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HENCKY'S ELASTICITY MODEL is a finite strain elastic constitutive equation derived
by replacing the infinitesimal strain measure in the classical strain-energy function
of infinitesimal isotropic elasticity with Hencky’s logarithmic strain measure. ANAND
[1, 2] has demonstrated that, with only the two classical Lamé elastic constants
measurable at infinitesimal straing, predictions of the just-mentioned simple model for
a wide class of materials for moderately large deformations may be in better agreement
with experimental data than other known finite elasticity models. The deformation
modes considered in Anand’s work are simple tension and compression, simple shear,
and simple torsion and combined extension-torsion of solid cylinders, etc. Here, we
indicate some remarkable properties of this Hencky model and, mainly, we investigate
the large deformation responses of this model in torsion of cylindrical tubes and rods
with free ends. It is pointed out that if in inelastic modeling, especially in modeling
of metal plasticity, the widely-used hypoelastic formulation for the elastic rate of
deformation is required to be exactly integrable to an elastic relation, as it should be,
then the resulting elastic relation is just the Hencky model, and, further, this model
is hyperelastic and the only possible one. In the main aspect, i.e. for the torsion of
cylindrical tubes and rods with free ends, we derive explicit analytical solutions for
the case of compressible small deformations and for the case of incompressible large
deformations. The results derived show, in a clear and direct manner, the second
order effects, including the well-known Poynting effect regarding the length change in
the axial direction. It is noticeable that, with only the material properties measurable
at infinitesimal strains, the Hencky model can predict the just-mentioned second order
effects, in particular the Poynting effect, and its predictions are in good accord with
experiments reported in the literature.

1. Introduction

LET @ BE THE INFINITESIMAL strain measure. Then the classical strain-energy
function of infinitesimal isotropic elasticity is of the form
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490 O. T. BRUHNS, H. XIA0 AND A. MEYERS

(1.1) e %A(tré)z + G2,

Here and henceforth, A and G are the Lamé elastic constants, and trS is used to
denote the trace of a second order tensor S, i.e. trS := S;; in a Cartesian frame.
Hencky’s logarithmic strain measure h (cf. HENCKY [14 - 16])! is defined by

3
1
(1.2) h=_InB= ;(lnbg)ni ®n;,

B =

where B is the left Cauchy-Green tensor and b; and n; are the three eigenvalues
(possibly repeated) and the three corresponding orthonormal eigenvectors of B.
Considering possible multiple eigenvalues and the uniqueness problems that may
occur when the triplet n; ® n; in Eq. (1.2) is used, it has been proved more
convenient to use the following alternate formulation

1 m
(1.3) h = Eﬂ;(ln bs)B,

where m is the number of distinct eigenvalues and the B, are the corresponding

eigenprojections. (For detail see e.g. X1A0, BRUHNS and MEYERS [31].)
Replacing now the infinitesimal strain measure € in Eq. (1.1) with Hencky’s

strain measure h given by Eq. (1.2), an isotropic scalar function is obtained:

1
(1.4) W = 51\(trh)2 + Gtrh?.
Let o be the Cauchy stress tensor and I the identity tensor. Then we derive a
finite strain isotropic elastic constitutive equation as follows:

(1.5) r=Jo= EzA(trh)I+2Gh,
dh

where T (:=Jo) with J = /bibybs is the Kirchhoff stress tensor. Evidently,
the constitutive equation (1.5), which establishes a linear relation between the
Kirchhoff stress and the Hencky strain measure, is a direct generalization of the
classical Hooke’s law.

ANAND [1, 2] has demonstrated that, with only the two classical Lamé elastic
constants A and G measurable at infinitesimal strains, predictions of the simple

! Although it seems that Hencky independently introduced the logarithmic strain measure in
1928 and was the first to make an extensive use of this strain measure in studying finite elastic
deformations of rubbers etc. in a series of works, it had been introduced earlier by several other
researchers, including Imbert in 1880 and Ludwik in 1909, et al. For detail, refer to a survey
by CURNIER and RAKOTOMANANA [7].
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elastic equation (1.5) for a wide class of materials for moderately large? defor-
mations, where the principal stretch falls within the range (0.7;1.3), may be
in better agreement with experimental data than other known finite elasticity
models. In Anand’s work a number of basic deformation modes are considered,
including simple tension and compression, simple shear, and simple torsion and
combined extension-torsion of incompressible solid cylinders, etc.

The finite elasticity equation (1.5) will be called Hencky'’s elasticity model. In
Sec. 2, we shall indicate some remarkable properties of this model, and, mainly,
in the other sections, besides the basic deformation modes considered by ANAND
[1, 2], we further study stress and deformation response of this model, in partic-
ular the Poynting effect, in torsion of cylindrical tubes and rods with free ends.

2. Some remarkable properties of the Hencky model

First, we show that the Hencky model (1.5) is a finite elasticity model in
Green'’s sense, i.e. a finite hyperelasticity model, and that its strain-energy func-
tion is just given by Eq. (1.4). This fact has been pointed out in X1A0, BRUHNS
and MEYERS [29] by virtue of the integrability conditions for the hypoelastic-
ity model with the logarithmic stress rate. In what follows we supply a short
alternative proof.

In fact, for the elastic material defined by the Hencky model (1.5), the specific
stress power per unit reference volume is given by

ow
Jh
where D is the stretching tensor, or the tensor of rate of deformation. Applying

a formula recently derived in X1A0, BRUHNS and MEYERS [30, 32|, we infer that
the following relation holds:

(2.2) D = h + h2'¢ — Q'°¢h |

(2.1) tr(rD) = tr( D),

where Q!¢ is a skewsymmetric tensor, called the logarithmic spin. Since 7 and
h are coaxial, as shown by Eq. (1.5), we have

tr(7(hQ'°F — Q'°8h)) = 0.

Thus, substituting Eq. (2.2) into Eq. (2.1) and utilizing the equality just given,

we derive W
tr(rD) = tr{ﬁih}‘

*We note that the notion of “moderately large” deformations is generally not precisely de-
fined. Here and in what follows we take the definition of ANAND [1, 2]. With reference to the
behaviour of most metallic materials these stretches are indeed “moderate”, if not “large”.
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in example

(2.3) W = tr(rD).
The latter relation clearly shows that the material time derivative of the scalar
function W given by Eq. (1.4) furnishes the specific stress power of the elastic
material defined by Hencky’'s model (1.5). Thus, Hencky's model is a finite
hyperelasticity model and its strain-energy function is exactly the scalar function
W given by Eq. (1.4).

Second, we indicate a relation of the model (1.5) with inelastic modeling.
In inelastic modeling, especially in modeling of metal plasticity, the hypoelastic
equation of grade zero
(2.4) 7= 2GD* + A(trD®)I,

and its inverse

(2.5) L .

- 26 2G(3A + 2G)
are widely used to formulate the linear relation between the elastic rate of defor-
mation, D¢, and an objective stress rate 7. In the sense of self-consistency, for
each process of purely elastic deformation, i.e. for D¢ = D, the above rate equa-
tion should be exactly integrable to deliver an elastic relation between a strain
measure and the stress 7. Very recently, the present authors (BRUHNS, XIAO
and MEYERS [6] and X1A0, BRuHNS and MEYERS [33]) have demonstrated that
among the rate type Eqs. (2.4) or (2.5) with all possible corotational stress rates
(cf. X1A0, BRUHNS and MEYERS, [32]) and other well-known stress rates, there
is one and only one that is exactly integrable to deliver an elastic relation, and
that the unique integrable rate-type equation of the form (2.4) or (2.5) exactly
results in the Hencky model (1.5).

It turns out that the unique integrable hypoelastic formulation (2.4) or (2.5)
is just an equivalent rate form of the Hencky model. Thus, the Hencky model is
incorporated as a basic constituent in inelastic modeling.

Finally, it is evident that the potential W given by (1.4) is convex in the loga-
rithmic strain measure h, and hence fulfills Hill’s inequality with the logarithmic
strain measure (see HILL [17, 18]; see also OGDEN [21] and SiLHAVY [27]).

As mentioned before, it has been confirmed by Anand’s impressive work
(ANAND [1, 2]) that the model (1.5) with the potential (1.4) and therefore its
rate form (2.4) or (2.5) should have wide applicability for elastic behaviour of
isotropic materials at moderately large deformations. In fact, it has been in-
corporated into commercial packets of finite element codes and widely used in
numerical computation and simulation, see, e.g., BONET and WooD [5] for detail.

In the succeeding sections, further study is provided for responses of this
model in torsion of cylindrical tubes and solid cylinders.

(tri)I,
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3. Kinematics for simultaneous extension, inflation and torsion

For elastic materials, the finite deformation mode at issue and the corre-
sponding stress response have been studied by many researchers, in particular
including the well-known Poynting effect (cf. POYNTING [22, 23]). The gen-
eral analyses in this aspect are presented in, e.g. RIVLIN [24, 25], RIVLIN and
SAUNDERS [26], GREEN and SHIELD [10], GREEN and ZERNA [12], GREEN and
ADKINS [13], TRUESDELL and NOLL [28], and OGDEN [21], et al. Investigations
of the Poynting effect for elastic materials with particular strain-energy func-
tions, such as neo-Hookean materials, Mooney-Rivlin materials and second order
elasticity etc., can be found in, e.g. MURNAGHAN [20], RIVLIN [24, 25], GREEN
and SHIELD [10], and GREEN [11], et al. Experimental data are available in, e.g.
POYNTING (22, 23|, RIVLIN and SAUNDERS [26], Foux [8], FREUDENTHAL and
RONAY [9], and BILLINGTON [4], et al. Recent development in this respect and
related recent literature can be found in the monograph by ANTMAN [3]. Very
recently, JIANG and OGDEN [19] have made a comprehensive study of interest-
ing axial shear deformations of compressible elastic circular cylindrical tubes, in
which some related references are incorporated.

Consider a fixed rectangular Cartesian coordinate system, (O; e, €2, e3), with
the origin O at the midpoint of the axis of the cylinder under consideration and
e3 in the direction of the just-mentioned axis. Accordingly, let (O;eg,ep,e3)
be a fixed cylindrical polar coordinate system. With reference to the two fixed
systems, a typical particle P in the cylinder has the coordinates (X1, X2, X3) and
(R,0©, Z), respectively, i.e. the position vector OP of the particle P is given by

(3‘1) X=O_ﬁ=X131+X2eg+X363
with
(3.2) X1 =Rcos®, Xo=~Rsin0O, X3=2.

At a current strained state, the foregoing particle P moves to p. With re-
ference to the afore-mentioned two fixed systems, the point p has the coordinates
(z1,x2,23) and (r, 0, z). For the deformation at issue, we have

_)
(3.3) x = Op = x1€) + Toe9 + T3€3

with

zy =rcosf, zy=rsing, z3=2,
(3.4)
r=r(R), 0=0O+4¢Z z=AZ,
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where 9 is the angle of twist per unit initial length and A the axial extension
ratio. With Eq. (3.2), Eq. (3.4) may be recast in the form

r

&y = R(Xl cosZ — XosinpZ),
(3.5) To = %(chosz,bz-t-X] sinZ),
Ty = AZ.

We now introduce a moving system of cylindrical polar coordinates
(O! €r,€p, 83) by
e, =e;cos8(O +YZ) + eysin(© + 9 7),

(3.6) |
ey = —e;sin(© + YZ) + ez cos(© +92).

Utilizing Eqs. (3.5) and (3.2), we obtain the deformation gradient

ox oz;

P9 1%

e ® ey,

referred to the fixed system (O;e;,es,e3). Then, with reference to the moving
system given by Eq. (3.6) we arrive at
r

(3.7 F=r'cosypZe, @ e, + 7

cosyZey @ ey + Aez ® ey
—r'sinyZ(e, Reg—eg®e;) +Yreg @ es.

Throughout the paper we denote r' = dr/dR. Hence, the left Cauchy-Green
tensor B = FF7 is given by

(3.8) B=r"%@e +r*(R2+9*)es@ey+ ez ®es
+M)r(eg®@e; +e3@ep).

The three eigenvalues of B are as follows:

2
(3.9) by =12, by3 = %(,\2 o _;? + %2 + /u)
with
(3.10) u= A+ R +92) (0 - Z+v7r?),

and their corresponding subordinate eigenprojections are given by

(3.11) Bi=e ®e, By=(B-bI)/(ba—bs), Bs=(B-bI)/(bs—b),
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where
I=I-¢,Qe,, B=B-e, Qe,.

Then, the Hencky strain tensor h defined by Eq. (1.3) is given by

h= %(mbl B, + Inb; By + Inb; B3).

Hence, we have

Inby — Inby
12 h= T — Y
(3.12) T ) (0@t e ®e)
(b2 = A?) Inby + (X — bs) In bs
ey e
2(by — b3) v
2 )2
+(,\ b3) Inbg + (b2 — A )lnb3e3®e3+lnr'ef®er-

2(bg — b3)

4. The governing equations and the boundary conditions

With reference to the moving system (3.6), for the deformation at issue the
Cauchy stress tensor o is of the form

(4.1) o=o0e @€ +0opes@ey+0,,e30e3+0.9(esRey+eyRez).

From the stress-deformation relation (1.5) and Eq. (3.12), we obtain the normal
stress components

(4.2) Joy, = AlnJ +2GIn7r’,
(4.3) Jogg =Aan+G(b24)‘2)1“@*‘(’\?—53)1%3
by — b3 !

(4.4) Jou. = AlnJ + g A2 bs)Inbs + (by — A?) Inbs

ZZ b2 I b3 :
and the shear stress component
(45) Jﬂ'zg — G,\d)r M ;

by — b3

where by and bs are given by Eqgs. (3.9) and (3.10), and

!
(4.6) J = detF = \/bibybs = %ﬁ
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Noting that each non-vanishing stress component depends merely on r or,
equivalently, on R, with reference to the moving system (3.6) the equations of
equilibrium are reduced to the single one
dory S Orr — 089 ot

or T

Consider a cylindrical tube with free ends. Assume, further, that there are no
tractions exerted on the inner and outer surfaces. Then, the boundary conditions
are of the forms:

0.

(4.7)

(4.8) Orlr=p, =0, Owr|R=Ry =0,
Ry
(4.9) /rr'azzdR =0.
Ro

In the above, Ry and Ry are used to denote the initial inner and outer radii.
When a solid cylinder or a rod with free ends is treated, the conditions (4.8)
should be replaced by

(4.10) OrrlrR=r, =0, T7|r=0=1(0)=0.
Finally, the resultant twisting moment at two ends is given by
Ry
(4.11) M =2n / r’r'o,edR.
Hq

In Egs. (4.9) and (4.11), Ry = 0 for solid cylinders and rods.

For the problem at issue, the unknowns are the non-vanishing stress com-
ponents oy, 0gg, 0:; and o.p, as well as the axial extension ratio A and the
current radial coordinate r, each of which is a function of R and . The stress-
deformation relations (4.2) — (4.5), the equation of equilibrium (4.7) and the
boundary conditions (4.8) and (4.9) (and (4.9) and (4.10), respectively, for a
solid cylinder) constitute a coupled system of differential equations for these un-
knowns. It doesn't seem easy to derive from this system an analytical solution for
the general case. In the subsequent sections, we shall provide a small deformation
solution for the general case of compressible tubes and rods, and a (moderate)
large deformation solution for the case of incompressible tubes and rods.

5. Small deformation solutions for compressible tubes and rods

Suppose that the angle of twist % is small, but not necessarily infinitesimal.
Both the extension ratio A and the dimensionless deformation quantity r/R are
close to 1, i.e.
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= T
5.1 A:A—l = ——1
(5.1) , G=%

are small. In fact, the latter two are of the same order of magnitude as ¢?. Hence
we have the asymptotic expressions

X=0@?, a=O0@?),
bo — b3 = Vu=2¢R+ O(%?),
by = 1+¢R+%¢232+I\+a+0(¢3),

b3

1—¢R+%w2R2+i+&+O(¢3),
Inby = YR+ A+ a+ O@®?),
Inb; = —pR+ A+ a+ O@®).

Here and henceforth, the notation O(z) stands for a small quantity of the same
order of magnitude as the small quantity . Then, utilizing the above asymptotic
expressions and neglecting small quantities of higher orders than 1 (for the shear
stress component g,g) or 1/;2 (for the other stress components except a,g), from
Egs. (3.9), (3.10) and (4.2) - (4.6) we derive

_ o I(Ra) - ., O(Ra&)
(5.2) o = 26— +A(,\+a+ e )
(5.3) G0 = 20(%1{!21?2 + &)+ A (5. +a+ Bg?)) :
(3.4) Oz = 2G(—%¢2R2 +X) +A (:\ +a+ d(;;&)) :
(55) 020 = G’!I)R

Substituting Eqgs. (5.2) and (5.3) into Eq. (4.7) and using r = R + R&, we
obtain the differential equation

9*(Ra) = O&

5. 2 ———+ === R.
(5.6) (A +2G) ( IR? s 8R) 5 Gy
The general solution of the above equation is given by

1 G

5.7 ¥ =koR 2+ ky + — 2R°,

9:1) S5 i 1+16A+2G¢

with the two parameters k; and k; depending merely on 1.
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Now we consider the boundary conditions. For a tube with the initial outer
and inner radii Ry and Ry, Egs. (4.8), (4.9), (5.2) and (5.4) yield

(5.8) R=Ry, Ry: (A+2G)ag;&)+1\(:\+&)=0,
Ry N

(5.9) f (2@(-%;!;2123 +RA) + A(RA+Ra+R agfq“) )) dR=0.
Ro

For a rod with the initial radius R;, Eqgs. (4.9), (4.10), (5.2) and (5.4) produce

Byt o (o 2B o a6k 3) =0,

(5.10) R= i
(5.11) R=Ry: Ra=0,
Ry
(5.12) / (2@(-&%123 + RA) + A(RA+ Ra+ R a(;;&))) dR=0.

0

For a tube with the initial outer and inner radii Ry and Ry, from Eqgs. (5.7)
~ (5.9) we can determine ky, k2, @ and A, and then the stress components. The
final results are as follows:

(5.13) e o %W(R’;’ +RY),

G s A+3G

o 2, p2
A+2G A2t KR

e py L2
(5.14) r=R+ Iﬁw (

DA BG gy
~At2c MR,

1 2A 4+ 3G 5
(615) o = g T GY* (B® = (R + ) + RIRGR™)
12A43G . =
(5.16) o0 = 3 mcw (3R? — (R? + R}) — RIR3R™?) ,
1 A+4G , . .
(5.17) O = e Gy?*(R? + R2 - 2R?),
(5.18) 0.0 = GYR.
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For a rod with the initial radius R, from Eqgs. (5.7) and (5.10) - (5.12) we
can determine ky, ko, & and A, and then the stress components. The final results
for this case are:

(5.19) =1 %1{)2.{2'}),

(5.20) r=R+%¢2(Afch3—iiggR$R),
(5.21) o = 5 A GYA(R? - R,

(5.22) og = é %\:TQEGTIJQQRQ - R}),

(5.23) o = 5 oD GYA(BL - 2B,

(5.24) o0 = GyYR.

It is of interest to note that Eqgs. (5.19) — (5.23) are also obtainable by setting
Ry = 0in Egs. (5.13) - (5.17). Thus, Egs. (5.13) - (5.18) supply the unified solu-
tion for both tubes and rods. On the other hand, the solution for incompressible
tubes and rods are derivable by evaluating the limits of Eqs. (5.13) — (5.18) when
A — oo. The results then are:

(5.25) A-1= (B + K,

(5.26) r=R- %M(R% + R2)R+2RIR(R7?),
(5.27) o = FGUH (R ~ (R} + R) + RYRAR™),
(5.28) oo = 7GY? (3R? — (B} + B}) - RER3R™),
(5.29) 02z = éGwQ(R? + R} - 2R?),

(5.30) 0.9 = GYR.

Now, substituting the results for the rod (Egs. (5.19) — (5.24)) into Eq. (4.11),
and neglecting terms of higher order than %*, we obtain the resultant twisting
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moment : oA G
iy +1

5.31 = — 3 o 2 e i Siba T

(5:31) o 2GR‘7{1 18" A+2G}'

In the limit for incompressible materials (A — o), this result turns over to the
simple relation

L MBS T
for the dimensionless twisting moment, where here and in what follows the shear
strain vy is related to the angle of twist, 9, through v = ¢ R;.

Equation (5.13) indicates that the axial strain €, = \ is proportional to the
square of the angle of twist thus explaining the Poynting effect. According to the
experimental data for solid cylindrical specimens of highly filled polyurethane
rubber by FREUDENTHAL and RONAY [9], two €, — 7y curves (cf. Fig. 2 therein;
the other two curves for creep tests are not included here) for two different strain
rates are of the forms:

€n = 0.0959%, €, = 0.14042.
The average of the above two curves is
€n = A = 0.117572.

The curve (5.19), i.e. €, = A = 0.12542, predicted by the Hencky model, is in
good accord with the above average experimental curve. As a comparison, the
prediction from a neo-Hookean model is contrasted with the prediction (5.19)
from the Hencky model. By setting Cy = 0 in the classical formula (7.16) given
in RIVLIN [25], the €, — + relation predicted by the neo-Hookean model assumes
the form:

1
€n = 572 = 0.0833~2.

It may be seen that the Hencky model is in better accord with experiments than
the neo-Hookean model.
6. Large deformation solution for incompressible tubes and rods
The incompressible Hencky elasticity model assumes the form
(6.1) o =pl +2Gh,
with the hydrostatic pressure p = p(R) and the incompressibility condition

(6.2) J =detF =1.
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For torsion of tubes and rods with free ends under (moderate) large deforma-
tions, the two dimensionless deformation quantities A and @& defined by Eq. (5.1)
are small and of the same order of magnitude. Then, we have the asymptotic
expressions

2R -
bg—bg=\/_=’t,bR 4+'J12R2+ml
69 R + 2P R3 _ by
-|r————~,—4_|_?‘()2R2 +0(X9),
1 1 PR _
bo=1+4-y?R2+ -opRVA+P2R2 + [1 + ———— | X
2 2111 2¢ P T
3 n3
+ |1+ ¢*R? + IRy a+ 00?2,
VA+y2R2
1
bs =1+ =¢?R? — — yRV4 + y2R2 +
3 21!’ ”(/J WP 4+¢2R2
3YR + YR 248
+ (1+9°R* - O(X%),
( g Va+4?R? ;

Inby = 21n(m+ %wR} + (1 ﬁ) A

1 1 YR %
i (1 o E) :

" (I_J%W)Mm

Using Eq. (4.6) and neglecting quantities of orders higher than ) or &, we reduce

the condition (6.2) to
da

(6.3) Rﬁ +26+A=0.
Then, we derive 4 i

where K = K (1) is a quantity of the same order of magnitude as \.
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On the other hand, replacing Aln J in Egs. (4.2) — (4.4) with p and noting the
condition (6.2), we obtain stress-deformation relations. Then, utilizing Eq. (6.4)
and the asymptotic expressions given before and neglecting the quantities of
higher orders than A or &, from the just-mentioned stress-deformation relations
we derive the reduced relations
1 1 ETS |

(6.5) g =gh~ A gv WH),
(6.6) éaea= ép"‘ \/%Sh_l“ﬁ (%
_w—(% sh—lw) 5 A
+éw‘2 (11:2: i w(jll Iz‘é’;m Sh_lw) (¥K),
(6.7) éazz =épw%sh‘iw+ (31(%:%2_)

1 a3 1+ 2w? . 5
= - h K).
+4w (1 +w?  w(l+w?)d? 3 w) i)

In the above and henceforth, sh™'w is used for the inverse hyperbolic sine func-
tion, i.e.

(6.8) shlw=Inlw+V1+w?), w= %wR.

Moreover, Eq. (4.5) for the shear stress component o4 is reduced to

(6.9) 10 _ 2sh7'w _( w 1424 ahelon

i G 20:= f_1+w2 1‘!'(&.72 (1""‘&)2}3;2
3: 1 5 9
(-2—)'—4 (¢ K))

Substituting Eqs. (6.5) — (6.6) into Eq. (4.7) and replacing r with R, we
derive the differential equation governing the pressure p as follows:

Rop 2 ., 1 1457 . )
1 = - =75 8h
W) e a4 (1 to? wltprs

: (%)\ - i ‘2(¢2K)) :
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Then, integrating the above equation, we arrive at
1 =

(6.11) 5P =Ko+ (sh7'w)’ + PW)A + Q) (¥*K),
where Ky = Ko(v), and

3 sh7lw
(6.12 Plw) = - —,

) («) 2 w1+ w?

| | 4ot + 2w +1
6.13 W)= —=—=+-lhnw- sh™lw.
(5.39) Qw) 1202 ° 3 12w3v/1 + 123V + &2

Then, substituting Eqs. (6.5), (6.7) and (6.10) into the conditions (4.8) and

(4.9), we deduce

(6.14) (P = 1)+ (Q1 = —p) (WPK) + Ko = ~(sYun)?,

2w 2
(6.15) (Po = 1A+ (Qo - 5 2)(w K) + Ko = —(sh™'wp)?,
(6.16) Ush + Vi (2 K) + 2(w? — wd) Ko = S},

1 1
where w; = Ed}Rl, wy = 5"’3" and the following notations are used

ZI] — Z(L&J(}), Zl == Z(wl)m Z.U1 == Zl Ead Z(h

for each function Z(w) € {P(w), Q(w), S(w),U(w),V (w)}, where P(w) and Q(w)

are given by Egs. (6 12) (6.13) and S(w), U(w) and V (w) by

(6.17) S(w) = 6wv1+ w2sh™'w — (3 + 2w?)(sh™'w)? — 3w?,
(6.18) U(w) = 9(sh™'w)? + 4w? — g
' V1+ w? '
2 4—w?— 2t
6.19 Vi) = —ufla+——————sh™
{6:18) (@) 3 3wV1 + w?

From the linear system consisting of Egs. (6.14) — (6.16), the three functions
of the angle of twist 1, (), %K, Ky), can be determined. The results are as

follows: A "
(6.20) A= VK =22, Ky==2,
Ag

Ao’ Ao’
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where A;, 1 =0, 1, 2, 3, are the four determinants

Pi-1 Q—0.5uw? 1
(6.21) No=|P—1 Qp—0.5w;? 1 ,
Ug vy 2w? — 2w}
—(sh7'w1)? @ - 0.5w;? 1
(6.22) Ay = | —(sh™lwg)? Qg — 0.5wp? 1 :
S vy 2w? — 2w?
P,—1 —(sh™lw;)? 1
(6.23) Do = | Pp—1 —(Sh_lw(})2 1 .
U3 5 2w? — 2w}
Pi—-1 @Q —0.5w;? —(shlwy)?
(6.24) Az =| P—-1 Qo—05wy> —(sh~lwp)?
Us Vo So

Then, all non-vanishing stress components and the deformation quantity & are
obtainable as functions of R and 9.

For a rod, the second condition in Eq. (4.10) yields Eq. (5.11). From the
latter and Eq. (6.4) we infer that K = 0, i.e.

(6.25) K=, a:-%i.
Thus, Egs. (6.14) and (6.16) are reduced to

(6.26) (P, - 1)A+ Ko = —(sh™lw;)?,
(6.27) U d + 2wiKp = St

Then we derive

(6.28) A= —wiy/1+wf + 2wy (1 +wf)sh™'w) — V1+ wi(sh™lay)?
4 2w?\/1 4w} — 3wish™lwy + 3y/1+ w?(sh~lw)? )

=
(629) Kp = —(sh~twy)? - (3M- . 1) X

§w1\/1 +Lu.=1E

Substituting Eqgs. (6.25), (6.29), (6.12) and (6.13) into Egs. (6.11), (6.5) - (6.7)
and (6.9), we obtain the stress components

1 3 sh™lw sh™lw; -
(6.30 — gpr = (sh™'w)? - (sh™w £ = = X5
) G rr ( ) ( 1) 2 i /1 +w2 wy ,/1 _i_w?
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2w

1
(631) 5 Ty = (S}'l_lr'.ll.-l')2 == (Sh_]w‘])z + —\/ﬁsh_lw
. é 1 g wsh™lw B sh™w, 3
2\1+w? (14?2 4\ /T+w?)"’
1 S = 2 i
(6.32) GO = (sh™'w)® — (sh™lw;)® - ﬁsh lw
149 2 2 -1 <
+§ + w2 % 2 + 3w 2 sh™ w 5,
2\ 1+w? " w1 +w?)32 wiy/1+w?
1 2sh~'w 3 14 202 -1 w -
(6.33) G0 = m+§((l+w2)3f'25h w—1+w2),\.

Moreover, substituting Egs. (5.1)2, (6.25) and (6.33) into Eq. (4.11) and neglect-
ing small quantities of higher order than A, we obtain the resultant twisting

moment
2sh~lw sh™lw w ~
M =2r | R? A)dR.
/ ( V1+w? ((1+wJ3*’2+1+w2) )

Hence we have

M 2sh 1w, 1 2sh~w, (sh™1w;)? =
6.34) —— =T ——— | — — = + (L+A) 2,
( GR% {,/1+w21 (w1 uf\/1+w1§ w?
the dimensionless twisting moment.
When 9 is small, substituting the asymptotic expressions

1
AT =i %uﬂ +OWY), sh7lw=w- zu® +OW)
into Eq. (6.28), again Eq. (5.19) can be derived. In a similar manner, from
Eqs. (6.25) and (6.30) - (6.33) again one can derive Egs. (5.20) — (5.24). Gene-
rally, from Eqs. (6.28) — (6.33) we know that the shear stress component o, is

an odd function of w, while any quantity except o,y is an even function of w.
Accordingly, the general expansions with respect to w are of the forms:

eo]
(6.35) Bap = Y Agy L,

(6.36) Z 2t WP
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where g € {i,&, Orr, 009,022} In the above, the coefficients A and By, are
independent of 1 and R;.

7. Results and conclusion

Numerical results have been determined for the axial strain and the resultant
twisting moment of a rod at large deformations from Egs. (6.28) and (6.34),
respectively. The corresponding curves of the axial strain A versus w; and the
dimensionless resultant twisting moment M/(GR}) versus w; are depicted in
Figs. 1 and 2.

0.04
0.03

0.02

0.01

0 0.05 0.1 0.15 0.2 0.25 0.3

Fic. 1. Axial strain A versus maximum shear strain w.

0.8 7 M/GR?
0.7
0.6
0.5
0.4
0.3

0.2

0.1 -
w)
0 2 T T T T 1

0 0.05 0.1 0.15 0.2 0.25

F1G. 2. Dimensionless twisting moment M /G R} versus maximum shear strain w,.
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We note that w; herein through (cf. Eq. (6.8)2)

1 1
wy==-1YR ==
1= gHiy= o
is the normally used maximum shear strain at the outer surface of the rod. In

both figures the experimental data of FREUDENTHAL and RonAy [9] for solid
cylindrical specimens of highly filled polyurethane rubber at two different strain

- 1
rates are also incorporated. It can be seen that the A — 57 relation as well as the

twisting moment-%‘y relation predicted by the Hencky model compare favorably
with these experiments.

It has to be emphasized further, that even for the moderate large strains
under consideration the small deformation solutions for the axial strain (cf. Eq.
(5.19)) as well as the twisting moment (cf. Eq. (5.32)) fit fairly well to these
data. This finally supports Anand’s statement (ANAND [2]|) that the Hencky
model Eq. (1.5) “... should be of wide applicability ... for the analysts of general
engineering problems involving moderately large elastic strains.”
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