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IN A NUMBER OF ENGINEERING SITUATIONS concerning structures made of quasi-brittle,
concrete-like materials, all nonlinearities can be reasonably confined to a locus of pos-
sible displacement discontinuities. This locus has a lower dimensionality (by one) with
respect to the problem domain; it encompasses joints, cracks, fracture process zones
(described by cohesive crack models) and their possible propagation paths. Linear
elasticity is assumed everywhere else for overall analysis purposes. With reference to
a very broad class of interface models, i.e. of (holonomic or nonholonomic, inviscid or
time-dependent) relationships between displacement jumps and tractions across that
locus, the (possibly multiple, if any) solutions of the initial-boundary-value problem of
structural analysis are shown herein to be characterized by duality pairs of extremum
and min-max properties.

1. Introduction

1.1. A WIDELY ACCEPTED IDEALIZED INTERPRETATION of fracture processes in
quasi-brittle solids and structures (e.g. concrete dams) rests on the “cohesive
crack” concept. This model is characterized by the following features: the (two
or three-dimensional) open domain €2 where the analysis problem is defined, con-
tains a discontinuity locus (one or two-dimensional, respectively), say I'y, across
which displacement discontinuities w may occur; along I'y tractions p are related
to relative displacements w by an “interface constitutive law” which exhibits a
softening (unstable) behaviour up to vanishing of the strength; outside of I'y the
material behaviour is assumed to be linear elastic; deformations are “small” in the
sense that equilibrium relations are not influenced by configuration changes, and
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kinematic compatibility equations are linear. At a certain stage of the structural
response to a given loading history, the locus I'y generally encompasses three
parts: a portion (“process zone”) where the two faces interact by tractions p;
a part formed by actual cracks, where there is no interaction; and a portion of
virgin material, where no displacement discontinuities has arisen yet.

For the fracture analysis problem based on the above idealizations, the present
paper is intended to provide two general variational formulations with the fol-
lowing novel features.

First, a functional of kinematically admissible displacement fields is con-
structed by time inlegrations over the time interval T of interest, and by space
integrations over the domain (2, over its free and constrained boundary (I', and
I'y, respectively) and over the locus I'y of possible discontinuities. It is proven
that the solution (if any) is characterized by the absolute minimum (with a value
which can be determined a priori) of the above functional and of suitable variants
of it.

Second, a functional of statically admissible stress fields is generated over
the time interval 7" and over €, 'y, I', and Ty, and its absolute minimum (at a
known value) is proven to characterize the solutions of the boundary-initial value
problem.

The two minimum principles are shown to generate two further computa-
tionally more attractive saddle-point theorems, and to reduce to the potential
and complementary energy principles of elasticity when the discontinuity locus
vanishes.

1.2. The present study was motivated by a research project on structural prob-
lems in dam engineering. The safety assessment of large concrete dams nowadays
often rests on overall three-dimensional analyses in which all nonlinearities can
be confined to surfaces where displacement discontinuities may occur (or can
be realistically assumed to possibly occur), usually accompanied by energy dis-
sipation. A variety of localised dissipative phenomena need to be allowed for:
frictional contact and asperity smoothing on artificial joints and existing cracks;
quasi-brittle fracture processes (primarily on concrete-foundation interface). Sev-
eral nonholonomic path-dependent interface models have been proposed for the
computer simulation of the response to loads of dams and many other engineering
structures: rigid-plastic, elasto-plastic; plastic damage; viscoplastic; etc., soften-
ing and non-associativity being recurrent features together with their possible
computationally challenging consequences such as overall instabilities and path
branching.

The often reasonable hypothesis of linear behaviour outside the locus of possi-
ble dissipative discontinuities makes computationally attractive and competitive
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a variety of space discretizations: finite element, boundary element, and mesh-
less methods. Some representative contributions to interface modelling and to
limit-state analysis of dams and of similar structures can be found, e.g., in [5,
15, 24, 30, 31|, and in [4, 16, 28], respectively. The abundant literature on these
topics is surveyed in recent treatises such as [3, 22].

This paper aims at providing a unifying theoretical framework for the above
mentioned varieties of interface models and analysis methods, and at contribut-
ing to bridge the present gap between structural mechanics and a mathematical
research stream on variational principles for initial-boundary-value (i.b.v.) prob-
lems.

Such research trend appears so far to be rather separate from the one, fos-
tered by the developments in engineering plasticity, on nonlinear boundary value
problems in rates or in finite steps: earlier within the validity range of Drucker’s
postulate of material stability, (see e.g. [8, 17, 23, 25]), and later outside of it
(see e.g. 18, 26]).

The origin of the methodological approach of concern herein can be traced
in the adjoint operator method proposed in the fifties for the symmetrization of
any non-symmetric linear operator [29], and later extended to classes of nonlinear
operators ([20, 37]) and integral operators [36]. This method implies additional
unknowns without physical meaning and generally does not lead to extremum
characterizations of solutions. Variational formulations of i.b.v. linear problems
have been established by this approach, and also by another approach (proposed
by Gurtin [21] in 1964) which involves convolution and is deprived of the above
disadvantages. The latter approach was further developed for a variety of i.b.v.
linear problems in [33, 34, 35, 38] and in [12, 13, 27] for boundary integral
formulations of viscoelasticity, dynamics and heat conduction.

A general methodology for variational formulation of any, linear or nonlin-
ear, problem was proposed by E. ToNTI [39], and developed for special cate-
gories of operators and mechanical situations, such as linear convection-diffusion
[32], structural stability [1], nondifferentiable operators [2], quasi-static plasticity
(9, 11], elastoplastic dynamics [14].

The present results can be regarded as a further engineering-oriented ap-
plication of Tonti’s approach to variational formulations of i.b.v. problems in
the presence of (dissipative, nonholonomic, possibly time-dependent) constitu-
tive models.

2. Problem formulation

The solid or structure referred to herein occupies a region 2 with a bounda-
ry I The boundary is supposed to be smooth, i.e. the normal direction is
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uniquely defined everywhere (a formally convenient restriction, easily removed
whenever necessary). Symbols I'y, and I', will denote the parts of I' where dis-
placements and surface tractions are imposed, respectively, with I' = ', UT', and
'y NIy = @. In an orthogonal Cartesian reference system, x = {z;,i = 1,2,3}
is the position vector of a material point in §2.

The domain {2 is assumed to contain an a priori known discontinuity locus,
say I'g, across which displacement jumps w may occur. The locus I'y is assumed:
(i) to be smooth in the above sense; (ii) to have no intersections with the con-
strained boundary I'y,. The latter hypothesis makes simpler some developments
in Sec. 4.1 and can be relaxed to the requirement that w on I'y and displacement
u on I';, are independent over a possible portion of I'y which is also part of I',.

The external actions (barred symbols) assigned at any instant ¢ (0 < ¢ < £)
over a given time interval T = [0,f], are: volume forces b;(x;t) in £; imposed
(say thermal) strains éij(x; t) in Q; displacements @;(x; t) on I'y; tractions p;(x; t)
on I'p. Inertia forces are regarded as negligible. The material behaviour may be
history- and time-dependent (e.g. viscoplastic) or, as a special case, inviscid (then
the variable ¢ is to be considered as an event-ordering parameter along the “quasi-
static” evolution of the system).

For convenience, but conceptually without any loss of generality, two-
dimensional plane-stress situations are referred to wherever it is desirable to
make the problem dimensionally explicit (namely: i,7 = 1,2).

Under the assumption of small strains and displacements (linear kinematics),
the equilibrium and compatibility equations, everywhere except on 'y, read (the
index summation convention is adopted):

(2.1) 0355 + b =0 in Q@ xT
(2.2) oijni =pP; on Iy xT

1 )
(2.3) €ij = §(ui‘j +uj;) in 2 xT
(2.4) w; =14 on LyxT

where: Q' = Q - I'y; oi; and €;; are components of the stress and the strain
tensors, respectively; (.) ; = 9(.)/9z;; n; are the components of the unit outward
normal to the surface I'.
. . . . 1, . .
The material constitutive model in © is assumed to be linear-elastic; namely,
in “direct” and “inverse” form, respectively:

(25)  0ij = Dijnk (énk — Onk) ; €ij = Cijnkonk + 0ij in Q.

In Egs. (2.5) Djjnr = Cz-}}lk is the elastic tensor, endowed with the usual symmetry
properties and positive definiteness:

(2.6) Dijnk = Djink = Dhkijy
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(2.7) Dijnk(x)€ijenk > 0, for any €;; except for ¢;; =0.

The discontinuity line I'y is conceived as an interface (smooth) between faces
I'; and [‘j, on which local Cartesian reference are chosen, n; and n;" being
the outward unit normal to I'; and '}, respectively (Fig. 1). Let T be the
(orthogonal) matrix which transforms vectors from the local reference {n=,t~}
on I'j to the global reference system. We can write for any x € I'y:

wy | _ ut uy b Wp,

(28) {'w2}“{uéh}_{‘u§}_'r{ ‘wt} LD
< VR (7 3 O (5%, (O Pn

(29) {Pz}_{%}_ {p;*}_T{ Pr} ke

Fic. 1. Tllustration of symbols and references for tractions and displacements on the
discontinuity locus I'y.

Equation (2.8a) defines the kinematic (displacement) discontinuity w in the
global reference; Eq. (2.8b) relates w; to the normal (“opening”, “mode I”) relative
displacement wy, and to the tangential (“sliding”, “mode 11”) relative displacement
wy, represented in the local reference system on I'; . Equations (2.9) identify the
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interface tractions p; with those on face 1, express interface equilibrium and re-
late vector p; (which describes tractions on Ty, with components p; and p; in
the global reference) to its normal p, and tangential p, components with respect
to the locus (line) I'y. Tractions and stresses along the discontinuity locus 'y are
linked by Cauchy equilibrium equations:

(2.10) oijny =p; on Iy xT, a,;jn;-' = —p; on [F »,

Static {p, p;} and kinematic {w, w,} variables on the discontinuity line I'y
are linked to each other by an interface model, see e.g. [5, 15, 24, 30, 31]. The
generally nonlinear time- and path-dependent (“nonholonomic”, irreversible, dis-
sipative) constitutive models along interface 'y will be expressed in the following
compact form (direct and inverse, respectively):

(2.11)  pi(t) = filwj(7);0 < 7 < t];  wi(t) = gi[pj(7);0<7<¢t] onTyxT.

It is worth noting that in many practical situations under proportional, mono-
tonic loading histories, inviscid interface models may be interpreted as history-
independent (“holonomic”) to overall analysis purposes, namely: p;(t) = f(w;(t)),
and w;(t) = g(pi(t)). This short notation will be used in what follows for all inter-
face models, whether holonomic or nonholonomic (or partly so, when detachment
occurs). Clearly, both in holonomic and nonholonomic interface models, material
instability (softening and/or nonassociativity induced by internal friction and/
or damage) is expected, together with consequent multi-value nature of the de-
pendences symbolically expressed by Egs. (2.11). It is worth noting that these
dependences usually can not be described by functionals or functions, but may
be mathematically formulated as a problem with multiplicity of solutions (if any
exist). Typical formulations of this kind are linear or nonlinear complementar-
ity problems, or sequences of them for nonholonomic models. For applications
to the very particular case of hydraulic fracture (an important issue today for
oil industries), the interface model can accomodate the crack pressurization, by
means of convenient provisions, not dealt with here explicitly.

We assume, for simplicity, that the initial conditions are homogeneous (pre-
ceded by an undisturbed statical regime):

(2.12) ui=¢€;=0;=0 on QUT, at t=0
(2.13) w; =0 ag I'j at +=0.

The b.i.v. problem defined by Egs. (2.1) - (2.13) will be referred to, in what
follows, as problem P.
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3. Admissible fields

3.1. Consider a stress field history o'fj(x,t) which is defined in space over {2 and
in time over T, and satisfies the equilibrium equations in Q and on ', with the
actual statical data b;(x,t) and §;(x,t), respectively, and on the discontinuity
locus I'y between tractions, namely:

(3.1) m+b =0 in @ xT,
= p,— on I'y)xT,
pi =p{” =0 n; = o*;" "’ —pft on TyxT,

where: n~ = {n7} and n* = {n} denote the unit vectors directed as the

outward normals to I'; and I‘;’, respectively; superscripts — and + mark stresses
near these two faces of locus I'y, like in Eq. (2.10). The corresponding (generally
non-compatible) time-histories of strains ¢j; in Q) and of relative displacement
jumps w* on 'y, can be derived through the Hookean constitutive law (2.5)2 and
the interface constitutive law (2.11)9, respectively. They read:

(3.4) € = Cijnkoip +0;; in @ xT,

(3.5) w; =gi(p;) on TyxT.

All fields (in space and time) which satisfy the above conditions will be called
henceforth statically admissible (and marked by asterisks). It is worth noting
that, by this definition, ¢; is required not only to balance the given loads and
fulfill equilibrium everywhere, but also to comply with the constraints implied by
the interface model Eq. (3.5) (e.g. p;, cannot exceed the current tensile strength,
say ).

A stress distribution o (x,t) is defined as self-equilibrated when it satisfies
the following homogeneous equlllbrmm equations:

(3.6) UJ- =0 i 0 xT,
(3.7) o;n;j=0 on IpxT,
E— - wwf 4

Note that Eqgs. (3.3) and (3.8) enforce traction continuity across 'y, an equilib-
rium requirement which could have been alternatively formulated by Eqs. (3.1)
and (3.6), respectively, by substituting in them Q for @ = Q —I'y.

3.2. Now let us consider a time-history of the strain field €;(x,t) derived, by
means of the geometric compatibility operator, from a displa,cement field uf(x, )
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which satisfies the assigned kinematic boundary conditions and exhibits a “jump”
w? on the discontinuity locus I'4:

1 /
(3.9) € = §(ufg + uj;) in QxT,
(3.10) uf = o TysP
(3.11) wf =ult —uf” on Tyx'E

Let stresses oy; in Q' and interface tractions p? on I'y be derived through the
constitutive law (2.5); from ¢; and through the interface law (2.11); from wy,
respectively. They are generally not equilibrated and read:

(3.12) % = D,-jhk(eﬁk — ghk) in Q' X T,
(3.13) P} = o5 n; = filw %) on IgxT.

Time histories of fields (marked by ?) which satisfy the above definitions will be
referred to as kinematically admissible. Clearly, besides geometric compatibility,
also the constitutive model on T'y, Eq. (3.13) is generally expected to set some
constraints (e.g. nonegative opening displacement wy, > 0).

A strain field e""(x t) is here defined as self-compatible if it can be derived
by means of the compatlbzllty operator from a displacement field u¢°(x, ), which
is generally discontinuous by w{’ across I'y and vanishes on T'y, i.e. satisﬁes the
homogeneous compatibility equations:

1] : !
(3.14) € = §(u?f3' +u3y;) in SR
(3.15) u® =0 on Ly XxT,
(3.16) wi® = ut —ul%" on IyxT.

4. Auxiliary problems

4.1. Elastic responses to imposed displacement jumps on [’y

A first auxiliary linear elastic problem will be referred to as imposed disconti-
nuity problem and denoted by P¢ and superscript d. It is defined by the following
set of governing equations, where the input data are represented by displacement
discontinuities w; (x, t), called henceforth statically admissible inasmuch they are
derived through the interface model on I'y, Eq. (3.5), from a statically admissible
stress field history o;(x, ) according to the definition of Sec. 3. The formulation
of the above problem reads:
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(4.1) ofi; = 0 in @ 2T
(4.2) o,‘;f?-nj = 0 on I'yxT
(4.3)  Problem  P%: efj = %(u:{j+u?‘i) in QxT
(4.4) ud = 0 on Ty»T
(4.5) e = Cijnkoi in QxT
(4.6) wl = —uw! on T'yxT

Another auxiliary linear elastic problem, say P¢, is formulated as follows for later
use:

(4.7) 6f; = 0 in Q' xT
(4.8) ahn; = 0 on TyxT
(49) Problem PY: & —e = %(ﬂ;{ngﬁi) in @ xT
(4.10) W = -y o Ty X T
(4.11) & = Cijneoi on @ xT
(4.12) D¢ = —w! on TgxT

It is worth noting that in the above problem P¢ there are two kinds of (fictitious)
input data: (i) the kinematic fields (—€j;) and (—w}) which arise, through the
inverse constitutive laws Eqs. (2.5)2 and (2.11)9, and through sign inversion, from
statically admissible fields U;’j and p}, respectively, in the sense of Sec. 3.1; (ii)
the actual histories of boundary displacements #;, reversed in sign. If uf", ef}”,
o;; represent the fictitious linear elastic response of the solid to the actual time
histories of external actions b;, p;, @; and ggj in the absence of displacement
discontinuities (i.e. with w; =0 on I'y x T'), the following relationships hold for
the solutions of the above two auxiliary linear problems P4 and P?:

~d . d ew, ~d d, ~d d * ew,

(413) U; = Uy —U; Wy = W; €5 = € + fij = eij ;
~d d * ew
Uij = o-‘i'j +°:‘j — 035 s

These relationships are readily justified by substituting Eqs. (4.13) into Egs. (4.7)
~ (4.12) of problem P? and by applying the effect superposition, account being
taken of the definitions of the fields marked by (*).

4.2. Elastic responses to imposed tractions on I'y

The following auxiliary problem, referred to henceforth as imposed interaction
problem P?*, concerns the linear elastic response to only the traction history
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—py on I'y generated, through the interface model and sign inversion, by any
kinematically admissible strain field €f; (in the sense of Sec. 3):

(4.14) ahy = 0 in QxT
(4.15) oyng = 0 on I'pyxT
(4.16) Problem P°: € = %(uf,j+uj‘i) m 5 x ¥
(4.17) w = 0 on Iy XT
(4.18) of; = Dynselx in QxT
(4.19) pi = —pf on DgxT

A further auxiliary problem, indicated by P*, is formulated as follows:

(4.20) 65 i—0%ii—b = 0 i Q' xXT
(4.21) oung = oymi —pi on IpxT
(4.22)  Problem P*: & = %(ﬂ;ﬁﬁ;i) i @ xT
(4.23) =) on, Ly xT
(4.24) 65 = Dijnkéiy in QxT
(4.25) pi = —p+taoyn; on IgxT

In the above problem P*, the input data consist of: (i) fields (—of}} and (—p?)
arising, through the direct constitutive laws Egs. (2.5); and (2.11); and sign
inversion, from any kinematically admissible fields €7; and w7, respectively, satis-
fying the compatibility equations (3.9) — (3.11); (ii) the actual histories of body
forces b; and boundary tractions p;, reversed in sign. The solutions of the two
above linear problems P° and P* and the kinematically admissible fields (u,
wy, €;, of;) generating them, are related to each other. These relationships in-
volve also the solution (marked by superscripts ep) to the linear elastic analysis
of the solid supposed to be endowed with a tractionless discontinuity locus I'y
(i.e. p; = 0 along I'y), in the presence of the actual external actions. The above

relationships, counterparts of Eqs. (4.13), read:

€p,
ij

/ . Y | [] ep. el R | D= = 6D =8 _ 8 T63 ot
(4.26) U =y +ug —u; Py=pitogn; —pp; € =€ tH€—¢

8 = & 0 ep
0;j = 045 + 04 — 0.

ij -
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It is worth noting that the input quantities in problems P?% and P* substantially
differ: in fact, their geometric compatibility suffices for zero solution to the former
problem, they must vanish identically for zero solution to the latter.

5. Extremum theorems

5.1. An extended complementary energy theorem

Consider the following functionals (dimensionally energyxtime) of a stress
field history o;(x;1), statically admissible in the sense of Sec. 3.1:

(51) F![of] = f % / 07, Cisnotnd® + / Bijortyd — / njoydT

T 2

= 1
+ [ 0ii) (o1 - otfny) a0+ 5 [ o805 Cumoti(ors)as  d

La '
= . LR X
(02) Fc” [Jij] = / 5/05} {jhkﬂ'ﬁkdg dt"‘FS
:I“ Q'
where
1
(5.3) Ff:[ 5/05;06;?;“(194(/ oL dR - /u njo¥dr b dt.
T Q Q ) k23

According to definitions given in Sec. 4.1, o7}’ are the elastic stresses in the
solid under the assigned time history of the actual external actions b;, i, ©;
and 6,5, with w; = 0 on Ty x T; of; and ¢, denote the stress solutions to the
linear auxiliary problems P?, Egs. (4.1) — (4.6), and P9, Egs. (4.7) - (4.12),
respectively.

Some meaningful properties of the above functionals are formulated below by
three statements proved in what follows: a lemma, a generalized complementary

energy theorem and a corollary (propositions 1, 2 and 3, respectively).

PRrROPOSITION 1. For the same time history of a statically admissible stress

field o}, functionals FI Eq. (5.1), and F/', Eq. (5.2), attain the same value.
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Proof. The difference functional F! — F!! can be written as follows by
using Eq. (4.13)4:

(54) FI-Fl= f f 0;jo8;d0 — / wim;o;dl
T \f Iy

+ [atoh) (o1 = ogpny) o = [ (o} - o5) Cumotid

I'q Q'

Q

As consequences of the virtual work principle, the third and fourth inner
integrals drop out from Eq. (5.4) and the last inner integral can be expressed as:

(55) /Ufjwcijhka:':kdﬂ — /uf‘”f};—dﬂ+/uf"’;ﬁgd1“+/ﬁia{jnjdr‘
0 9

Iy Iy

Q
Thus, the difference functional becomes:

(56) F!-FlI= / = / oS dQ) — [ 0ijo5 dQ + / win;of)’dl

L4 0 Q Iy

0 /uf”&dﬂ+/uf‘”ﬁﬁt‘ dt

9) Ty
and is easily seen to vanish because of the virtual work principle again. O

PROPOSITION 2. A statically admissible stress field o7; is a (or the) solution
of the original problem P, Egs. (2.1) - (2.13), if and only if it minimizes (absolute
minimum) the functional F!, Eq. (5.1), provided a solution exists. By virtue

of Proposition 1, the same stress field o}; minimizes also functional FH Eq. (5.2).

Proof. With reference to Eq. (5.2), consider the difference:

(5.7) FIT _ / / éo%dQudt.
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The inner integral (5.7) represents the elastic strain energy due to: imposed
strains —91-:,.- — Cijnko},.; imposed relative displacements —g; (p},); boundary dis-
placements i; on I'y. Therefore, the above difference, Eq. (5.7), cannot be
negative. The functional F!! attains its minimum value F? if and only if there
exists a kinematically admissible strain field E:-’J- and a statically admissible stress
field o7; such that:

(5.8) 5% = ijhkg:;k = b gij in Q, X T,

(5.9) w! = g; (py) on IyxT.

In fact, Egs. (5.8) and (5.9) mean that the geometrically compatible fields
(°) and the statically admissible fields (*) are related to each other through
the constitutive models everywhere and, hence, satisfy all the governing rela-
tionships of the original problem P, i.e. represent its solution or one of its
solutions. O

PROPOSITION 3. The actual problem P has at least one solution if and only
if the functional F! (and, hence, F!/ as well) attains, at the global minimum,
the value F?, Eq. (5.3).

Proof. If at the minimum it turns out that:

(5.10) Fi>F)

then no statically admissible stress field oj; exists such that the constitu-
tive models, Egs. (5.8) and (5.9), are fulfilled. Then the original problem P has
no solution. O

REMARK. The nonlinear (in particular, e.g., softening) nature of the in-
terface models f;(w;) may imply nonconvexity of functionals F! and F!'.
However, by virtue of Proposition 3, possible local minima of them do not
characterize solutions to the actual nonlinear i.b.v. problem (only absolute mini-
ma do).

5.2. An extended potential energy principle

Let us consider now the following generally nonconvex functionals of the
kinematically admissible displacement field history uf (x;t) (cf. Sec. 3.2):
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(5.11)  F, [uf]

Il
M.
B =

/ (€2~ Big) Dk (88 =0} 40 = f BiutdS)
' Q'

- /ﬁiude‘ + -/fi (w;’) (w§ — wi?)dl’
Ly

Ty

1
+§/ffj(“3)pijhkfik(1&?)dﬂ dt.
nf

1
(5.12) Fyl[uf] = 3 / / & Dijnk€hpdQdt + FY
T o

having set:

1 e = e A I
(5_13) F;J = [ § (Ei;J - 9,']') Dijhk (Chl;c = ehk) df) — /bgu?’dﬂ
T Q' Q'

— -/-ﬁg'u:-:pdl—‘ dt.
I'p

Here (see Sec. 4.2) w” represent the displacement discontinuities in the elastic
solid under the actual external actions b;, p;, @ and 9.,:3;, with p; ='0'on I'y X'T;
efj and €fj denote the strain solutions to the linear auxiliary problems P¢,
Egs. (4.14) — (4.19), and P%, Eqs. (4.20) - (4.25), respectively. As counterparts
to the three theorems established in Sec. 5.1, three further propositions are

proven below.

PROPOSITION 4. Functionals F and F!/, Egs. (5.11) and (5.12), attain
a common value for the same time history of a kinematically admissible
displacement field u{.

Proof. Inview of Eqgs. (4.26)3 we may express the difference F;f - FI;" as
the following functional:
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T

(5.14) F! - Fl = / . f BiuldQ — / piudd — [ i3 Dy el
Q' I'p

+/fi('wg)( w — EP )dI' — / Dijnkepd — /ag’ef;dﬂ

g o

+/Biuf”dﬂ+/ﬁ£1;fpdf+/e§f0£jhkezkdﬂ dt.
o I'p o

As it can be readily seen by applying once again the virtual work principle, in the
above difference functional the sum of the fourth and fifth inner integral vanishes,
whereas the last integral becomes:

(5.15) [6 PDijnkend = /buodﬂ+/p,u dl"+/a ‘n;udl

o Q I'p Iy
+ / gijDijhkfzde-
Qf

As a consequence of the above remarks, the difference functional may be given
the following expression which turns out to vanish:

(5.16) Frf_F:f!:/ _/Jfffffdn"'/um de’+/55ufde

T Q' Iy

+ f piu; dl 3 dt.

r
; o
PROPOSITION 5. A kinematically admissible displacement field u{ is a (or
the) solution of the problem P, Egs. (2.1) — (2.13), if and only if it minimizes
(absolute minimum) the functional F;f, Eq. (5.11), provided a solution exists.

By virtue of Proposition 4, the same displacement field u minimizes functional
Fg", Eq. (5.12), as well.
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Proof Letusconsider the difference

1 .
(5.17) B'-F=3 ] / G580t
T q'

The inner integral of this functional represents the elastic strain energy in the
solid if it were subjected to the following (fictitious) external actions: volume
1 a T . ' . - o -
forces b; = — [.ijhk(fzk - Bhk)] 33 b; in 5_2 , tractions p; = Dijnk(€fr — Onk)nj — Pi
on I'p; tractions — fi(wy) + Dijnk(€hy — Onk)nj on Ly.
The functional FJ" reaches its minimum FJ? if and only if the (fictitious,

statical) external actions vanish in the auxiliary problem P* of Sec. 4.2; namely
if and only if:

(5.18) [Dijhk(fgk - ghk}] g b = 0 in Q xT,
(5.19) Dijni(€h — One)nj —pi = 0 on I xT,
(5.20) Dijnk (€ — On)nj — fi(wp) = 0 on IyxT.

When Egs. (5.18), (5.19) and (5.20) hold, since the very definition of the
kinematically admissible fields (°) implies that Eqs. (3.9) - (3.11) are fulfilled,
then the whole set of governing equations of the original problem P, Egs. (2.1)
— (2.13), is satisfied by the field u? which, hence, represents a (or the) solution
ofit. O

PROPOSITION 6. Problem P has at least one solution if and only if
functional FJ (and, hence, also F,;”), reaches the value FJ?, Eq. (5.13), as its
global minimum.

P r oo f Like for Proposition 3, suppose that F;! = FI? at the absolute
minimum of functional F; ! then no kinematically admissible displacement field
uf (satisfying Eqs. (3.9) — (3.11)) exists such that equilibrium and constitutive
laws, Eqgs. (5.18) and (5.20), are complied with at the same time. This means

that there is no solution to the original problem P. O

REMARK. It is worth noting that functional F!, Eq. (5.11), reduces to
total potential energy of linear elasticity when either I'y vanishes or there is
no interaction along it, i.e. fi(w;) = 0. Clearly, analogous specification (to
complementary energy) can be noticed for F!, Eq. (5.1).

6. Saddle-point theorems

For their applications, a drawback of the preceding theorems (Proposition 2
and 5) lies in the need to evaluate the last term of Eq. (5.1) and Eq. (5.11)
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through the solution of the elastic auxiliary problem for every admissible stress
field o or for every compatible strain field €°, respectively. In other words, ap-
plications of Propositions 2 and 5 would require to find Green functions of the
elastic problem. However, the aforementioned last two terms represent elastic
energies which can be evaluated, using classical elasticity principles, by maxi-
mization of suitable functionals in additional new variables, as shown in what
follows.

6.1. A min-max extended complementary energy principle

With reference to Proposition 2, a functional F¢ to be maximized in order
to obtain the last term of (5.1) can be formulated by means of the principle of
virtual work as follows (at any instant ¢):

1 * % 1 »
(6‘1) By G:’fi (0',.3) Gijhkoﬁk (ars) d} = -5 Ug;i (Urs) Cs}hkahk { rs) dQ
2 2

o 0

4 f g: (p) o n> dT.
Ta

The right-hand side of (6.1) is readily recognized to be the (changed in sign)
value of the complementary energy at the solution of the elastic b.v. problem

for imposed relative displacements —g; (p_:) at instant t. This means that, by

virtue of the minimum principle of complementary energy, o d“ being any self-
equilibrated stress field,

62 3 [ ohor) Cumota (o) a9 = max {F [o8" 03] }

dew
Q' %

where

ok * 1 % % M:— -
(6.3) F4 [ofj ,oij} =/ *5[053- Cijnkohk dQ"‘/Q: (pr) o3 8 ;dr o dt.
g o I'q

By substitution of Eq. (6.2), the functional (5.1) is transformed into the following
new functional:
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i* ]'
(6.4) .3'-' 05,0 d / 2/‘731 ,Jhkahkdﬂ+/6’”aﬂdﬂ /u,nja dl’
7 4

* ew — 1 & * ¥
+/9‘ifphJ( 03; J)dr—ifo% C,-J-Ma‘ﬁkdﬂ

4 (o}

+ [oh) ol nyar bt

Lq

As a consequence of the above remarks the following theorem can now be stated:

PROPOSITION 7. A statically admissible stress field o;; and a self-equilibrated
stress field adj“ are a (or the) solution of problem P and problem P4, respectively,
if and only if both the following conditions are satisfied:

(i) the two fields make stationary (minimum with respect to o;; and maximum
with respect to od“) the functional F,, Eq. (6.4)

(ii) the saddle-point value of the functional F., Eq. (6.4), is equal to F?,
Eq. (5.3).

It is worth noting that: (a) the new functional . does not require the pre-
liminary solution of an elastic auxiliary problem (nor the evaluation of the stress
Green function due to distorsions on I'y), (b) the new formulation of the original
i.b.v. problem P involves with respect to it, a double number of unknown fields.

6.2. A min-max extended total potential energy principle

Following a path of reasoning analogous to the one in the preceding section,
a new min-max principle is established below from Proposition 5. A functional
F; to be maximized in order to obtain the last term of Eq. (5.11) (at any instant
t) may be generated simply by using the principle of virtual work as follows:

1 s (.0 1 o s o
5/513 (Ef's} :_;thk'shk ( )dQ = _E/Efj (ers) Dijhkfhk ('Es':a)dQ

0 o
=h / fi (wp) widl
Ta

It is easy to recognize that the right-hand side of Eq. (6.5) represents the (changed
in sign) value, at instant ¢, of the total potential energy at the solution of the

(6.5)
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elastic problem (at instant ¢) with imposed tractions — f; (w;?) on I'y. This means
that, by virtue of the minimum principle of total potential energy, we can write:

I & a 5 S00 o
(65) 3 ] (60 Dinecie (62 a2 = max {3 s, usl}

nf

having set:

(6.7) Fps (1%, uf] =f —%/eff“Dijhkei‘,’c°dQ+ff,—(wﬁ)w,?”)dl" dt.
2 7 L4

Here efj‘-"’ denotes any self-compatible strain field in Q' i.e. any strain field which

can be derived from a displacement field uj°° satisfying the homogeneous bound-

ary conditions u{°° = 0 on I'y,. By substitution of Eq. (6.6), functional Fp’,

Eq. (5.11), can be transformed into the following new functional:

1 . o =
T 0

P

ﬂn‘
1
- /ﬁiufdl“ +/f;'(‘w?) (wf — wP)dl' — §/efj"’D,-jhkeﬁ‘}fdQ
Cd a

+[f,f(w3?)wf°°d1" dt
]

and the following statement can be asserted:

PROPOSITION 8. A kinematically admissible displacement field ¢ and a
displacement field u$°° vanishing on I, are a (or the) solution of problem P and
problem P?*, respectively, if and only if both the following conditions are satisfied:

(i) the two fields make stationary (minimum with respect to 4 and maximum
respect to u;°°) the functional 7, Eq. (6.8);

(ii) the saddle-point value of the functional F,, Eq. (6.8), is equal to Fy
Eq. (5.13).

It is worth noting that in the functional (6.8), both fields € = €, (u?) and

L Jo )
€57 = € (uy,”°) are geometrically compatible. Remark similar to the one pointed
out at the end of Proposition 7 hold here, namely: the new functional does not

require the preliminary solution of an elastic auxiliary problem, nor the evaluation
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of Green functions for strains due to imposed stresses; on the other hand, the
new formulation concerns a double number of unknown fields.

7. Conclusions

The theoretical results achieved in this paper consist of duality pairs of ex-
tremum and saddle-point theorems, which characterize the nonlinear response in
time to external action histories of linear elastic solids and structures containing
loci where displacement discontinuities may occur, according to very general in-
terface laws. These constitutive laws include mathematical models for, e.g.: fric-
tional contacts on interfaces with asperities; fracture process zones in quasi-brittle
materials; artificial joints in large concrete and masonry dams; delamination in
laminates and debonding in composites.

The computational possibilities and some meaningful applications of the
present results are being investigated elsewhere. As an illustrative example and
a closing remark, we sketchily outlined below a path-of-reasoning apt to apply
the last Proposition 8 (min-max theorem derived from the generalized potential
energy principle of Sec. 5.2, Proposition 5).

Consider a four-point-bending or a four-point-shear test on a concrete speci-
men, as simulated in [16]. The loading history amounts to the monotone increase
in time ¢ of the displacement imposed by the testing device. A simulation centered
on the above selected present results would encompass the following phases.

(a) A conventional finite element discretization in space is envisaged, account
being taken of the conjectured locus I'y of possible crack propagation paths,
starting from the specimen notches, so that nodal displacements represent degrees
of freedom, gathered in vector U.

(b) The duration time T of the test is subdivided into intervals At, = t,, —
tn—1, over which the time-dependent U(f) can be modelled by interpolations
(which may be generalized functions (distributions), so that customary time-
integration schemes can be recovered as special cases).

(c) First, the time integral of elastic energy F;?, Eq. (5.13), is computed by
a single once-for-all linear analysis and turns out to be proportional to 3 at the
instants t, in the preselected sequence.

(d) Over the time step At, = t, —t,—1, the nonlinear interface model f;(w;)
is made explicit so that F,, Eq. (6.8), becomes a functional of the variable
vectors UY and U;” which govern, in space and in time, the fields »{ and u{%,
respectively, e.g. with stepwise constant modelling in time (the dimensionality
of each of these vectors is the same as that of the d.o.f. vector U).

(e) The step solutions, say U2 and U2°°, are characterized by the min-max
value .?:}, = F,? of Fp. In the test referred to, here three solutions are expected,
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a symmetric and two nonsymmetric ones, if T' exceeds a bifurcation threshold,
[16]. In the impractical case of force control, no solution would be expected after
a time T, a circumstance denoted by }F'p > F,?. The saddle-point stationarity
conditions are represented by generally nonlinear systems of algebraic equations
and inequalities. The transformation of a min-max into a min problem (see e.g.
[7]) might be computationally advantageous.

The solution characterizations by stationarity established in this paper for
the continuum nonlinear initial-boundary value problems concerning elastic solids
with dissipative interfaces, are seen to provide a theoretical framework for the
discretization in space and time, in view of the numerical approximate solution
of these problems.

Acknowledgements

A grant from the Italian Ministry of University and Research (MURST) for a
research project on integrity assessment of large dams (“Cofinanziamento” 1999-
2000) is gratefully acknowledged.

References

1. S. ALLiNEY, A. TRALLL, Eztended variational formulations and F.E. methods in the stability
analysis of non-conservative mechanics problems, Comp. Meth. Appl. Mech. Engng., 51,
209-219, 1986.

2. G. Avcamuty, Variational principles for operator equations and initial value problems,
Nonlinear Analysis, Theory, Methods and Applications, 12, 531-564, 1988,

3. Z. P. Bazant, J. PLANAS, Fracture and size effect in concrete and other quasibrittle mate-
rials, CRC Press, Bocaraton 1998.

4. G. Borzon, G. CoccuETTi, G. MAIER, G. NovaTti, G. GlusePPETTI, Boundary element
and finite elernent fracture analysis of dams by the cohesive erack model: a comparative
study, International Workshop on Dam and Fracture and Damage, Chambery, France, 16-
18 March, 1994, [In:] Dam Fracture and Damage, E. BOURDAROT, J. MAZARS, V. SAOUMA,
|Eds.], 69-78, Balkema, Rotterdam, Brookfield.

5. G. Borzon, A. CoriGLIANO, A discrete formulation for elastic solids with damaging inter-
faces, Comp. Meth. Appl. Mech. Engng., 140, 329-359.

6. G. BoLzon, G. MaIER, F. Tin-Lol, Hoelonomic and non-holonomic simulation of quasi-
brittle fracture: a comparative study of mathematical programming approaches, [In:] Frac-
ture Mechanics of Concrete Structures, F. H. WiTTmMANN |Ed.], Aedificatio Publishers,
Freiburg, 885-898, 1995.

. J. H. BRAMBLE, J. E. Pasciak, A preconditioning technique for indefinite systems resulting
from mized approzimation of elliptic problems, Mathematics of Computation, 50, 1-17,
1988.

8. M. Carurso, G. MAIER, Incremental elastoplastic analysis and quadratic optimization,
Meccanica, 4, 107-116, 1970.

http://rcin.org.pl



544 A. CariNI, G. MAIER

9. A. Cariny, Colonnetti’s minimum principle extension to generally nonlinear materials, Int.
J. Solids Structures, 33, 121-144, 1996.

10. A. Carini, Saddle-point principles for general nonlinear material continua, J. Applied
Mechanics (ASME), 64, 1010-1014, 1997.

11. A. Carint and O. DE DONATO, A comprehensive energy formulation for general non-linear
material continua, J. Applied Mechanics (ASME), 64, 353-360, 1997.

12. A. Carini, M. DiLiGenTI, G. MAIER, Boundary integral equation analysis in linear vis-
coelasticity: variational and saddle point formulations, Computational Mechanics, 8, 87-98,
1991.

13. A. CArini, M. DILIGENTI, G. MAIER, Symmetric boundary integral formulations of transient
heat conduction: saddle-point theorems for BE analysis and BE-FE coupling, Arch. Mech.,
49, 253-283, 1997.

14. A. CariNi, F. GENNA, Some variational formulations for continuum nonlinear dynamics,
J. Mech. Phys. Solids, 46, 1253-1277, 1998.

15. L. CaroL, P. C. PraT and C. M. Lopez, Normal/shear cracking model: application to
discrete crack analysis, J. Engng. Mech., ASCE, 123, 1-9, 1997.

16. Z. Cen, G. MAIER, Bifurcation and instability in fracture of cohesive softening structure: a
boundary element analysis, Fatigue and Fracture Engineering of Material and Structures,
15, 911-928, 1992.

17. G. CERADINI, A mazimum principle for the analysis of elastic-plastic systems, Meccanica,
1, 77-82, 1966.

18. C. Comt, A. CoRIGLIANO, G, MAIER, Dynamic analysis of elastoplastic-softening discretized
structures, Proc. ASCE, J. Engng. Mech., 118, 2352-2375, 1992.

19. C. Comi, G. Mater, U. PEREGO, Generalized variable finite element modelling and ez-
tremmum theorems in stepwise holonomic elastoplasticity with internal variables, Comp.
Meth. Appl. Mech. Engng., 96, 133-171, 1992.

20. B. A. FINLAYSON, The method of weighted residual and variational principles with applica-
tions in fluid mechanics, heat and mass transfer, Academic Press, New York 1972.

21. M. E. GurTiIN, Variational principles for linear initial-value problems, Quart. Appl. Math.,
22, 252-256, 1964.

22. B. L. KAriHALOO, Fracture Mechanics and Structural Concrete, Longman Scientific &
Technical, Harlow, Great Britain 1998.

23. W.T. KorTer, General theorems for elastic-plastic solids, [In:] Progress in Solid Mechanics,
I. N. SnEppon and R. Hiue [Eds.], 1, Ch. IV, 167-221, 1964,

24. H. LoFTi, P. SniNg, Interface model applied to fracture of masonry structures, J. Struc.
Engng., ASCE, 120, 63-80, 1994.

25. G. MAIER, Some theorems for plastic strain rates and plastic strains, Journal de Mécanique,
8, 5-19, 1969.

26. G. MAIER, A minimum principle for incremental elastoplasticity with nonassociated flow
laws, J. Mech. Phys. Solids, 18, 319-330, 1970.

27. G. Maier, M. DILIGENTI, A. CARINI, A variational approach to boundary element elas-
todynamic analysis and extension to multidomain problems, Comp. Meth. in Appl. Mech.
Engng., 92, 193-212, 1991.

28. G. MaIER, G. Novatl, Z. CEN, Symmetric Galerkin boundary element method for quasi-
brittle fracture and frictional contact problems, Computational Mechanics, 13, 74-89, 1993.

http://rcin.org.pl



EXTREMUM AND SADDLE-POINT THEOREMS FOR ELASTIC SOLIDS 945

29
30

31

32.

33.

34.

36.

37.

38.

39.

. P. M. Morse and H. FESHBACH, Methods of theoretical physies, I, McGraw-Hill 1953.

. Z. MRrOz, SHEN XiINPU, Analysis of progressive interface failure under monotonic loading,
[In:] Microstructure and Mechanical Properties of New Engineering Materials, B. Y. Xu,
M. Tokupa, X. C. WanG [Eds.], International Academic Publisher, Beijing, 109-114, 1999.

Z. Mr6z, G. GIAMBANCO, An interface model for analysis of deformation behaviour of
discontinuity, Int. J. Num. Anal. Meth. Geomech., 20, 1-33, 1996.

M. Orriz, A variational formulation for convection-diffusion problems, Int. J. Engng. Sci.,
23, 717-731, 1985.

P. RaraLskl, Orthogonal projection method. I. Heat conduction boundary problem, Bull.
Acad. Polon. Sci., Sér. Sci. Techn., 17, 63-67, 1969.

P. RaraLskl, Orthogonal projection method. 1. Thermoelastic problem, Bull. Acad. Polon.
Sci., Sér. Sci. Techn., 17, 69-74, 1969.

. R.REeiss, E. J. Haug, Egtrernum principles for linear initial-value problems of mathematical
physics, Int. J. Engng. Sci., 16, 231-251, 1978.

P. D. Roeinson, P. K. Yuan, Bi-variational methods for linear integral equations with
non-symmetric kernels, SIAM, J. Numer. Anal., 23, 1230-1240, 1986.

J. J. TELEGA, Variational principles for rate boundary-value problems in non-associated
plasticity, ZAMM, 60, 71-82, 1980.

E. TonTl, On the variational formulation for linear initial value problems, Annali di
Matematica Pura ed Applicata, 45, 331-359, 1973.

E. TonTi, Variational formulation for every nonlinear problem, Int. J. Engng. Sci., 22,
1343-1371, 1984,

Received August 24, 2000.

http://rcin.org.pl



