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A SLIDING WEAR CONTACT between a rigid punch and an elastic halfplane in presence
of a thin aggregate film composed of solid debris and a lubricant fluid is studied. The
model is based on any wear criterion and constitutive law of the film suggested by mi-
cromechanics approximation. The mechanical system is governed by the evolution of
the volume fraction of debris, considered as the internal state variable. The key step
of iterative computations for solving the nonlinear system of equations is based on
the solution of the fundamental linear integro-differential equation for the compressive
normal stress (the W-equation). Uniqueness of the solution of the integro-differential
equation is then proved. It is shown that there is a profound relationship between
the latter equation and Prandtl's lifting equation in aerodynamics: both equations
can be solved numerically by Chebyshev’s series, and experimentally by similar elec-
trical setups. Mathematically, it is found that both equations are related to real and
imaginary components of some complex potential, respectively, and to weakly adjoint
integro-differential operators.

1. Introduction

A SLIDING WEAR CONTACT between two elastic solids is typically a nonlinear prob-
lem, because of two reasons: on the one hand, the contact problem itself is non-
linear even if there is no wear; on the other hand, the presence of debris or
detached particles changes the load transfer conditions at the interface between
two contacting solids. Following a terminology introduced in GODET [18, 19],
the interface is called “third-body” and should be considered as an aggregate
film composed of different particles and a lubricant fluid, having some nonlinear
macroscopic rheology, which is not yet known. Different terminologies, interface
or third-body, are simply a matter of scales used in describing the macroscopic
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or mesoscopic behavior. On a thiner microscopic scale, damage and microcrack-
ing at the asperities are wear mechanisms feeding the third-body. Conditions
for microscopic wear mechanisms to develop, depend on the macroscopic contact
stresses, which are determined by the rheology of the third-body, the internal
variable of which is related to the wear rate. This is a fully coupling problem at
different levels.

In the literature, formulations of wear contact problems generally ignore this
coupling aspect. For instance, by assuming a perfect contact between sound solids
(GALIN [14], GALIN and GORIACHEVA [15]), one ignores the debris life in the
contact zone or considers that the detached particles are removed instantaneously
from the contact interface.

The need of an understanding of third-body processes in order to model and
predict wear on a macroscopic scale is expressed by several authors: GODET [18,
19], GEORGES [16], SINGER and WAHL [29], BERTHIER |3, 4], BERTHIER et al. [5],
MENG and LUDEMA [24]. For a comprehensive review of wear mechanisms on
a microscopic scale, see Ko [21]. A large amount of models are based on ex-
perimental observations and depend on the test conditions. Most of them are
derived from ARCHARD’s relation [2]. Such models cannot be predictive when
the operating conditions cannot be close to the common use conditions of machine
components.

Experiments on wear friction contact, as observed in Stribeck’s curves, pro-
vide a relation between the friction coefficient 4 = 7/p and the lubricant co-
efficient L = nV/p (where 5 is the fluid viscosity, V the relative velocity, p
the pressure, 7 the shear stress). Three regimes are observed in Stribeck’s curves
(Fig. 1): (I) Coulomb’s friction law with constant y; (II) instable regime occuring
probably in earthquakes (ScHowrz [28]); (IIT) hydrodynamic regime, for instance
u(L) ~ a+ bL, as proposed in DANG VAN’s criterion [8], or u(L) ~ bL, as in vis-
cous laminar flow corresponding to mild wear. Stribeck’s curves clearly suggest
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Fia. 1. Stribeck’s curve.
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an interaction between the debris and the elastic solids, through the evolution of
some internal state variables governing the third-body, which is the proportion of
solids’ debris, defined either by volume fractions or by mass fractions of species.
By a simple theory of mixture, one can get an idea on the third-body: consti-
tutive laws, free energy, dissipation, etc. .. That approach is recently provided in
DRAGON-LOUISET [11] for a wear model of regime (III), in the presence of incom-
pressible fluid. A similar approach was given by STUPKIEWICZ and MROZ [31]
for modeling abrasive wear.

The content of this paper is as follows. In the first part, for the consistency of
the paper, we reconsider briefly the general equations of the contact-sliding mild
wear model based on micromechanical considerations, given in [11]. The model
is applied to the contact-sliding between a circular rigid solid and an elastic
halfplane Q; = {z,y < —e(z) ~ 0} in presence of fluid (Fig. 2).

IJL)
Q4 £
punch

== W Q
> 2

interface

elastic half plane

F1G. 2. A punch sliding on an elastic halfplane and their interface.

The coupled nonlinear equations of equilibrium are based on the following ideas:

i. The microscopic wear mechanisms occuring at the asperities level, describ-
ing the detachment of particles from sound solids to the third-body, will be
modeled on the macroscopic scale. The wear criterion and wear rate will
be given in a general form.

ii. The third-body on a mesoscopic scale, in somewhat of a thin film thickness
e(x) made of an aggregate of debris and fluid, considered as an open ther-
modynamical system, with mass transfer characterized by the wear rate
v(z) feeding the interface, at the surface I' between sound material and the
third-body. Parallel in-flow and out-flow of a two-phase aggregate occur
in the third-body which behaves under shear load like a “viscous fluid”. In
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considering the volume fraction ¢(z) of debris, as suitable internal vari-
ables of the contact zone film, the conservation laws of mass (solid and
fluid) provide the relations between the volume fraction, the wear rate and
the thickness.

iii. The two-phase aggregate has a specific rheology to determine, depending
on the volume fraction.

The coupled nonlinear equilibrium equations of the mechanical system, elastic
solid, rigid punch and interface, provided that some reasonable assumptions are
made, have the property that, at any step of the iterative computations, only one
fundamental linear boundary integro-differential equation has to be solved (the
W-equation),

In the second part of the paper, we shall focus our analysis on the latter
equation. Using methods of complex representations of potentials, we establish
a relation between the W-equation and the well-known Prandtl lifting equation
in aerodynamics. This relation suggests us similar methods for solving both equ-
ations, by Chebyshev’s series expansion, using functions of the first kind and
the second kind and also an interesting means for solving ezperimentally the W-
equation, just as the Prandtl equation has been solved experimentally in the past
by Malavard’s electrical analogy.

2. The interface model for computational mechanics

Having in mind the plane strain contact-sliding wear model for a rigid punch
and an elastic foundation, described later, we consider a thin interface made of a
two-phase mixture of solid debris and fluid. The interface extends along Oz, —a <
z < a, with the wake interface z < a (Fig. 2). For simplicity, to any meso-scale
quantity f(z,y) defined in the third-body —a < = < a, —e(z) < y < 0, we denote
the corresponding average over the thickness e(z) at x, by the same notation f(z).
Physically, the third-body is characterized by a proportion of solid debris s and
fluid f. It can be characterized either by mass fractions or by volume fractions
ws(z), r(z) =1 — ps(x). The volume fraction, being a geometrical description
of the third-body, allows consideration of stick phenomena. For example, the
shear flow is impossible for compact hexagonal arrangement of circular debris
of equal radius, where @; = 62%, DRAGON-LOUISET [11|. Hence, geometrical
considerations allow the possibility of a threshold value of internal variables based
on the volume fractions, beyond which stick phenomenon occurs.

Before analysing the kinematics of the third-body, we first need a macro-
scopic description of wear condition, i.e. the detachment of particles feeding the
interface.
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2.1. Macroscopic wear criterion and wear rate

The most general form of wear criterion, was provided by DRAGON-LOUISET
and SToLz [12] who described in a thermodynamical manner the local quanti-
ties involved in the wear phenomena and proposed a wear criterion (DRAGON-
LouiseT [11]) similar to the well-known energy release rate in Fracture Mechan-
ics, applicable to elastic-brittle materials. Let us drop the index 2 for quantities
defined in the elastic solid 5, denoted §2;

(2.1) g=n-o-Vu-n-—py (elastic solid),
@ =n-0*Vul n-pyp’ (damaged material adjacent to I'),

with n the outward unit vector normal to the boundary T' of 2, with o and o*
the stresses, u and u® the displacements vectors, 4 and 9* the free energies of
sound and damaged material respectively, p (or ps) the density of the solid. The
displacements and the stress vectors o-n are continuous across I'. Then, assuming
the existence of a threshold energy g*, the wear criterion is G(¢) = g—g*—g° < 0,
when the elastic solid does not lose material, and G(¢) = g — ¢° — ¢* > 0 when
it does. The wear rate is assumed to be given a priori by v = F(g,¢%) = F(0)
when the wear criterion is verified. In this analysis wear and frictional energies
are dissociated: solids can slide without being affected by wear and the loss of
material.

This model is completed by the evaluation of average quantities such like
stress and strain on the mesoscopic scale (depending on volume fraction of parti-
cles, the presence of a lubricant, chemical reactions, ...). Some models studied in
DRAGON-LOUISET [11] provide explicitly the evaluation of g® in terms of stress
and strain of 2 and the rheology of the third-body.

2.2. Conservation of mass

The volume fraction of solid particles iy is simply denoted . In the steady-
state case, the one-dimensional conservation laws of mass, solid and fluid, can be
written respectively as:

(23) 2 le(a)p()pave(@)] ~ apsu(a) = 0 (solid),
(2.4) = le(a)(1 - pl)prve(e)] = 0 (i),

where v,(z) is the z-coordinate of the mean velocity of solid debris or fluid, equal
to —=V/2; rs = apsv(x) is the source term coming from the detachment of debris
at rate v(z) feeding the interface through I', and « is interpreted as the part of
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debris which diffuses toward the third-body. The remaining part 1 — a being
imprisoned in the asperities is moving out the contact zone, without making any
contribution to the third-body rheology, ps and py are densities of solid and fluid,
respectively.

Since up-stream there is no wear, we have ¢(a) = 0. Hence, by assuming «
and ps constant, we obtain from (2.3) the relation between the wear rate v(z),
the volume fraction ¢(z) and the thickness e(z)

26; /'u(:c} dz (z <a).

a

(2.5) p(z) = -

For either incompressible fluid (ps constant) or negligible variation of ps(z) along

the interface, Eq. (2.4) can be reduced to E%: le(z)(1 = @(z))vz(z)] >~ 0. Now,
by assuming classical guasi-linear one-dimensional Stokes flow inside the third-
body, between the fixed wall v,(z,0) = 0 and the sliding one v.(z,—e) = -V,
we get the constant mean value vz(z) = —V/2 as mentioned above. This means
that two-dimensional fluid flows near the end points of the contact interface are
disregarded. We then obtain

. e
1-p(z)

Equations (2.5) and (2.6) are equivalent forms of the mass conservation laws of
solid particles and fluid, respectively. Provided that v(z) is known, Egs. (2.5)
and (2.6) yields an integral equation for determining (z) and then e(z). The
volume fraction can be written as:

(2.6) e(z)

(2.7) olz) = Hig()?] with B(z) = —3—; / v(z)dz.

a

B(z) is a monotonic function of z, increasing as z decreases. Down-stream, the
volume fraction is constant and equal to its maximum value ¢Ymax = @(—a).
Generally the latter quantity is very small. A good approximation justified by
dacy o . : :
the smallness of Ve ax |v| is simply given by (2.5) with approximate e(z) ~ eg,
0
or p(z) = B(z).

2.3. Rheology of the third-body

We assume that the compressive contact stress is given by the uniaxial law

E

(28)  gldlow=aly ~w) with glg) >0 ad & =gF=rp,
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where ¢; is introduced for later use, E is the Young modulus, v is the Poisson’s
ratio, (+) sign for the punch and (—) for the elastic halfplane. An explicit
form can be given for the function g[¢] by micromechanical considerations. For
example, by making use of Reuss’s model of aggregate based on strain additivity
or stress homogeneity, on the mesoscopic scale, the first law takes the form

@ 1- @ €p =
) v Fer R A

where K is the stiffness of the detached solid particles, Ky is the stiffness of the
fluid. For small ¢, it follows from (??) and linearization g[y] = ciep(p/K + 1/
K/). The incompressible case Ky = oo is considered in [11]. The model (2.9) is
rigorous when the fluid viscosity is infinitely small. A different model was given by
Stupkiewicz and MROz [31] for studying abrasive wear due to asperities. The
mesoscopic stresses are considered as microscopic stress averages. As a matter of
fact, their model of contact stress additionality corresponds to Voigt’s model of
aggregate and is therefore the dual model to (2.9).

The second law describes the viscous behavior of the thin film under shear
load. As suggested by experiments, the shear stress can be assumed in the form
(U;y = Ozy)

dul  dug
(2.10) oy = milg) (22— 2 ) = afg,

where the relative velocity is approximated by V (the elastic velocity is negligible)
and m/[yp] is a material constant which can be evaluated by micromechanics. As
shown later, this approximation justified by in-service conditions of wear allows
for the decoupling of equations.

Again, an explicit form of the function m[y] can be provided by classical
models of solid dispersion in viscous fluid. The viscosity coefficient of the mixture
is given by Einstein’s law n{p] = 79(1+2.5¢) (see LANDAU and LIFCHITZ [22]), so
du} du

dt
m(ip] = no(l + 1.51,0)/&0.

Finally, the third-body model is a medium having a hybrid behavior of an
elastic solid in compression and a viscous fluid in shear or a plastic solid with
constant threshold (¢ and V held fixed). It looks like a ball bearing, capable
of transmitting a compressive force, but having some resistance in sliding. The
volume fraction ¢ appears explicitly in the wear equations, making it possible
to have a quantitative and predictive analysis of wear, for a given mechanical
system. The macroscopic interface between a rigid punch and an elastic solid is
characterized by properties summarized in the following box.

that oz, = 1y

/e(z) and using (2.6) and linearization, it follows
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INTERFACE MODEL ON THE MACROSCOPIC SCALE

e Wear criterion G(o) > 0 and wear rate v = H(G(o))F(o), with
H the Heaviside function

if G(o) <0, no wear and: v =0,
if G(o) >0, wear rate: v = F(o) > 0.

e Internal state variable ¢(z) and mass conservation laws

3@5 le(z)p(z)vz(z)] — av(z) =0  (solid),

2 [e(z)(1 - p(z)va(x)] =0 (fluid).

e Constitutive laws
Oy = m[p]V, with m[p] > 0,

= ; E
gleloyy = er(uf —uy), with glg] >0 and ¢; = 20— 7)"

3. Statement of the problem

We consider a rigid circular punch of radius R, defined by the equation y =
f(z) = (z — 2¢)?/(2R) sliding on an elastic halfplane, (Fig. 2). In the previous
section, we gave the description of the third-body on the mesoscopic scale, —a <
z < a, —e(x) < y < 0. Here the interface is considered on the macroscopic scale
and is defined by y = 0. The elastic body € is the halfplane {z,y < 0}. The
vertical displacement of the upper third-body surface (I';, y = 0) is

(3:1) uy (z) =6+ f(z) (6 <0),

where ¢ is the imposed position of the punch and f(z) its profile. The vertical
displacement of the lower surface (I'y, y = —e(z)) is u; equal to the displacement
of the halfplane boundary. The strain &y, of the interface medium is g, =
(g =z ) e

For the pre‘sent, neither the compressive load nor the contact zone —a < z < a
have been specified. The punch position zq is yet unknown. The following
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assumption is only made —a < zg < a. The integral equations for boundary fields
in plane strain are given by GALIN [13] (pv means “principal value”) (u; = ug,
U, =)

v y

@
' 1 dit
(3.2) 1 uy(z) = e oyy(z) +pv }-/Ozy(t)t —
—a
a
' 1 dt
(33) C1 Uy(iﬁ) = —C2 O'xy(.?l) +p‘!} ; Uyy{t)t—_':;,

—a

where ¢; = E/[2(1 —v?)], c2 = (1 — 2v)/[2(1 — v)] and the prime (') means dif-
ferentiation. Equations (3.2) and (3.3) establish the relations between tangential
gradients of displacement, normal stress oy, and shear o4, (cf. also Bul [7] for
the reciprocal relations). Setting e,,(z) = u,(x) in (3.2), i.e. the longitudinal
strain parallel to the boundary, substituting (2.8), (2.10), (3.1) in (3.3), we obtain
the set of equations:

g dt
(3.4) c) Ez¢(Z) = ¢ oyy(z) +po = fazy(t)m,
—a

35 o f @) - llel@a @] = e md@V +m - [ ol

(3.6) oyy(—a) = ayy(a) =0,

with additional equations given previously as

(3.7) Ogy = m[tp]V,

2cv [
(3.8) plz) = —V-;G-ﬂ/v{ﬂ:) dz,
(3.9) v = H(G)F(a).

The boundary conditions (3.6) come from the continuity assumption of stresses
(no normal load at the fluid interface outside the punch area). In the energy
release rate approach, G is expressed in terms of the elastic strain energy densities
on both sides of the phase changes line. It depends on o4y, 0yy, €24 of the sound
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material and on the stresses o, oy, of the damaged zone adjacent to the interface
line. Its expression depends on particular models considered on the mesoscopic
scale. Once the expression of G(0zy,0yy,€zz,®) in terms of its arguments is
explicitly known, it can be evaluated by quantities given by Eq. (3.4) to (3.9).

Let us specify now the data for the whole mechanical system for solving the
nonlinear system of Egs. (3.4) - (3.9). Instead of giving the total compressive
force, we specify the contact zome —a < = < a and then determine the corre-
sponding compression load given by

a

(3.10) Pla) = — f oy () dt,

the shear force ;

(3.11) T(a) = — / Ty (2) dt,

—-a
and the punch position zg.

It is worth noticing that the key step of the iterative computation is to de-
termine the normal stress oy, and that for each iteration, until convergence, only
one equation, namely (3.5), has to be solved. Other quantities of interest for
the wear criterion (3.9) are derived explicitly from ¢ and oy, by computations of
integrals. For detailed analysis of the nonlinear algorithm, we refer to DRAGON-
LouiseT [11].

Here we shall focus on this linear integro-differential equation for the normal
stress (3.5), which is referred to as the W-equation.

4. The W-equation

4.1. The step (0) algorithm

For a given volume fraction ¢(z) and a given contact zone —a < z < a, we

consider the function agy) satisfying the following equations, with m[e]V = (no/

eg)V

(4.1) pv l/ag‘;}( )i =c f (z) +Cg—V
T t— €p

—a

(4.2) ol (+a) =0,

With a Hélderian function in the right-hand side, (4.1) is a classical Hilbert’s
equation, treated in MUSKHELISHVILI [25]. The corresponding homogeneous
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- - =
equation possesses a non-zero solution of the type C(a? — z2)~2. Hence, to
obtain a bounded solution (in fact vanishing at z = %a), there is a consistency
condition to be satisfied

a

(4.3) / [clf (t) + CQ?J'EV] (a® - tQ)‘% dt =10,

-1

where f'(z) = (z — zg)/R. From the consistency condition (4.3) we obtain
zy = canoV R/(c1ep), which is independent of a, hence a good candidate for
starting the step (0) algorithm, provided that zy < a. The last condition can be
satisfied by choosing appropriately the velocity V. The solution of (4.1) is then
given by MUSKHELISHVILI [25],

a

40 o) =@ -t [ [af ) +ams| @ -t 2

or oyy ( )= —(c1/R)(a® -z ) This is a Hertzian distribution of load with the
corresponding linear force given by
(/3

(4.5) Py(a) = [ oy (t) dt =

—a

neia?

2R

If the first term of (3.5), %[g[ga](m)oyy(a:)] is small in comparison with the

o~ A 0 : e g
remaining ones, the zero-order solution a;y) (z) provides a good approximation

of the actual solution, except near the end points z = +a where the derivative
= [nég,} {m)] is singular (this is mathematically a singular perturbation problem
L

not addressed here). In what follows, we outline the method of solving (3.5) using
Chebyshev’s series expansion suggested by the analogy with Prandtl’s equation.

4.2. Chebyshev’s series solution

Having determined the approximate center position g, it is advantageous to
solve the W-equation for the actual stress oy, (z), written in the form

(4.6) i (9[‘9](3)03.-1;(97)} + pv %[Uyy(t)_it_

t—zx
-

= %(m — 29) + cam[p](z)V = b().
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We set the following change of variables: t = —a cos(d), = —a cos(w), with
6 € [0,7]. The function oy, (w) satisfying (4.6) is expanded in truncated Fourier
sine series, ANDERSON [1]:

N
(4.7) oyy(0) =Y Apsin(nf), 0<O<
Using the Chebyshev identity of the first kind

—7 cos(nw),

/’r sin(nd)sin(6)

cos(f) — cos(w)
and by setting b(z) = b(z = — cos(w)), we obtain

N
(4.8) ZaA cos(nw) sin(w) + ZAnd[g( d-?';lJn (nw)]

n=1 n=1

—asin(w)b(w) =0, O<w<m.

Generally the linear system (4.8) is solved by the collocation method. This
method however is unsatisfactory in the choice somewhat arbitrary of the collo-
cation points, 0 < wy < w (k= 1,..,N). It is of interest to consider instead the
Galerkin method. In order to use the Fourier 2n-periodic functions, the functions
appearing in the left-hand side of (4.8), defined only in the interval 0 < w < ,
must be extended to —7 < w < 7 in such a way that the extended functions are
even. For instance, the first term cos(nw)sin(w) of (4.8) is odd and has to be
extended to —7 < w < 7 by the function sgn(w) cos(nw) sin(w). Only odd func-
tions have to be extended in this way, by multiplication with the sign-function
sgn(w). Then, by using the Fourier cosine functions cos(kw), we obtain the set
of equations for A,

N i
(4.9) Z A, / {a cos(nw) sin(w) + % [9(w) sin('n.w)]} cos(kw) dw

n=1 0
™
vfasin(w)b[w) cos(kw) dw = 0, ks N,
0

Remark that the solution (4.7) contains the factor sin(f), hence the normal stress

g 1
oyy(z) has the square root behavior oy, (z) =~ (a? — 2%)2 as |z| — a. It can be

shown that the zero-order solution o!(,,g) () is an approximation of the first term
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of the series (4.7). The method outlined here is an adaptation of the one given
in DRAGON-LOUISET [11].

4.3. Uniqueness considerations

Having determined a solution satisfying (3.6) and the corresponding total
load P(a) by (3.10), we are concerned with the uniqueness of the solution of the
W-equation (4.6). It is necessary to specify the space of functions to which the
solution belongs. We need the class of Holderian functions of Muskhelishvili to
give a sense to Cauchy integrals, satisfying oyy(£a) = 0 and regular in —a <
¢ < a. Suppose that there are two solutions o', 0%, corresponding to the same
total load P(a). Then, ¥ = ¢! — o2 satisfies the homogeneous W-equation with
b(z) = 0, E(+a) = 0 and [ ¥(t) dt = 0. As shown below, the uniqueness
theorem states that X(z) = 0, provided that g[y] > 0.

4.4. Proof of uniqueness

Let us prove the theorem by considering the complex function F(z) defined
in the upper complex plane z = z + 1y, (y = 0):
@
1 g
(4.10) F(z) = o= iX(t) In(z — t) dt = ®(x,y) +i¥(z,y),
—a

z,y in Q* = {z,y > 0},

(4.11) Fl(z) = _ﬁ P

£ i —Y T, ’
St vz (,y) y[ y)

(4.12) ®(z,0") = %/E(t)ln!z—ﬂ dt,

. ; 1
(4.13) (0] = %(x, ) = 553(3:), for 0 < |z| < a,

(4.14) Rl ) = %{x,O"') =10, for|z|>a.

The density ¥(z) is assumed to satisfy the following equation with some H(z):

a

@) glel@) -+ [ =0)l-aldt = H(), 0]l <a

-
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Differentiating (4.15), we find that X(z) satisfies the W-equation

!

(4.16) 2 lglel(z) w)]+pv—/2 L =H @)

Now Eq. (4.15) can be written equivalently as
6<I) - -
(@17)  2lpl(z) 5 (2,07) = 28(2,07) = H(z), on0< el <o

To investigate the uniqueness, we consider the homogeneous Eq. (4.16) for X(z),
with H = 0, or the homogeneous boundary condition (4.17), with H = 0, for
the harmonic function ®(z,y) in QF

(4.18) alel(@) 5y (2,0%) - (2,0%) =0, 0 <ol <a.

The function ®(z,y) is the real part of an holomorphic function F(z), regular at
a

infinity, because in view of / ¥(t) dt = 0, the logarithmic part of F(z) vanishes
—a

at infinity. Hence |F(2)| ~ O(1/|2|) and |F'(z)| =~ O(1/|2%|). Rewriting (4.18)

with the outward unit normal to Q%, 3/dy = —3/0n, we obtain

Wi
dn  glyl(z)

(4.19) =0, 0€ |z|<a; y=07.

Integrating ®9®/0n on the whole boundary of the upper-half plane Q7 noticing
that ®9®/0n = 0 for |z| > a, OP®/In ~ O(1/|2%|) at infinity, we obtain on the
one hand, since g > 0

2
/@md —] 6¢dm=—/?~d.c
dn g

ant —a

and on the other hand, since ¢ is harmonic :

/tI)-——-ds—/]V<1>12dQ;0
O+

ant

We conclude that @ = 0 is the unique solution for the homogeneous boundary
condition (4.17) and that ¥ = 0.
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5. Prandtl’s lifting equation in aerodynamics

5.1. Prandtl’s equation

Let us recall the well-known Prandtl equation for calculating the circulation
distribution of vortex I'(z) along a finite wing [—a, a]:

g 1 T(z) 1 fdl(y) _
(5.1) S Blz) T ;/y—_a: = -4V J(z)

where R(z) > 0 is the radius of the Kutta-Joukovski circle, corresponding to the
section profile of the wing at z, V. is the up-stream velocity and J(z) is the
local geometric angle of attack of the wing. Here the derivative of I'(z) appears
inside the Cauchy integral. Equation (5.1) is an integro-differential equation, in
which the unknown is I'(z); all the other quantities are known, ANDERSON [1],
MANDEL [23]. It is well-known that the solution of is (5.1) unique.

It is worth reconsidering the method actually used for solving the Prandtl’s
equation. Putting y = —a cos(f), ¢ = —a cos(w), Eq. (5.1) is solved for I'(y) by
truncated Fourier sine series

(5.2) I(6) =Y Bnsin(n), 0<0<

The pv-integral at the station w can be written in a simple form. Using Cheby-
shev's formula of the second kind

; f cos(n@) _ sin(nw)

o) / cos(f) — cos(w) =r sin(w) ’

we obtain

(5.4) A B Snns - RE S Weaa

mn
e sin(w)

Choosing N different stations wy, wa,..., wy for a collocation method, Eq. (5.4)
provides a linear system of N independent algebraic equations with N unknowns,
By, By, ..., By

N
. n _ sin(nwg)
9.5 By, sin(nwy) + -B,———
(5.5) wakZ k) ;a " sin(wg)

= ‘4V00J(wk)1 (k =1,., N)
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In this fashion, the system (5.5) provides the actual solution of Prandtl’s equation
as used in aerodynamics. Finally, we remark the analogy between both methods
used in Secs. 4.2 and 5.1, respectively. As a matter of fact, there is a profound
relationship between the W-equation and Prandtl’s lifting equation.

5.2. Malavard’s analogical method

Let us recall first how Prandtl’s Eq. (5.1) can be solved ezperimentally by
analogous Malavard’s method, MANDEL [23]. An electric conducting medium
occupies the halfplane y > 0. The potential ®(z,0) is the trace on y = 0 of a
harmonic function ®(z,y), regular in the halfplane y > 0. The wing position
is divided into N equal segments, centered at zj, each of them being connected
to a resistance p(zg), while the other end of the resistance is subjected to the
potential F(zy). For simplicity, we shall omit the indices k of zx. In order to
choose these quantities, we introduce the complex potential F(z), z =z +1y
and consider the values of potential and velocity v, = d®/dy ony =0,z < a

a

Flz) = # In(z — t) dT'(t),

®(z,07) = —%F(.’L‘), for |z| < a,

®(x,07) =0, for |z| > a,

a

w@) = 5 [0

27 t—x
—a
The electric potential ® = 0 is applied to the segments |z| > a. We set the
potential E(z) = 2rRVJ(z) to the resistance p(z) = wR(x) > 0. Then we
measure the electric current ¢ = vy(z) provided by Ohm’s law E — @ = pc,
corresponding to (5.1)

(5.6) 2E — 20 = p2¢ & 4V J(z)mR(z)+I'(x)

a
1 dr(t
= ‘II'R{.'L‘); BV | < _(;3
—a

The measurement of the potential ® at the other end of the resistance provides
the distribution of line vortex with density I (z).

http://rcin.org.pl



ON PRANDTL’S LIFTING EQUATION ARISING IN WEAR MECHANICS 563

5.3. Experimental setup for solving the W-equation

By integrating the W-equation for the stress S(z)
.7 L lo@)S@) +pv - fs &~ ha),
with respect to z in the interval [a, 2], taking account of S(a) = 0, we obtain

58  g(x)S(z) - % /S(t)ln1t—3:| dbi= -i /S(t) Inji —al dt + H{z),

where H(z) = /h(m) dx. We can write

a

(5.9) g(z)S(z) — % /S(t) In|t —z| dt = H(z) + C

(5.10) C= -% /S(t) In|t — af dt.

The constant C is not known beforehand, since it depends on the solution S(t).
Suppose that for a given C, there is a solution S(z; C). Equation (5.10) expresses
the implicit condition for determining C

(5.11) o= -% /S(t;C)ln|t Gl

Let us show how (5.11) can be exploited experimentally.
We introduce the complex potential F(z) of a distribution of line source (or
sink) with density S(t). The corresponding values of potential and velocity are

F(z) = 2% iS(t;C)In(z — t) dt = ®(z,y) +1 ¥(z,y),

—a

, 1 f dt dt .
F () = 5= [ 15:0); t=ﬂ—]esuc b valmy) vy,

—=a
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®(z,0%;0) = % fS(t; C)In|z — t| dt,
-Q

1
vy(z,0) = 55(3:), y=0,z<a,
vy(z,07) =0, y=0,2z > a

Here, the infinite lines y = 0, |z| > a are stream lines v, = d®/dy = 0. On the
line y =0, —a < = < a, (5.9) can be rewritten as

®(z) — E(z) = plz)c(z) < g(z)S(z) — % /S(t) In|t — x| dt

= H(z) + C,

with the electric potential E(z) = —(H(z) + C)/2, applied to the resistance
p(z) = g(z) > 0, the current ¢(z) = vy(z) = S(z)/2 and the potential ®(z) =

a
1
5 / S(t)In |z — t| dt. Far from the resistance, the potential is set to zero. The
—a
compatibility condition (5.11) is written as

——g— = &(a,0%;C).

Hence to satisfy the above condition, experimentally, one adjusts the potential
E(z) by varying C in such a manner that the measured potential ®(a, 0*;C) at
& = a is equal to —C/2. Since H(a) = 0, we see that E = —-C/2 = ®(a,0%;C)
or equivalently ¢(a) = 0. Hence the adjustment of C is done in such a way that
there is no current in the resistance at z = a.

5.4. Relation between the Prandtl’s equation and the W-equation

As shown in the above sections, the Prandtl’s equation and the W-equation
are related together through complex potentials of line vortex of density T'(z)
and line source or sink of density S(t), respectively. This does not mean that
Egs. (5.1) and (5.7) are adjoint equations, in the strictly mathematical sense.
As a matter of fact, there is only a weak relation of the adjoint type.

Consider the set of functions

=l (E) e 2rx I 3’}1’_&. - 4rx
= <sin 5a , CO8 o ,sin 5 4@ P

http://rcin.org.pl



ON PRANDTL'S LIFTING EQUATION ARISING IN WEAR MECHANICS 565

If 4 () is the k*® element, we get T, (z) = —(k*n?/(4a?))Zk(z) and E:,c(:ta) = 0.
Denote the Prandtl operator by P[I']

40 T(z) 1 [dI(t)

PoRE ot ) t-z

—

BT =

.22

where the first term in the left-hand side of (5.1) is divided by ﬂ; . Similarly,

denote the W-operator by W([S]

W(S] := di (g(z)S( +p'u—/S

The kernels of Cauchy integrals of Pi[I'], W([S] are adjoint and there is a
permutation of functions and derivatives. Then we obtain an equivalence of the
adjoint type

a

/ S (z)W[S)(= = / Yr(z)h(z) dz

—0

& /E;(I)Pk[S]{x] dz = —/z;(a:)h (z) dx

However, there is an incomplete equivalence in weak forms, because: 1. we make
use of only one particular function i (x); 2. the set B is not complete.

6. Conclusion

The mechanics of sliding mild wear contact between a rigid punch and an
elastic halfplane considered in this work is characterized by the following features:
(1) any wear criterion and wear rate can be used; (2) the constitutive behavior
of the thin aggregate film composed of solid debris and a lubricant fluid, on the
mesoscopic scale, can have any general form; it is characterized by an elastic law
in compression and a fluid viscosity in shear; (3) the interface on the macroscopic
scale is characterized by the elastic law in compression and a plastic law in shear;
(4) the mechanical system is governed by the volume fraction of solid debris,
which satisfies a nonlinear system of equations.

It was shown that the key step of the iterative algorithm for solving the latter
nonlinear system is the linear integro-differential equation for the normal contact
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stress. There is a profound relation between this equation and Prandtl’s lifting
equation found in aerodynamics: both equations can be computed using similar
Chebyshev’s series of the first and the second kind respectively, and can be solved
experimentally by similar electrical setups. These equations are related to real
and imaginary components of some complex potential respectively, and to weakly
adjoint integro-differential operators.

By describing the formation of debris, using for instance the wear energy
release rate criterion, and their evolution via the balance equation of mass, by
averaging the behavior law of the aggregate film, via a micromechanical model, we
were led to a predictive model of mild wear. There are still remaining questions
about an effective solution of the nonlinear system of equations. Such questions,
particularly mathematical aspects on the convergence of the nonlinear algorithm,
will be addressed in a forthcoming paper, DRAGON-LOUISET [11].
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