V NQn}

R trHW,trHQ; C : Sym,,, (W), C : Symy,,;1(£2)

HHWQ: trC WQ,
[trQN|(trQN)[n, Wn, EI Whn| + [trWN|(trWN)[n, Qn, (QJ Qnl;
Lopni 1 (W) U Igpniq (£2) U {trWE2}.

The proof for the above results is the same as that given for the corresponding
case (v) in Sec. 4 in Part I.

(vi) The Dagy,yy-irreducible set (W, A) of a skewsymmetric tensor and a
syminetric tensor

Skw  Skwams1(A)U{W,A W+ W A, (E: W) An,.(q(A))}
(= Skwom4+1(W,A))

Sym  Symopmy1(W) U Symg,,1(A)U {(t.rWN)(K N-N ﬁ),

(trWN)((=1)™ A nV 115,y (A 1) + 0V p,,(a(A)))}
(E Syn121n+l (w! A))
R trHW;C : Symg,, . 1(W);

Lo (W) U Im(A) U {(Wn) - (A n),
(Wn)- i Wn,n-W 3 n}
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In the above table, the skewsymmetric tensor variable H € Skw is assumed
to be of the form H = ¢W, and hence only one invariant from the scalar product
concerning H is retained. The form for H just given is derived from cases (c1)-
(¢2) for the Dgyyyqg-irreducible set (W, A) given later and the condition (see
(3.3)2 in Part 1)

P(Ws H) n D‘.?frH-ld ?é F(‘V, A-u H) N D2m.+ltt {: 8‘2)

For the other form of H, we have I'(W,H, A)NDyypi10 = (W, H)NDgpyp10 = Sa,
which has been covered by (v). Moreover, the symmetric tensor variable C € Sym
is assmued to be subjected to the condition C € span Symsy,,,;(A), and hence
here appear only the invariants from the scalar products of C and the generators
in Symoy41(A). The form for C just indicated is derived from cases (c1)-(c2)
for the Dy, 14-irreducible set (W, A) given later and the condition (see (3.3); in
Part I)
I'(A,C) N Dami1a # I'(W, A, C) N Dapyy1d (= S2)-

By using cases (cl)-(c2) for the Da,,1 4-irreducible set (W, A) given later, we
see that I'(A) N Dyma1a = 2h(a), and hence we deduce that the other form for
C leads to

I'(W, A, C) N Damyra = I'(A,C) N Doppy1a = Sa,

which will be covered by the next case.
We proceed to work out the Dy, 14-irreducible set (W, A), which is specified
by (see (3.1) in Part I)

F(W. A) n DQm-}-Id 9& P(Z) N D'z'm.-i-lrﬂ: &= W1 A.

It is evident that I'(z) N Doyira # S2, Domsira. should hold for z = W, A.

; 27 /2m+1 :
Hence, either Rnﬁ "™ or R pertains to the symmetry group I'(z) for each

z € {W,A}. The case when Rf{rﬂmﬂ € I'(A) is excluded, sinece it results in

A =zl + yn ® n and hence I'(A) N Days14 = Doms14, in contradiction to the
Djpi14-irreducibility condition for (W, A). From these facts we deduce that W
0

and A take one of the forms

(2.9) W=cEn, c#0; W=cEa, c#0;

[¢] P .
(2.10) A=z(a®a-a ®a')+ynVva, a'=nxa, 22 +9° #0.

Thus, combining the above forms and excluding the case
0
W = fEa, A=z(a®a—-a'®a')+ynva, a' =nxa,
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we derive the following two cases for Doy i4-irreducible set (W, A):

0
(1) W = fEn and A= aD; + bDy with f(a® + b?) # 0;

0
(c2) W = fEa and A= aD; + bDy with a # e and f(a® + b?) # 0.

For cases (c1)-(c2) we have

rank{W, E7t,,(q(A)), (B : W) An,,.(q(A))}

=3 il a0
rank Skwymii(W,A) > 3 . 5
rank{W,En,,.(An),A W+ W A}

=3 if a=0, b#0.

Moreover, utilizing the formula (2.4) in Part I we have
L] o]
(2.11) rank Symy,, (W, A) = rank(Sym(Can(e)) U{AN-N A,

[&] 4]
(-1)™ AnVny,(An)+nVp,(q(A)})
=rank{n®n,e®e,e’ ®e,nVvVe,aevVe —bnVe,
b?m-r-le Ve + ﬂ,I‘21rn—l~ln v/ e}) - 6,

for case (cl). In deriving the second equality above, the following facts for case
(cl) are used: dJ(A):g for b > 0 or d; for b < 0and ¢(A) =0fora >0o0r

for a < 0, and hence

sin(2m — 1)9(A) = —(—=1)™, cos(2m — 1)¥(A) =0,

sinm¢(A) = sin(m + 1)¢(A) = 0, |a| cos %(2?1’3 +1—(-1)")¢(A)
= |a| cos ¢(A) = a.

Owing to the above facts, the last two tensors in the second equality of (2.11)
are independent and hence the last equality of (2.11) holds. On the other
hand, these facts explain why, in the expression of the last generator in the
set Symo,+1(W, A), the factor (—1)™ should appear and why the vector-valued
function p,,(q(A)) (see (2.4)) should take different forms for an odd number m
and an even number m. Finally, by utilizing the formula (2.4) in Part I and the
equality

(2.12) span(Sym(Cyp(e)) U Sym(Cap(a)) = Sym
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for any two vectors e and a satifying (a-e)a x e # 0, we have

rank Syms,,, .1 (W, A) > rank(Sym(I"(W) N Dopyy14) U Sym(I'(A)

UD2pn41a)) = rank(Sym(Can(a)) U Sym(Can(e))) = 6

for case (c2).

From the above facts and the criterion (2.3) in Part I we conclude that
the two presented sets Skwop41(W,A) and Symo;,i1(W,A) supply a desired
skewsymmetric tensor generating set and a desired symmetric tensor generating
set respectively. Further, by considering the two pairs (W;,A) = (N,D;) and
(Wy, Ag) = (N,Dy). we deduce that the the respective last two generators in the
two sets Skwo,,+1 (W, A) and Syma,,+1 (W, A) are irreducible.

Finally, with the aid of cases (c1)—(¢2) it can readily be shown that a func-
tional basis of the Dag,,;-irreducible set (W, A) under the cylindrical group
Doon(n) is determined by the presented set Iz;ni1(W, A) of invariants, and hence

the latter supplies a desired functional basis (see the remark at the end of Sec. 4
(vi) in Part I).

(vii) The Ds,,414-irreducible set (A, B) of two symmetric tensors

0 ¢ 00

Q0
Skw  Skwom+1(A) U Skwapmi1(B) U {AB — BA, A nA BA n,

00

ﬁ nA AB n}
(= Skwom+1(A,B))
Sym  Symgm41(A) USymg, 1 (B) (= Symgy,,.1(A,B)),
R H: Skwom+i(A), H: Skwomy1(B):

00

0 00 € 00
trHAB.(An)-HBAn,(Bn)-H AB n;
0 (8] 0 0
Tom (A) U Ipm41 (B) U {trAan- trAeBe, trA ¢ B, trB 2 A}
(E J1721'1'1+I(A: B))
To prove the above results, we first work out the Dag,,.iq-irreducible set
(A, B), specified by
I'(A,B) N Dymt1a # I'(2) N Damtrd, 2 = A, B.

Evidently, we have I'(z) N Doy414 # S2, Dom+14 for z = A, B. From the latter
and the relevant argument given in (vi) we know that each z € {A,B} is of the
form given by (2.10). Hence, the Dy,,414-irreducible set (A, B) is specified by
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(5] (4]

(2.13) A=aD) +bDy, B=cla®a—a' ®@a')+dnva, a#e,
(a? +b?)(c? + d?) #0.

Consequently, we have
F(A) M D'Jm-ﬁ-ld — C‘dh(e)a F(B) n D2m+ld = C‘Z!L(a}-
Utilizing the above and Eq. (2.4) in Part I, we have

(2.14) rank Skwa,e1(A, B) = rank(Skw(Cqp(e)) U Skw(Cap(a))

U{G1,Gz,G3}) = rank{n A e’,n A a, (bd + 2accos a)N, b*csin 2aN,
d*asin2aN} = 3 if (a® + b*)(c* + d*) #0,

rank Symy,, (A, B) = rank(Sym(Cy(e)) U Sym(Cap(a))) = 6,

where G, Gy and Gy are used to represent the last three generators in the set
Skwa,mt1(A,B), and o the angle formed by e and a. Note that sin2a # 0.

From the above results we know that the two sets Skwoy,.1(A,B) and
Symgm+1(A, B) obey the criterion (2.3) in Part I, respectively. Hence they supply
a desired skewsymmetric tensor generating set and a desired symmetric tensor
generating set. Further, in (2.13)let a =c=0,a =d =0and b = ¢ = 0,
respectively. Then we have I'(A,B) N D14 = Sz for each of the three cases.
From this and the second equality in (2.14) we deduce that each of the generators
G, Go and Gj is irreducible,

Finally, the presented set Is,,41(A, B) determines a functional basis of (A, B)
under the cylindrical group Do (n) and hence supplies a desired functional basis
(see the comment at the end of Sec. 4 (vi) in Part I).

(viii) The Dgypqyq-irreducible set (u, W) of a vector and a skewsymmetric
tensor

V. Vgt () U {Wu, W2u,u x 15, (Wn),u x W1, (1)}
(= Va1 (u, W))
Skw  Skwoms1(u) U Skwamir (W) U {(E : W) ANy, (1)}
(= Skwam+1(u, W))
Sym  Symam1(u) U Symy,,, (W) U {(trWN) 1 V(nx u),
(ttWN)n V 1y,, (1) }; (= Symigys; (1, W)
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R r-Vomyi(u);H: Skwom+1(2), C : Symy,,.4(2), 2 =u, W;
trHW (Eny, (%)) (66 WN) [, &, CRJ, (6rWN)T1g, () € n;
Iym1(1) U Tyt (W) U {(u - m) u -Wn, (u -Wn)?}

(= Lm+1(u, W)).

In the above table and that given later, the vector variable r is assumed to
pertain to the subspace V (I'(u)N Doy, 414), the latter being spanned by the vector
generating set Vo, 11(u) (see (2.4) in Part 1). Owing to this fact, of the invariants
from the scalar products of r and the vector generators in the set Vo1 (u, D), the
invariants except r + Vo, (u) are redundant and have been and will be deleted.
Here D = W, A. When u# 0, the foregoing condition for r can be derived from
(see (3.3)2)

F(u, I') n DEm-e—Id # F(Uz D,l") N Domyrd

for the Doy, 14-irreducible set (u, D). When =0, i.e. u=an, we have r = en =
zu. The case when g;é 0 is the same as the case when ﬁ# 0.

The proof for the presented results is as follows. First, we prove that the
three presented sets lop, oy (u. W), Skwo,, g (u, W) and Syma,,41(u. A) supply a
desired functional basis, a desired skewsymmetric tensor generating set and a
desired symmetric tensor generating set, respectively. In fact, since the central
inversion —I is included in the group Dyy,i14, we infer that each scalar-valued or
second order tensor-valued anisotropic function of the set (u, W) under Dy, 414 is
equivalent to a scalar-valued or second tensor-valued anisotropic function of the
set (W,u® u) under Dy, 14. Evidently, the set (W,u®u) is the particular case
of the set (W, A) considered in (vi) when A = u®u. Hence, by setting A = u®u
in the set Io;,41 (W, A) we derive a desired functional basis. After removing some
obviously redundant invariants, we know that this basis is just given by the set
Loy (n, W). Similarly, a skewsymmetric tensor generating set and a symmetric
tensor generating set for (u®u, W) can be derived. By removing some redundant
generators we arrive at the desired two irreducible tensor generating sets, given
by Skwome1(u, W) and Symo,,1(u, W). The proof is as follows.

From cases (c1) and (¢2) given in (vi), we know that the Dyp,;4-irreducible
set (W, u ® u) is specified by

(1) W = fEn, u®u = aD; +bDy + pn@n +yl, f(a? + b?) #0;
(c2) W= fEa,uQu=aD; + 0Dy +pn®@n+yl, a#e, f(a® +b2) #0;

Further, from the scalar products tr(u ® u)D; for ¢ =1, 2, 3, 4, we derive
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20 = (u-e)?—(u-¢')% b= (u-n)(u-e), (u-e)(u-e)

=(u-n)(u-e)=0.

These yield u = ce or u = ce’ + dn with ¢ # 0.
With the above facts in mind we have

rank Skwopi1(u, W) > {E1‘|2m(101), W,(E: W)A T]gm(?l)} =3,

for cases (cl) and (¢2), and

rank Symy,, | (u, W) > rank(Symy,,,;(u) U {u V(nx 1), nVns,,(1)})

={ILn@n,e®e,nvVe,eve,nve} =6

for case (cl), and by using the formula (2.4) in Part I we have
rank Sym,,, . ; (u, W) > rank(Symg,, ., (u) U Symg,,, . (W))

= rank(Sym(I"(u) N Dayyg14) U Sym(I(W) N Dapy14))
= rank(Sym(Cy(a) U Sym(Cap(e))) = 6,

for case (c2).

From the above results we know that the two sets Skwoy,y1(u, W) and
Symgm, 1 (u, A) obey the criterion (2.3) in Part I, respectively, and hence they
supply a desired skewsymmetric and symmetric tensor generating sets. Further,
by considering the pair ug = e and Wy = En we infer that the last generator in
the set Skwyy,41(u, W) and the latter two generators in the set Symay,+1(u, W)
are irreducible.

Finally, we show that the presented set Va1 (u, W) is a desired irreducible
vector generating set. To this end, two cases for a nonvanishing u are discussed:
u= 0 and 101?4 0. First, suppose u=0,i.c. u=an # 0. Then each form-invariant
vector-valued function of (u, W) under Doy, 414 can be extended as a vector-valued
isotropic function of (u, W, Eng,, (Wn),n ® n) (see X1A0 [15]). Accordingly, an
anisotropic vector generating set for (u, W) under Dy, 414 is derivable from an
isotropic vector generating set for (u, W,En,,,(Wn),n ® n). By applying the
related result for isotropic functions we know that the latter is given by

u, Wu, Wu, (u - n)n x 0,,,(Wn), (W(En,,,(Wn))
—(En?m{wn))w)u-

In deriving the above set, some obviously redundant generators have been deleted
by using the equalities u = (u-n)n. Of the five generators given above, the first
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four are included in the set Skwy,, 41 (u, W), and the last is redundant. The latter
fact is obviously true for the case when Wn = 0 and the case when the first three
generators above are independent. Moreover, the other case for W is given by
W = Ez with z being a vector normal to n. Utilizing the identity (Ex)y =y x x
and the equality u = (u-n)n we deduce

(W(E"Izm(w“)) . (Eﬂzm(wn))w)u = (11 X I]Em(wn)) Xz

+(u % z) X 15,,(Wn) = An,

i.e. the above generator is redundant.

Second, suppose u# 0. Then we have
(2.15) I'(u, W) N Dapy1d = (1, ENy,, (1), W),
for the Day,yy4-irreducible set (u, W) with {;# 0. In fact, for E\;é 0 we have

Ci if a1 (1)(u X Ny, (0) #0,
(2.16) F('LET'?”L({;)) = Clh.(ak) if “2?:1+1(ﬁ) =0,

]

Coolag) i uxNy,(u)=0.

Of the above three cases for u, the first means that the vector u is neither normal
to nor collinear with any two-fold axis vector of Dagy,y14, and the other two
yield u = en x a; + dn and u = ca; with ¢ # 0, separately. Accordingly, we have
I'(0)NDaymi1a = Ch, Cinlag), Ca(ay) for the three cases at issue respectively. The
first case violates the Day, 4 4-irreducibility condition for (u, A) and is excluded,
and (2.15) holds for the second. For the last case, i.e. u = cay with ¢ # 0, the case
when Wa, = 0, i.e. W = fEay, violates the Dy, 14-irreducibility condition for
(u, W) and is excluded. Then we have Wa;. # 0 and, moreover, lem.(ﬁ) = fag.
Thus, we infer that F(Enzm(ﬁ. W) =S5 and I'(u, W) N Doy 114 = C4, and hence
(2.15) also holds.

Then, from (2.15) and the criterion (2.3) in Part I, for the case at issue we
deduce that an isotropic vector generating set for (u, E'r]gm(a),W) provides the
desired result. The former is just given by the generators in the set Vo, (u, W)
except (u-n)nsy,, (Wn).

Thus, we conclude that the set Vany,yi(u, W) is a desired vector generating
set. The irreducibility of the last four vector generators in this generating set can
be inferred from the pairs (u, W) given below.
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Wu and u x anm(ﬁ): u=e, W=En;
W2u:u=n, W=Em+ e);
uXx TNy, (Wn): u=n W=nAe.
(ix) The Dy p1g-irreducible set (u, A) of a vector and a symmetric tensor
i 0 (8] o (8]
V' Vomsi(u) U {A u,ux A 1y, (u), (u-n)n x n,,,(A n),
O
(I_l E Il)ll X “m(q(A))s (ll g 11) A (n S nm(Q(A)))} (E VQ-nL-i-l(“z A))
o 09 .o 9 0 9
Skw  Skwom1(u) U Skwopmi1(A)U {uA Au,(u- An) uA A n}
(= Skwomy1(u, A))

Sym  Symgp(u) USymg,, 1 (A) (= Symy,, .4 (u, A))

R r-Vomyi(u);H : Skwoyyii(u), H SkW’Em+I(A): C: S.}"m2m+l{u);

0 Qa 0 9 0 o
u-HAu,(u-An)u-HAn;

o 1}

o 0 o,
I'im-l-l(“) U I’!m+1(A) U {(U : n} ﬂ - A m, u - A{)L ﬁ s {)1}
(= Lom+1(u, A))

The proof for the above results is as follows. First, for each integer » > 0, each
2r-th order tensor-valued anisotropic function of the variables (u, A) under the
group Dy, 14 is equivalent to an anisotropic function of the variables (A,u ® u)
under the same group. As a result, setting B = u®u in the corresponding results
given in (vii), we obtain a desired functional basis and a desired symmetric tensor
generating set, as well as the related invariants from the scalar products, given
by Iypi1(u, A) and Symop,.1(u, A) ete.

Next, we show that the presented set Skwop,1(u,A) supplies a desired
skewsymmetric tensor generating set. In fact, setting B = u ® u in (2.13),,
we derive that the vector variable u takes one of the two forms ca with ¢ # 0
and en x a4 dn with ¢ # 0 (see the relevant argument used in (viii)). Thus,
combining the two forms and (2.13);, we derive the following two cases for the
Dy i14-itreducible set (A, u ® u):

a
ca, A=aD; + 0Dy, a #e, .:(u2 + bz) 2 ()

—
[a—y

—
=
I

4]
enx a+dn, A=aD; +bDy, a #e, c{a2 +b2] =2£0:

—_
o]

—
=
Il
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For the above two cases we have

rank Skwon41(u, A) > rank(Skw(Cap(a)) U Skw(Cyp(e))
[¢] 0 C
URAAS (B -An)aAAn))
=rank{nAanAea u AD; ﬂ, b?'(lol -e) u Nep=3.

In deriving the first expression above, the formula (2.4) in Part I and the following
equalities are used.

I'(u®u) N Dapmy1a = Con(a), I'(A) N Damyra = Canle).

From the above results we infer that the presented set Skwo,,.1(u, A) obeys
the criterion (2.3) in Part I and hence supplies a desired skewsymmetric tensor
generating set. Further, by considering the two pairs

uy=aj;, Ay =nVe; u=aj;, Ao =e®e,

we deduce that the last two generators in the set Skway,41(u, A) are irreducible.

Finally, we show that the presented set Von,41(u, A) supplies the desired irre-
ducible vector generating set. From the Do, y14-irreducibility condition for (u, A)
(see (3.1) in Part I) we deduce that I'(u) N Daypy1q4 # C1. The latter produces
the three cases for u (see cases (cl1) - (¢3) derived in (iv)): (cl) u = en, (c2)
u = ce and (¢3) u = ce’ + dn, where ¢ # 0. In what follows we prove that the
set Vamy1(u, A) obeys the criterion (2.3) in Part I for the just-mentioned three
cases, respectively. Without losing generality we set ¢ = 1. First, for case (cl),
i.e. u=n, we have

rank{n,; n,n x ngm{i n)} = 3 if oaom+1 (f\ n) #0,
rank{n, n x N, (a(A)), A (n x 1,,(q(A))} = 3 if Bams1(a(A)) #0,
D> rank{nAn,nxn,,(a(A)} =3 if azmi1 (A n)

= Bom+1(q(A)) =0, J(A) #0,
rank{n, An n xn,,(q(A)} > 2if G‘gm+|(A n)
{ — fam1(a(A)) = J(A) = 0

for A;é 0, where D = rankVm41(u,A). Here and henceforth, the trivial case
when A— 0, ie. A n=q(A)=0, is excluded. From the above facts and
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o]

F(D,A) N D'.Zm-l—ld = C!h.(ak) if 2m4-1 (A n)
= 132m+1 (Q(A)) = J(A) =0,

as well as from Table 1 in Sec. 2 in Part I, for case (c1) we infer that the set
Vom+1(u, A) obeys the criterion (2.3) in Part I.
Second, for case (¢2), i.e. u= e, we have 1,,, (1) = e and hence

(8] (8] (4]
rank{e, A e,ex Ae} if ex Ae#0,
rankVop41 (0, A) >

0 4] 0
rank{e,Ae,An} >2if ex Ae=0.

0
From the above facts and I'(e,A) N Dapyia = Ca(e) when ex A e = 0, as well
as Table 1 in Sec. 2 in Part I, for case (c2) we infer that the set Vomsi(u, A)
obeys the criterion (2.3) in Part 1. Here and below it is helpful to note the fact:
A nonvanishing vector z normal to n is an eigenvector of A if and only if zx f\ z
vanishes.
Third, for case (c3), i.e. u =€’ + dn, we have 1,,, (ﬁ) = (—1)™e and hence

0 0 0
y rank{n,e’, A u,ux Ae}ifex Ae#0,
rankVo,.q(u, A) >

rank{n,e'} ifex Ae=0.

From the above facts and Table 1 in Sec. 2 and the equality : I'(u, A)NDyppy1a =
Cin(e) when e is an eigenvector of A, as well as Table 1 in Sec. 2 in Part I, for
case (c3) we infer that the set Vo,,41(u, A) obeys the criterion (2.3) in Part I.

From the above we conclude that the presented set Vo, 41(u, A) supplies a
desired vector generating set. Further, we infer that the last five generators in
this set are irreducible by considering the paris (u, A) given below:

.K u and ux R Nom(1): u=1a;, A =e®e;
(u‘n}nxr]zm(in]: u=nA=nVe;
(u-n)n x n,,(q(A)) and (u-n) A (n % N,,(q(A)): u=n, A=eVe.

2.3. Dsy 4 14-irreducible sets of three variables

(x) Three vector variables; two vector variables and a tensor variable

Consider any set of three variables (u,v,z) where z is a vector or a skewsym-
metric tensor or a symmetric tensor. From the Dy, 4-irreducibility condition
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for (u,v,z) (see (3.2) in Part I) it follows that (u,v) is a Do,y 14-irreducible set,
specified by cases (¢l1) - (¢3) derived in (iv). For each of cases (cl) - (c2) we
have I'(u,v) N Dypy14 = C1. The latter leads to

F[u!v‘z) n D2m+ld = (F(U,V) n D2m+]d) n F(Z) = Ci-
The above fact shows that any set (u,v,z) may be reduced to the Doy, 14-
irreducible set (u, v), which has been covered by (iv).
(xi) A vector variable and two tensor variables

Consider any set (x,y.u), where (x,y) € {(W.€),(W.A),(A,B)}. For each
such set, tensor generating sets and functional bases have been covered before (see
Theorem 3.2 in X140 [19]). As a result, it suffices to supply a vector generating
set. Towards the latter goal we work out the Ds, .y 4-irreducible set (x,y,u),
specified by the condition (3.2) in Part I with x and y two tensors and z = u
and g = Doy, 14- Let D represent any of the two tensors x and y. Evidently, we
have I'(D) N Dypmy14 # S2. Hence, if the tensor D is skewsymmetric, we have
(see (2.9)) D = cEa, or D = cEn, where ¢ # 0. If D is symmetric, we have (2.10)
with the replacement of A by D and hence I'(D) N Doy 14 = Cop(a). From these
facts and

I'(u,x) N Damy1a # Ch, I'(u,y) N Dayy1a # Ch,

as well as Cyp(a,) N Cyp(ag) = Sy for any two two-fold axis vectors a, and a; of
the group Day,i14, we derive each Dy, 4-irreducible set (u,x,y) at issue taking
the forms:

(u, W, Q):

(c1) u = en, W = aEe, 2 = bEn, abe # 0;

(¢2) u = cn, W = aEe, L) = bEa, abe # 0.

(u, W, A):

(c1) u=cn, W = ae, Xz baRa—a ®@a')+dnVa, ac(b®+ d?) # 0;
(c2)u=en, W =an, f\: bD; + dDy, ac(b® + d?) # 0.

(u, A,B):

u= fn, A= aDy + bDy, B claga—a ®a')+dnva,

f(a® + b?)(c? + d?) # 0.
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In the above, e # a € {a;,---,ay,} and @ = n x a. Then, we construct the
following table for vector generating sets.

V' Vaar (u, W) U Vo gy (0, Q) U {(u - n) (W2 — QW)n}
V' Va1 (u, W) U Vorgy (u, A)
U{(u - n)(trWN)nx A n, (u-n)(ccWN)1,, (q(A))}
V' Vamgr(u,A) U Voo (u, B)
Applying the fact
rank(V (Cip(a,) UV(Cin(as)) = dimV =3

for any two two-fold axis vectors a, and a; of the group Do, , and the cases
\ r § 24 I 2m+1d

derived for each Da,, 14-irreducible set (u,x,y) at issue, it may easily be verified

that the above three presented sets supply the desired vector generating sets. The

(o]
irreducibility of the three generators (u-n)(W£2 — QW)n, (u-n)(trWN)nx A n
and (u- n)(trWN)n,, (q(A)) can be deduced from case (cl) for (u, W, £2), and
case (c2) for (u, W, A) with d = 0 and b = 0 separately.
2.4. The general result

THEOREM 4. The four sets given by

Famn 1 (0); Tams 1 (W); Tyt (A); (- 1)(v - m), - v, 11, v, Tl (8),
[V u; Moy, (ﬁ)]

0, O 0, 0 0

a1 (8) ¥ Ty (8), €251 (¥) & T (¥):

trW, trW(En,,, (Qn)), trQ(En,,,, (Wn)), trQW(En,,, (Wn)),
trWE(En,,, (On)):

(A n) B n, trA¢Be, trA 2 B, trAB 2, trAo(En,, (a(B)))2,

(n, An, s Moen B n)], [0, Moy ( A n), BA nj, [n, Ny, ( B n), AB nj;
(Wn)- A Wn, (Wn)- A n, (Wn)- A 2n, trA W(En,,,(Wn)),

[0, M3y (W), A W), (t'WN)B41 (a(A)), trW (BT, (q(A)).
“W(Eﬂzm(A n)), (trWN).J(A), (trWN)ﬂ:!m.-H(; n)
+trW(Ep,,(q(A)));
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(u-n) u-Wn, (0 -Wn)2, trW(En,,, (1)), [u, Wu, 1,,, (1)),
“21!1—!-l(ﬁ)n2r11.(ﬂ) - Wt

0 (8] ) 0 8
u-Auu-AZa (u-n)u-An[u,n,, 1), Auj,

L8] ) 0

¥9m ('?l)(']zm(u)' Au _(u'n)rl'/_‘m ({;) R ll); [l‘, u, Tl'zm(;]')]- [rr v, “211’;(“)]:
00 (8] 00 0 00

trWQH; trAB W,(An)- WBAn,(Bn)-W AB n;

trWQ A, |trQN|(trQN)[n, Wn, A Wn)]

(4]
+|trWN|(trWN)[n, Qn, A Qn];
u- Wy, (u-n)2+n, 1, (v), Wv] + (v - n)2"+![n, I]Qm{tnl}. Wul;
wAv, (u-n)2+[n, 1, (), A v] + (v - )2+, n,, (1), A uj;
l'rWQ(Eqﬂm(ﬁ)];
a %a oy, 9 0 2o
(trWN)[n, u, Au], (trWN)1,,, (u): A n,u-W Au,

O (4] 0
(u:An) u-W A n;

and
Voma1 (0); 1 X Mgy (V), v X Ny, (1); W, W2u, u x 1, (Wn),
u x Wi, (u);
R u, ux R nzrn(ﬂ). (u-n)n x n.m(ﬁ n),
(u-m)n x 1, (a(A)), (u-n) A (n x M, (a(A)));
(u-n)(WEQ — QW)n; (u-n)(trWN)nx A n,
(u-n)(trWN)n,, (q(A));

and

Skw?m-{- 1 (ll); Sk“’"2m+ 1 (W), S]{“’Zm+ 1 (A)s
uA v, (u- )2 ¥ AD X Ny (V) + (v-0) 2™ 0 An X 1y, (1));
00 00 © 00 0 00 o 0
WQ - QW:AB -BA,AnABAn.BnAABn; AW+ WA,
L o T I o 0 2
(E - W) A ((A)): (B W) Amgy, (86 A AS (- A n) 64 A
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and

Symypy, 41 (u), Symy,, 1 (W), Symg,, . (A);

uV v, (u- )2t v v(n X 1y, (V) + (v - 0)27H 1 V(n x 10y, (0);
WQ + QW |trQN|(trQN)Wn V NWn + [trWN]

(trWN)Qn vV NQn;

(ttWN)(A N = N A), ((rWN)((=1)"™ A n V 11, (A n)
+nV p,,(q(A)));
(trWN) u V(nx 1), (trWN)n V 1, (0);

where (u,v,r) = (uj,u;,u), (W,Q,H) = (W,,W,, Wy), (A,B) = (Az,Anm),
k>g>d= 1@ 0> >c= 10 M > L= 1.6 sipply a
functional basis and irreducible generating sets for scalar-, vector-, skewsymmetric
and symmetric tensor-valued anisotropic functions of the a vectors uy,---,ug,
the b skewsymmelric tensors Wy, - -, Wy, and the ¢ symmetric tensors Ay, -+, A
under the group Doy, 14 for each m > 1. In the presented result, n and e are two
orthonormal vectors in the directions of the principal azis and a two-fold azis of
the group Doyid.

In the above results, the invariants depending on two symmetric tensors are
cited from Theorem 3 in X140, BRUHNS and MEYERS [19], as mentioned earlier.

3. Crystal and quasicrystal classes 1),

The class Dyyi1, which includes the crystal class Ds as the particular case
when m = 1, is the rotation subgroup of the centrosymmetrical subgroup Do 414.
i.e. Dapmi1 = Domyra N Ortht. Following the procedure indicated in Sec. 5 in
Part I, from the related results given in Theorem 4 we derive the results for the
classes Do, as follows.

THEOREM 5. The four sets given by

(u- n)ga | ﬁ |21 2m+1 (E)a (u ; n)ﬁ2m+l (ﬁ)? Iom41 (W)a IZm-H(A);

[‘21114_- 1 (W, Q: H: A? B)\

u- Vrﬁ 'T]Qm(g)sg 'T]?m.(ﬁ)t [ll$ v, nf&m(g)]‘ [V, . 3]2"1(1(.}1)]; [l.l, v, I'];

trW (Eu), trW (Enly,, (1)), 1 gy (WD), Mg, (1) - W, 1y, (Wn) - Wy

(o] 0 4] Q
u- Au, [n, 1, A n, [0, 0, A 2n], 1y, (0)- A u, [0,1,,,(1),
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A ((nx v) x u),
(1 - 2) B (QAY) 5 s LAY, S T,
(w-m)J(A), (u- )asner (A n)+ & -p,, (a(A)):
u-Wvi;u-Av, |u-nf(u-n)n, v.A '\3‘] + [v - n|(v-n)[n, u, A ﬁ]
trWE2(Eu); |'.I‘;i]§ (Eu), [{113 n. éﬁ nj, [ﬁ,l% n, RI% nj;
trW(Eu) A, [u - n|(u - n)[n, Wn, A Wn]
— [t WN| (- WN) [m, &, AL
and
u, My, (1), 1 X Ny, (0); E : W, 1, (Wn), Wiy, (Wn);
Bom+1(A(A))0, T (q(A)), Mo (A 1), A nx A 2n,
dzms1 (A 0)n + p,, (q(A)):
uxv;E: (WQ - QW);E: (AB — BA),
A nx BA n,B nx AB n;
A (E: W), Wn,.(a(A)); Wu; A u,u x 1, (q(A)):
and
Eu, En,,, (1), u A 1, (1); Skwams 1 (W); Skwama1 (A);
uAv;WQ — QWﬁﬁ = I%K;i nA I‘i}r{ n, ﬁ nA R}Lé n:
AW+ WA, (E: W) AN, (a(A)); E(Wu); E(A u),u A1, (q(A));
and

Ln@n,u®iu,nV (nx ﬁ),u \% 1]2,”(101), (ux (uxmn))V(nx nzm({i));

Sym. W); Sym. A);uVv,|u-n|(u-n)vVinx v
2m+1 2m+-1

+|v - n|(v - n) u V(nx u);
WQ + QW, [trQN|(trQ2N)Wn V NWn
+|trWN|(trWN)€2n V NQn;

(o]

(trWN)(A N = N A), (t(rWN)((=1)™ A nV 1,,. (A n)
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+nV py,(a(A)));
W(Eu) + (Eu)W, ju-n|(u-n)WnV NWn

+|trWN|(trWN) u V(nx u);
(w-n)(A N =N A), (u-n)((=1)™ A 0V 1, (A n)

+nV p,,(q(A)));

where (u‘v,r) = (u.;,u_,,uk), (W,Q,H) = (W,,._W-,—._Wg), (A,B) = (AL,AA[),
Bis 4 > = L, a8 57 3a= 1240 M>5L=17":u¢ stpply o
functional basts and irreducible generating sets for scalar-, vector-, skewsymmetric
and symmeltric tensor-valued anisotropic functions of the a wvectors uy,---,u,,
the b skewsymmetric tensors Wy, -+, Wy, and the ¢ symmetric tensors Ay, -, A,
under the group Daop,q for each m > 1. In the presented result, n and e are two
orthonormal vectors in the directions of the principal azis and a two-fold azis of
the group Doy .

Here and henceforth, o1 (W. €2, H, A, B) is used to represent the invariants
depending on two or three second order tensor variables given in Theorem 4.

4. Crystal and quasicrystal classes (s, 1,

The classes at issue are of the form
2km
2m +1°
k=1,---,2m+1}.

(41)  Comtiv(n,e) = {R¥, —R] |ar =Rike, O =

They include the crystal classes C3, as particular case when m = 1.

For anisotropic functions under any subgroup g C Csy, the general cases
involving any number of vector variables and tensor variables may be reduced
to the cases involving not more than two variables (see Theorem 2.3 in XIAO
[18]). As a result, the third step in the procedure outlined in Sec. 3 in Part I can
be omitted. Further reduction is possible. Let Xy represent any of the sets of
variables, W, A, (W,€)), (W, A) and (A,B). Then each scalar-valued or tensor-
valued anisotropic function of Xy under the group Copmy(n,e) is a scalar-valued
or tensor-valued anisotropic function of Xy under the larger group Dgy,i14(n,e)
(D Cyn+1v(n,e)). Thus, in the general results for the group Cap414 (Theorem 6
below), we can directly cite the invariants and the tensor generators depending
on skewsymmetric and/or symmetric tensor variables in Theorem 4. Moreover,
for the foregoing sets of variables, vector generating sets under the group Compt1q
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and related invariants from the scalar products, can be derived by setting u =n
in the corresponding results in the tables given in Sec. 2 (viii), (ix), (xi), since
each anisotropic function of any set Yj of vectors and tensors under the group
Com+1v 18 an anisotropic function of the set (Yp, n) under the larger group Doy, 414

(:’ C?m-f—lv)'

There remain four sets of variables that are not covered in the above, including
(u), (u,v), (u, W) and (u,A). In what follows the four sets of variables will be
treated separately.

(i) A single vector u

Results for a single vector variable u under the group Cy,,41, can be derived
by setting v = n in the table given in Sec. 2 (iv). However, the results thus
obtained include redundant invariants and generators. The desired irreducible
functional basis and irreducible generating sets can be derived by removing some
redundant invariants and generators. This can easily be done by means of the

o] (4] 0 F .
fact: when agm4i(u) # 0, u and n x n,,,(u) yield two independent vectors on
0 (8] (o]
the n-plane and hence N, (1) = z u +yn x Ny, (u). The results are as follows.

Vo {00 X Ny (W)} (= Vi (0)

Skw {ﬂ2m+1 ({}I)N‘ nA ﬁ! EﬂQm(ﬁ)} (E S]‘-wgna-{— 1 (u))

]

Sym {L,Ln®nu® L,V u,nV (n x 0,,(0), 1 V(n x 1, (1))}
(= Sym§p, ;1 (u))

R n- I'.,?‘ 3 ﬁa [l’l,g, Tl-zm(ﬁ)h (t'rHN)Q'Z?rr.+1(ﬁ):a Hn,

trH(En,,, (1));

%o 0

trC,n - Cn,u - Cu, 1 - C n, [n, Cn Ny (1)), [, Cu Ny, (1)];

{ll : ll,l ﬂ‘ |2=ﬁ21n+1 (ﬂ)} (E Ifr!]m+l(u))‘

(ii) The Comip-irreducible set (u,v) of two vectors

The Com1y-irreducibility condition for (u,v), i.e. (3.1) with (x,y)=(u,v) and
g = Coms1v, yields I'(z) N Comt1y # C1y, Comt1v, 2 = u, v. The latter means
that —R] pertains to the symmetry group I'(z) for z =u, v,ie. z=cnxa+dn
with ¢ # 0. Thus, the Ca,,414-irreducible set (u, v) is specified by u = an x e+bn
and v = cn x a + dn with a # e and ac # 0. Here and henceforth, a is used to
represent a two-fold axis vector of the group Copmi1y-
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With the aid of the latter we construct the following table.

% V‘Z['::'u-}- 1 (I_l) u v:zllrt—kl {V)
Skw {nAu,nA v,u A v}
Sym  Sym3,,.,(u) USym3,,,,(v)
0

. Qym? g = e :
R r-VQ, . .(2),C:Symd,  (z), 2-Hn, z=u, v;u-Hv;

J'?'l.g'.'n-i-l(u) U fgnl+1 (V) U {{,1 = 3}

(iii) The Copypqp-irreducible set (u, A) of a vector and a symmetric tensor

The Capyy-irreducibility condition for (u, A), i.e. (3.1) with (x.y)=(u,A)
and g = Comi10, produces I'(u) N Comy 1y # C1, Comyry and I'(A) N Compry #
Cj. These mean that —R] pertains to the symmetry group I'(z) for z = u, A.
Hence we deduce that the Co, . 1,-irreducible set (u, A) is specified by

(4]

(4.2) u=ae +bn, A=cla®a-a' ®a)+dnva,a =nxa ate,
a(c® +d*) #0.
Thus, we construct the following table.
V' Vi (@) UV 1 (A) (= Vi (u,A))

Skw  Skwams1(A) U {nA U, uA A n,uA Au}
Sym  Sym9,, ., (u) USymy,,,(A)
R r-Vy, . (u);H: Skwypi1(A); C: Sym),, ., (u);
0 3 0 0q
u-HAnu-HAu;
s O 0 0
19 . (W)U Ly (A)U{u-Anu-A2nu- Au}
(= I i1 (u, A)).

Here and henceforth, Vi), ., (A) is used to designate the vector generating set
for a symmetric tensor A under Co,414, given by

(]

(43) VQ?;':—H(A) = V’Zm+1(nu A) = {H,A n.nx q?m(A 1’1),1’1 X nm(q(A))s

A (0 x Ny (A M)}

In the above table and the table that will be given in (iv), the vector variable
r pertains to the subspace V(I'(u) N Camy1v), the latter being spanned by the
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vector generating set Vi) . (u). Owing to this fact, of the invariants from the
scalar products of r and the vector generators in the set Vi, (u,D), where
D = A, W, the invariants except r- Vi), ., (u) are redundant and can be deleted,
as has been and will be done. The foregoing condition for r is derived from (see
(3.3)2 in Part I)

F(LI, I‘) N C"‘Eﬂrh{-lu '?'é F(U- DJ') N Cam+1v (: Ch).

The other case for r, i.e. r ¢ V(I'(u) N Copm+1s), has been covered by (ii) in this
section.

By virtue of (4.2), it can easily be shown that the three presented sets of
generators obey the criterion (2.3) in Part I, respectively, and hence they supply
the desired vector, skewsymmetric and symmetric tensor generating sets. More-
over, we prove that the presented set I, ., (u, A) supplies a functional basis for
the Copm+1p-irreducible set (u, A) under the group Capi1,. Towards this goal it
suffices to show that the set I9, . ,(u, A) determines a functional basis for the
Com+1v-irreducible set (u, A) under the transverse isotropy group Cay(n) (see
the comment at the end of Sec. 4 (vi) in Part I). In fact, the latter is obtain-

. 1 : y g 9 : ?
able from an isotropic functional basis for (u. A, n), plus the three C,-invariants
u-n, n-An and trA. The just-mentioned isotropic functional basis is given by

a 9 o) o %o o 2450 sl A
Ii=u-An, h=u-A?n, Iy=u-Au, Iy =u- A ?u,as well as certain invariants
of a single variable u or A, each of the latter being covered or determined by the
basis I3 (1) or Iyms1(A). Moreover, using (4.2) we have

I = adcos 0, Iy = a*(c® + d* cos® 0),
v . . i - O »
where # = a-e. It is evident that I is redundant, since we have a® = | u |?,
s () L) - . [
¢? =|q(A)|? and d® = | A n|? for the Cap1p-irreducible set (u, A) (see (4.2)).
(iv) The Copy1p-irreducible set (u, W) of a vector and a skewsymmetric tensor

The Chpiqe-irreducibility condition for (u, W), ie. (3.1) with
(x-y}:(uww) and g = Copy1y, produces I'(u) N Comirw # C1, Comtrv
and I'(W) N Comits # Cy. These mean that —Rj pertains to the symmetry
group I'(z) for z = u, W. Hence we deduce that the Cyyy1y-irreducible set
(u, W) is specified by the two cases

(c1) u = ae’ + bn and W = cEn with ac # 0,

(c2) u = ae’' + bn and W = cEa with a # e and ac # 0.

Thus, we construct the following table.
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V' Vi1 () U{Wn, (trWN)nx 0} (= Vi (0, W)
Skw {nAu,W,(E: W) AN, (1)}
Sym  Sym3,, ., (u)USymg, (W)U {(trWN) uV(nx u),
(trWN)n Vv ngm(ii)}(z Sym3,,11 (1, W))
R -V .(u)iC: Symd,,+ 1 (u): u -Hn, trHW,
trHW (En)y, (1));
19,1 (W) U Iopns (W) U {& -Wn}.

In the above table, the symmetric tensor variable C pertains to the subspace
Sym(I'(u)NComi1y), the latter being spanned by the generating set Symom41(u).
Owing to this fact, of the invariants from the scalar products of C aud the
symmetric tensor generators in the set Syrn3m+ | (u, W), those except C-V20m+|{u]
are redundant and can be deleted, as has been done. The foregoing condition for
C is derived from the condition (see (3.3)2 in Part I)

I'(u,C) N Comy1v # I'(u, W, C) (= C1).

The other case for C, i.e. C ¢ Sym(I'(u) N Cami1y), has been covered before
by (iii).

With cases (c1) and (¢2) for the Cappyp-irreducible set (u, W), it can easily
be shown that the three presented sets of generators obey the criterion (2.3) in
Part 1, respectively, and hence they supply the desired vector, skewsymmetric
and symmetric tensor generating sets. Moreover, we prove that the presented
set IS,,,H (u, W) supplies a functional basis for the Coy41,-irreducible set (u, W)
under the group Comy1y. Towards this goal it suffices to show that the set
ISm_H(u, W) determines a functional basis for the Coppyyp-irreducible set (u, W)
under the transverse isotropy group Caoy(n) (see the comment at the end of Sec. 4
(vii) in Part I). In fact, the latter is obtainable from an isotropic functional basis
for (ﬁ. W.n), plus the Cxp-invariant u-n. The just-mentioned isotropic functional
basis is given by

[¢] (4] [¢] o]
I, =u-Wn, I, =u-W?n, I3 =u-W?q,

as well as certain invariants of a single variable u or W, each of the latter being
covered or determined by the basis 19, | (u) or Iopm1(W). The two invariants I
and I3 are redundant for cases (¢1) and (c2) derived before. This fact is obviously
true for case (cl), and it is also true for case (c2), since for case (c2) we have
I, =0, I; = —a%c%(a-e)? = —(I})%
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Combining the above results, we arrive at the general result as follows.
THEOREM 6. The four sets given by
f:?,,,H (11):. Lom+1 (W) I‘Zm+1 (A), Iom1 (W, £ H A, B);

- ;‘: [l’l, Fl., T]'.!m(“})]: [Il., Qr T]ZZm(ﬁ)];

“Wn, trW(En,,, (1)), (trWN) gy 41 (0);

=o

=o

o] (4] Y C L8] ’ (8] Is (8]
1-Anu-Auu- A 2n,[n,n,, (1), A 0], [0, Ny, (1), Aul;

=o

0 Y B o 0 09
W v trWQ(En,,, (1)): 1 -W A n,u -W Au;

=C

and
VR () VR L (A); Wn, W2n,n X 1y, (Wn); (trWN)nx u;
(WQ — QW)n; (trWN)nx A n, (trWN)n,,, (q(A));

and

Skw{-;.,,,_“ (u); Skwo+1(W); Skwop, 1 (A); uA 3;

00 0 00 v} 00

WQ — OW; AB — BA, A nA BA n,B oA AB n;
AW+ WA, (E: W) A, (a(A)); (E : W) AT, (8);
GAADGA AR

and
Ln®n,u®u,nVu,nV(nxn,,1),aV(n x n,,1));
Symam+1(W); Symgy, 41 (A);
WQ + QW, [trQN]|(trQN)Wn V NWn
+[trWN|(trWN)Qn vV NQn;
(trWN)(A N = N A), ((rtWN)((=1)™ A n V 1,,,,(A n)
0V p,,(a(A));
(trWN) 1 V(nx 1), (trWN)n V 1, (0);

where (u,V) = (uf‘\uj)r (WQ\H) — (wﬂtw‘r:wﬂ)r (A!B) = (AL-:AJ'W}:
703 o= Lo 0 > 0 5 0= Loy, M > = L6 supply a fune-
tional basis and irreducible generating sets for scalar-, vector-, skewsymmetric
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and symmelric tensor-valued anisotropic functions of the a wvectors uy,---,u,,
the b skewsymmetric tensors Wy, -+, Wy, and the ¢ symmeltric tensors Ay, ---, A,
under the group Copy1y for each m > 1. In the presented result, n and e are two
orthonormal vectors in the directions of the principal azris and a two-fold azis of
the group Comiiw.
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