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THE FINITE HOMOGENEOUS simple shear deformation of an incompressible material
is considered. The response is modeled with a constitutive equation that reflects
a continuous process of microstructural transformation as the deformation increases
beyond a threshold value. The original and transformed portions of the material
are both taken to respond as incompressible elastic solids. It is shown that the
transformation can lead to softening of the response with increasing deformation and
to a local maximum in the shear stress-shear strain curve. The existence of permanent
deformation after release of the shearing traction is demonstrated. It is confirmed that
a process of increasing deformation followed by decreasing deformation to the point
of zero shear traction is a dissipative cycle. A special case is then considered in which
both the original and transformed materials are assumed to respond as neo-Hookean
solids. The critical volume fraction of transforming material at which the shear
stress-shear strain curve loses monotonicity is found analytically. Representations
are obtained for the dependence of the residual shear deformation on the fraction
of transforming material; on the ratio of moduli of the original and transformed
materials; and on the maximum shear reached before unloading,.

1. Introduction

CONSIDERABLE ATTENTION has been focused on the modeling of stress soften-
ing, yield and permanent set in polymeric materials. A constitutive equation
was recently proposed by WINEMAN and RAJAGOPAL [23] that assumes a con-
tinuous process of microstructural conversion as deformation increases beyond a
threshold value. This conversion process entails the rupture of a stress-bearing
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microstructural unit, such as a chain molecule, a crosslink or an entanglement.
Upon rupture, the microstructural unit cannot bear any stress. It is possible that
a new microstructure forms in place of the original one, with a new unstressed
reference configuration.

Several analytical and numerical studies have been conducted using the
constitutive relation proposed by WINEMAN and RAJAGOPAL [23]. The con-
stitutive equation has been applied to study the inflation of a circular mem-
“brane (WINEMAN and HUNTLEY [22]); the radial deformation of hollow spheres
(HUNTLEY, WINEMAN and RAJAGOPAL [5, 7]); and the circumferential shear
of a hollow cylinder (HUNTLEY, WINEMAN and RAJAGOPAL [6]). RAJAGOPAL
and SRINIVASA [13, 14] have considerably generalized the model to describe
the twinning of metals, traditional plasticity and solid-to-solid phase transition.
HUNTLEY [3] has used the equation to model the Mullins effect and perma-
nent deformation in vulcanized rubbers. HUNTLEY and WALDRON [4] have com-
pared experimental results for polycarbonate from G'SELL and GopPEZ [1] with
the response predicted by the constitutive theory suggested by WINEMAN and
RAJAGOPAL [23] for finite plane simple shear. Agreement with measured pre-
yvield and post-yield response was excellent; a stress peak and subsequent drop
was also predicted that conformed well to expectations of the events associated
with yield.

In the present work, plane simple shear is studied within the context of the
framework suggested by WINEMAN and RAJAGOPAL [23].

2. Constitutive equation

Consider a sample of material undergoing a homogeneous deformation de-
scribed by x = x(X, t), where x is the current position of a particle located at X
in the undeformed reference configuration, when ¢ = 0. The deformation gradient
associated with this mapping is F = 9x/0X and the left Cauchy-Green tensor is
given by B = FFT. Assume that there is a range of deformation for which the
material behaves as an isotropic, incompressible, nonlinear Green elastic solid.
It is well known (e.g., SPENCER [20]) that the Cauchy stress T for this material
takes the form
(2.1) T = —pI+ 2w "B - wiVBY],

where —plI is an indeterminate part of the stress due to the constraint of incom-
pressibility. It will be convenient to denote the extra stress by 7 = T + pl. The
strain energy per unit volume is W) (I}, I»), with [; = tr(B) and I = tr(B 1),
the first two invariants of B. Also, Wlm = oW /oI, and W.}l) = gw () /oI,
An activation criterion determines when the original material network begins
to undergo microstructural change and form new networks. This criterion is
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taken to be expressed as a function of the deformation gradient F which vanishes
when microstructural change begins. Material frame indifference, isotropy and
incompressibility imply that the activation criterion can be expressed in terms of
the invariants of B: A(I},I5) = 0.

In general, a proper, fully three-dimensional loading condition has to be con-
sidered. Here, however, only a restricted special deformation is considered. For
such a deformation, the terms increasing deformation and decreasing deformation
are meaningful, as there is a one-to-one relationship between the measure of the
deformation and the scalar parameter s which is introduced below.

Transformation of the original microstructural network is assumed to be con-
tinuous with increasing deformation. Introduce a scalar deformation state pa-
rameter s whose value is determined by the extent of deformation. It is assumed
that it can be expressed in terms of the stretch invariants: s = s(I;, ). The
value of s increases as deformation increases. No unique definition of the term
“increasing deformation” is proposed here. Instead, as in the previous applica-
tions of this constitutive equation (WINEMAN and RAJAGOPAL [23]; HUNTLEY
2, 3]; WINEMAN and HUNTLEY [22]; HUNTLEY, WINEMAN and RAJAGOPAL |5,
6, 7]; HUNTLEY and WALDRON [4]), an appropriate form of s is selected for the
deformation process under consideration. Recasting the activation criterion in
terms of the state parameter gives A(Iy,Iy) = s(I;. 1) — s,. Microstructural
conversion is initiated when the state parameter s first reaches the conversion-
activation value s,.

For 8 < s,, no conversion has yet occurred; thus all material is original
and the total stress is given by (2.1). At the current deformation state s, with
§ > 8,4, stress in the remaining original material is also a function of the current
deformation gradient F.

Introduce the scalar-valued conversion rate function a(s). As increasing de-
formation causes the state parameter to increase beyond s = s,, the conversion
rate function determines the amount of network transformation induced by addi-
tional deformation. The conversion rate function may have any form respecting
the constraints a(s) = 0, s < s, and a(s) > 0, s > s,. The function a(s)
must remain non-negative in order that an increase in the parameter s always
be associated with additional microstructural change. It is assumed that a is a
continuous function of s.

Consider a value of the deformation state parameter § > s,. It is assumed
that a network is formed at this value of the deformation state parameter. Its
reference configuration is the configuration of the original material at state s. It
is assumed to be an unstressed configuration for the newly formed network. The
subsequent stress in such a material network is a function of the subsequent defor-
mation of the network relative to this unstressed configuration. Define the relative
deformation gradient for the material formed at state § as F = dx/0%, where %
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is the position of the particle in the configuration corresponding to deformation
state §. This gradient compares the neighborhood of a particle in the configura-
tion at state s with the configuration of the new network when it was formed at
state §. The associated left Cauchy-Green tensor is given by B = FFT,

Let it be assumed that the material network formed at state § is elastic,
isotropic and incompressible. The extra Cauchy stress at state s in a network
formed at the deformation state § then becomes

(2.2) T® =2 [Wi®B - wPB-].

Here W = W®)(I,,I,) is the strain energy density of the material formed
at state § and subsequently deformed to the state s, while I; and I, are the
appropriate invariants of B. The strain energy density functions W) and W)
may each be of any form. It is assumed that the single function W% governs
the strain energy density in each newly formed network. The material defined
by (2.1) and (2.2) and having multiple reference configurations is not a simple
material in the sense of NOLL [10] (see RAJAGOPAL [12]).

Total current stress in the material is taken as the superposition of the contri-
bution from the remaining material of the original network and the contributions
from all network formed at deformation states § € [s,, s]. During a process of
increasing deformation the total current stress is given by

8

(2.3) T = —pI+b(s) T + f a(8)TPds.
Sa

The function b(s) is the volume fraction of the original network material remain-
ing at state s, with b(s) = 1, s < s,, and b(s) € [0,1], s > s,. The volume
fraction b(s) decreases as s increases. The stress 7("), found from (2.1), is the
current stress in the remaining original material. The quantity a(§)ds may be
interpreted as the volume fraction of original material that ruptures and reforms
as the deformation state increases from 3 to § + d$. The stress 7(?), given by
(2.2), is the stress in that portion of newly formed material. With (2.1) and (2.2),
Eq. (2.3) can be written in the form

(2.4) T = —pl +20(s) [W{"B - w:,‘”B—I]

+2 / a(3) [ng’ﬁ = WZ(Q}B“‘] d3.

Sa

Equations (2.3) and (2.4) are constitutive equations for incompressible materials
and respect the requirements of frame indifference.
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Assume that the material has undergone a process of deformation whereby s
has increased monotonically, and that the deformation is subsequently reduced,
so that s decreases monotonically. Two assumptions are made concerning the pro-
cess of decreasing the parameter s: (a) there is no further conversion of the orig-
inal material; (b) there is no reversal of microstructural transformation. These
assumptions are made partly for analytical convenience. It may also be said,
however, that any more complicated theory governing the reduction of deforma-
tion will only be useful when more information concerning real material behavior
is available to guide its formulation.

The above requirements imply that a(s) = 0 as the parameter s is reduced.
Thus the upper limit of the integral in (2.3) becomes fixed at s = s*, the max-
imum value of the state parameter reached. The volume fraction of remaining
original material undergoes no further change, so that b(s) = b(s*) as the pa-
rameter s is reduced. The stress during a reduction from s = s* then has the
form 2

8

(2.5) T = —pl + b(s*)TM + /a(s“)'ﬂ?)dg,

Sa

where T is found from (2.1) and 7(?) is given by (2.2). Equation (2.5) can be
written with (2.1) and (2.2) as

(2.6) T = —plI + 2b(s%) [w{‘)B = w.g”B“‘]

8
+2 / a(3) [w}z)fs - wPB!| ds.

Sa

Equations (2.1), (2.4) and (2.6) represent the complete set of constitutive equa-
tions for all deformation processes.

Unhatted kinematic quantities, such as quantities, such as ¥, B, I, and I, are
referred to as “current” and compare the configuration at the current deformation
state s with the initial reference configuration. Kinematic quantities bearing
the hat notation ("), such as F', B, I; and I, are called “relative” quantities.
They represent comparison of the configuration at the current state s with the
configuration as state .

The superscript ( )1 appearing in stress quantities such as 7(!) indicates
that the stress is in the material with the original microstructure. Such stresses
are functions of the current left Cauchy-Green tensor B. The superscript ( )@
appearing, for example, in 7(?) indicates stress in a material network formed at
the deformation state §. These stresses are functions of the relative left Cauchy-
Green tensor B. Unsuperscribed stresses, such as T, are total stresses following
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the superposition given by (2.3) of stresses in the original and newly formed net-
works. They are thus functions of the current tensor B and of the relative tensors
B relating the current configuration to each state 3 € [s, s] during increasing s.
For a process of increasing deformation, unsuperscribed stresses also depend ex-
plicity on the current value of the deformation state parameter s, which appears
as the upper limit of integration and as the argument of b(s). During reversal of
deformation, unsuperscribed stresses depend explicity on s*.

The function W) denotes the Helmholtz strain energy density in the material
with the original network; it is a function of the current stretch invariants I
and I. The function W2 is the strain energy density in the material of a
subsequently formed network and is a function of the relative invariants I; and
b.

Non-dimensionalized quantities bear the tilde notation ~, as T,

For purposes of notational simplicity, none of the functional dependences
mentioned above is indicated explicitly when kinematic or stress quantities are
written.

3. Formulation

3.1. Kinematics of deformation

Consider a particle of an isotropic, incompressible material undergoing simple
shear. The material is subjected to the shearing and normal tractions necessary
to induce the isochoric mapping

Ty = X1,
(31) T = X2+kX1,
Iy = X3.

Here, z;(¢ = 1,2, 3) is the current position of the particle located at X;(7 = 1,2,3)
in the initial reference configuration, and k is the measure of the current amount
of shear deformation relative to the reference configuration. It serves as the
deformation control parameter. The current deformation gradient is found from
(3.1) to be

06 1 el
(3.2) B(k)=| & 1 0
0w 1
The current left Cauchy-Green tensor is given by
1 k 0
(3.3) Bk)=FK)F (k)= | k 1+k% 0
0 0 1
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Its inverse is found to be

1+%2 =k 0
(3.4) BYk)=| -k 1 0
0 A

The invariants of the left Cauchy-Green tensor are

(3.5) (k) = L(k) = 3+ k2

3.1.1. State parameter s. In order to evaluate the Cauchy stress tensor T,
specific forms will have to be chosen for the deformation state parameter s(I;, I),
the conversion rate function a(s) and the volume fraction of original material
remaining b(s). The only requirement yet imposed on s(I;, [3) has been that it
increase monotonically as the deformation increases. In general, s(Iy, I3) may
be represented by any surface above or below the I} — I3 plane which displays
such monotonicity. It is not the intent of the present work to propose a form
for s(Iy, I5) which would be valid over the entire I} — I domain. Indeed, the
development of such a form would first require the definition of a loading condition
similar to that used in plasticity (see RAJAGOPAL and SRINIVASA [15, 16]). This
definition is not needed for the present work, as the loading is a simple shear
and s increases monotonically with the shear; thus no general definition will be
proposed.

As the shear k increases monotonically from k& = 0, I; and I, given by
(3.5), increase monotonically from the undeformed state I} = I, = 3 along a
path defined parametrically by (3.5). The associated point in the I} — I3 plane
associated with the current shear of the particle moves outward along the straight
line I} = I5. Thus in the specific case of simple shear, any choice for s(I, I5)
which increases monotonically along the line I; = I is valid. The deformation
state parameter may thus be written as a monotonically increasing function of
the current shear, s = s(k).

3.2. Increasing deformation

3.2.1. s < s, For s < s,, no microstructural transformation has yet
occurred. The Cauchy stress tensor T in all the original material can thus be
determined from (2.1), (3.3) and (3.4) as

Bn Bt 0 1+ —k 0
36) T=—pl+2{WP |k 142 0|-WP| =& 1 0]},
fie e o1

where p is an indeterminate scalar,

http://rcin.org.pl



450 H. E. HUNTLEY, A. S. WINEMAN, K. R. RAJAGOPAL

3.2.2. s > s,. Let k, denote the shear when s = s,, i.e, su = s(ka).
Consider the shear deformation to k > k,, which corresponds to state § by the
relation § = s(k). Let the deformation gradient at state § be denoted by F(k).
Subsequent deformation to the state s > § introduces the relative deformation
gradient F(k). The relative deformation gradient F(k) of a network formed at
state § relates its current configuration at state s to its new reference configuration
at state 3. It is formed as F(k) = dx/8% or Fy;(k) = 0x;/0%;. Here x = (z;) is
the current position vector of the particle, corresponding to the deformation state
s; X = (&;) is the new reference position vector of the particle, corresponding to

state 8. The relative deformation gradient can be constructed as

(3.7) Fyj(k) = (02:/0X)(0Xk/035)
or
(3.8) F(k) = F(k)F (k).

From (3.2) one can find

" S Lt ¢
(3.9) Flk)=| -k 10
9 B 1

Equations (3.2), (3.7) and (3.9) then give the relative deformation gradient as

I SRl
(3.10) Fk)=|k—k 1 0
0 01

It should be noted that the quantity (k — k) is the current shear deformation of a
network formed at the state s. The relative left Cauchy-Green tensor B(k) and
its inverse become

1 k—k 0
(3.11) Bk)=Fk)FT(k)= | k—k 1+(k-k?2 0
0 0 1
and : .
1+(k-k)?2 kE-k 0
(3.12) B~ (k) = k—k - 8

0 0 1

The invariants of the relative left Cauchy-Green tensor are
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(3.13) L=L=3+(k-k?>

The current extra stress 7(3)(k — k) in a network element formed at the state of
deformation § is determined from (2.2), (3.11) and (3.12) as

PO i 1A k—LA 0
(3.14) —— =W M=k 1+(k-k)? 0
0 0 1

1+(k—k?2 k-k O

-w k—k 0

0 TR

At all states of deformation, the extra stress 7(2) (k— k) in any remaining original
material follows (3.14). From (2.3), (3.6) and (3.14), the total stress during a
process of increasing s is found to be

(3.15) T_—p1+2b(.s){w,“’ k 1+k2 0

1+4k% -k 0
“wil -k 1

o
o

3.2.3. Unaversal relation. The stress tensor T in (3.15) reveals a distinction
between the present constitutive model for materials undergoing microstructural
change and models for purely elastic isotropic materials. Discussions can be found
in WINEMAN and GANDHI [21] and RAJAGOPAL and WINEMAN [17] of universal
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relations for isotropic elastic materials. For materials subjected to simple shear
deformation, one of these relations reduces to that of RIVLIN [19]:

(3.16) Ty — Tiy = kTha.

Upon substitution of the appropriate stress components from (3.15) and simpli-
fication, the equality (3.16) is seen not to hold: in general,

(3.17) / a(8) (WP + W)k — k)2ds # k / a(8) (W2 + W)k - k)ds.

Sa

Since the behavior described by the constitutive Eq. (2.3) is not purely elastic,
it may be said in general that the applicability of universal relations from elas-
ticity cannot be guaranteed. Indeed, as can be seen from (3.17), such assurance
cannot be given even if the constituent extra stresses 7() (k) and T (k — k) are
themselves purely elastic.

3.2.4. Shear stress. Consider the current shear stress Tjg(k) as the shear
deformation increases. It is given by (3.15) as

5

Tyo(k ; . )
(3.18) ”2( L8 b(s) (W + Wik + /a(._a)(wf“ + W (k — k)da.
Note that
(3.19) wi = w (L (k), (k)  (i=1,2).

On using (3.5), this becomes
(3.20) wi = w3+ k2,3 + k).

For simplicity of notation, introduce the quantity

(3.21) iu(l) B “[l}(k‘z) &y Wl(”(kz) + Wé”(kz).
Similarly,

(3.22) w? = w® (1 (k), Iz (k))
becomes
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(3.23) WA =wPE+ (k- k)?2,3+ (k- k)?),

where the relative invariants are as given by (3.13). Introduce the notation

(324)  u® = u®O (k= b)) = WP (k- ) + WD ((k - B)P):

Here, u(V is the deformation-dependent shear modulus of the original material,
while 1(?) is the deformation-dependent shear modulus of the material of all sub-
sequently formed networks. It is assumed that these moduli are strictly positive:

(3.25) 1 > 0; u@ > 0.
With the change of notation, (3.18) simplifies to

&

= b(s)u Mk + fa(é),um(k — k)ds.

Sa
The first term on the right-hand side of (3.26) represents the contribution to
the total shear stress of the remaining material of the original network, while
the second term is the contribution of all networks formed as the deformation
increases. The change of notation given by (3.21) and (3.24) can also be applied
to (3.26) to write

Th2(k)

(3.26) ;

(3.27) T (k) = 24k
and
(3.28) TD (k- k) = 2u® (k — k).

The shear stress in each constituent material is thus an odd function of its shear
deformation.

3.3. Monotonicity of response

It is of interest to know whether there are conditions under which the shear
response is non-monotonic. The monotonicity of the shear stresss-shear defor-
maton relation may be studied by inspection of the derivative of the shear stress
with respect to the shear deformation. From (3.26), the current shear stress can
be written as

(3.29) Tyo(k) = b(s)T (k) + /a(ﬁ)Tg)(k — k)ds.

Sa
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Differentiating the total shear stress (3.29) with respect to the current shear k
gives

dTyy

(3.30) =

= b(s)

dr(K) | dols) vy, [ oy T k=R,
T pT T35 (k) + /a(.s) TR ds

Sa

Note that the derivative of the integral in (3.29) with respect to its upper limit

vanishes, as it is found from (3.28) that Tlg)(k k) = 0 when evaluated at k = k.

The current volume fractlon b(s) of material composed of the original mi-
crostructural network is a positive number: the requirement that b(s) € [0,1] has
been stated above. Recall also the requirement that a(s) > 0. The moduli p(!)
and (?) are assumed to be strictly positive, as stated in (3.25). The shear k is
taken to be positive, as the material is sheared in the positive sense during load-
ing. The quantity k — k must also be positive, as increasing deformation implies
that the current shear k is greater than all previous values k. It can then be seen
from (3.27), (3.28) and (3.29) that the shear stresses Tl(;J(k) and Tl(g)(k — k) are
positive.

It is the aim of the present work to isolate the effects of the microstructural
conversion phenomenon from those of any constitutive assumptions implicit in
the strain energy functions W(!) and W(?. Toward that end, let us confine
attention to a certain class of strain energy density functions. Assume that the
shear stress response is monotonic in the shear deformation, both for the original
network and for the subsequently formed networks; that is,

dr (k dT(2) .
12()>0, (59)>0 , Al

3.31
S dk i dx

Note that the argument of Tl{g}(:z:) is ¢ = k— k, the shear relative to the reference
configuration at deformation state s. However, positiveness of the derivative with
respect to this argument implies that the term d.T,{.gl(k — k)/dk from (3.30) is
also strictly positive.

The constitutive theory of microstructural change assumes that the volume
fraction of original remaining network material decreases with increasing defor-
mation:

db(s)
(3.32) =2 0.
It follows that db( )
(1)

If the magnitude of this term becomes great enough to outweigh the positive terms
in (3.30), then dT}2/dk < 0 and a local maximum in the shear stress-shear strain
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curve develops. Thus it can be seen from (3.30) that the process of network
scission and healing introduces the possibility of a loss of monotonicity in the
total stress response. Equations (3.29) and (3.30) indicate that a combination
of factors could lead to this result: a state of relatively high current shear k;
relatively great stiffness of the original network material;, and rapid scission of
the original material.

3.4. Reversal of deformation

For s < s,, the extra stress is as found from (3.6) and assumes the same value
for a given value of k whether shear deformation is increasing or decreasing. Thus
when shear has been reversed to k& = 0, all components of the total stress are
returned to zero by appropriate choice of p.

Now consider a process of decreasing shear deformation after the state pa-
rameter has reached a value s* > s,. The expressions for 7(!)(k) in (3.6) and
T® (k — k) in (3.14) are still valid during reduction of the current shear from a
state of maximum deformation s*. From (2.5), (3.6) and (3.14), the stress tensor
during this process then takes the form

1 v g
(3.34)  T(k)=—-pI+2b(s") W [ k 14k2 0
Y
14k* -k 0
wil T I
0~ A
s 1 k—Fk 0
+2/a(§) W | k—k 14+(k-k)2 0
: 0 0 1
1+(k=k)?2 k—k 0
WA k-k 1 0| pds
0 g .

Consider the shear stress Ty2(k) associated with current shear deformation k
during reduction of deformation:

s*

= b(s*)pVk + / a(3)p@ (k - k)ds.

Sa

T2(k)

(3.35) :
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This can be rewritten as

5" 37
(3.36) T"ZQ(’“) = |b(s*)p™) + / a(8)u@ds| k - / a(8) P kds.

The first term on the right-hand side of (3.36) represents the contribution to the
total stress of the volume fraction b(s*) of original material remaining at state
s*. The second term is due to stresses in networks that were formed at states
§ during the loading process, s € [sq,s*]. Both of these contributions to the
current stress show a direct dependence on the current shear k. The final term
on the right-hand side of (3.36) is also due to stresses in newly formed networks.
However, the only effect that the current shear deformation can have on this
term is through the evaluation of the shear modulus x(?) at the relative strain
invariants I (k — k) and Iy(k — k). Even so, one may assume positiveness of the
shear modulus at all levels of decreasing deformation. Assume further that the
shear modulus is bounded. The conversion rate a(s) has been defined as a non-
negative function. The quantity k represents the amount of shear corresponding
to deformation state § € [sq,s*]. Since any level of shear k is induced by a
positive shearing load, it also is positive. Therefore,

o
(3.37) [a(g)m?)iad.é > 0.

Sa

This inequality will be useful in the following discussion of the residual state.

3.5. Residual state

3.56.1. Normal tractions. Assume that a material sample, portions of which
have undergone microstructural conversion during a process of increasing shear,
is returned to its original reference configuration & = 0. Then (3.36) and (3.37)
imply that negative shearing strains and stresses exist in those portions of the
material which formed new networks as the deformation was increased. From
(3.36) and (3.37), it is seen that a negative shearing traction whose absolute

>

value is 2 /a(é);z(i)édé, is necessary to maintain the specimen in the state k = 0.
%a

Similarly, it can be found from (3.34) that normal tractions T7;(k) and Ths(k)

are also required when the material is returned to its initial configuration. The

extra portions of these normal tractions when k& = 0 are
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&
7(0) = 2s) W - wi) +2 [ @)W - Wi (1 + i2))ds

Sa

(3.38)

S
Taa(0) = 2b(s")(W — W) 42 [ AW (1 + k%) - wP)ds.

da

3.5.2. Permanent set. Conversely, suppose now that the external shear
traction is released, so that Tj2(k) = 0. Equations (3.36) and (3.37) imply a
residual positive shear deformation ™3 of the specimen which satisfies

/ a(8) P kds
(3.39) kres = = > 0.

&

b(s*)u)) + [a(ﬁ),u(z}dé

Sa

The original material network is in a state of residual positive shear with respect
to the original reference configuration, while material networks formed at defor-
mation states § during loading are in various states of residual negative or positive
shear with respect to the reference configurations when they were formed. The
positive shear stresses in the original material are balanced by negative shear
stresses in the subsequently formed material, so that the total shear stress is
Zero.

3.6. Work done

It is not the purpose of the present work to place the constitutive Egs. (2.3)
and (2.5) within a complete and general thermodynamic framework. It seems
reasonable, nonetheless, to expect that the net work done on a specimen be
greater than or equal to zero for a mechanical cycle of deformations. Positive
net work done indicates a dissipative process. It should be confirmed that the
constitutive equations for materials undergoing microstructural change conform
to this requirement.

Due to the nature of the simple shear deformation, the only stress that does
work is the shearing stress Tys(k). Define 775°(k), given by (3.27) for k < k, or
by (3.26) for k > k,, as the shear stress during a process of increasing deforma-
tion; T{°(k), given by (3.35), is defined as the shear stress during a process of
decreasing deformation. It will be taken as a sufficient condition for positiveness
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of the net work done that the shear stress T¢(k) as deformation is reversed be
less than the corresponding value of Ti5¢(k) as deformation increases. This must
hold for all values of k € [0,k*], where k* is the level of shear corresponding to
deformation state s*.

For k € [0,k,), the difference between Ti3¢(k) and T{s¢(k) is formed from
(3.27) and (3.35) as

T'"c(k) TdeC(k)

(3.40) -

= 1= B}k ~ f a(3) Dk — B)ds.

With s* > s4, it is known that 1 — b(s*) > 0. Strict positiveness of the
deformation-dependent shear moduli (! and 1(2) has been established in (3.25).
All values of k in the integral in (3.40) satisfy k > kq; thus the term k — k < 0.
It follows that Ti5¢(k) — T (k) > 0 for k € [0, ky).

For k € [kq,k*], the difference between the two expressions for the shear
stress can be formed from (3.26) and (3.35) as

Tinc k Tdec
(3.41) 12 1) = 5 (k) = [b(s) — b(s*))uMk - ] 1@ (k — k)ds.

Since s* describes the state of maximum deformation reached during the
deformation cycle, any current state s satisfies s < s*. Furthermore, any value
of the deformation state parameter § in the integral in (3 41) satisfies s < §. The
corresponding values of shear give k — k < 0. It is known that u(!) and p(®

Ly

are positive. Thus /a(x})um(k — k)d3 < 0. The volume fraction of remaining

original material b(;) is assumed to decrease monotonically as s increases, so
b(s) — b(s ) > 0 and [b(s) — b(s*)]p™Mk > 0. It then follows from (3.41) that
Tisc(k) — Te(k) > 0 for k € [ka, K*].

The precedmg discussion shows that the stress-shear curve for reversal of the
shear deformation lies below the curve for increasing shear for all £ € [0, k*]. Thus
the cycle of increasing simple shear followed by reduction of shear is a dissipative
process when the constitutive equation for microstructural change is employed.
This result holds for any valid strain energy density functions W) and W),

4. Example — Neo-Hookean structure before and after conversion

Let it be assumed that both the original material and the material that is
newly formed as deformation increases beyond s,, are neo-Hookean. Then
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(4.1) WL, L) =L -3); WO, L) =2 (] - 3),

where c(!) and ¢ are constants. To highlight the role of these constants as
moduli in shear, let the notation u(!) = ¢(1) and u(® = ¢ be adopted. It should
be emphasized that the restriction to neo-Hookean network response is not at all
necessary. Both original and subsequently formed materials are taken as neo-
Hookean in order to demonstrate as well as possible the effects of the conversion
phenomenon itself on overall mechanical response. To assume differing forms
of response in the constituent material networks would lead to mathematical
complexity which would cloud this investigation. However, for reasons which are
discussed below, the possibility is admitted that the original and newly formed
materials have different moduli in shear, that is, that ,um and x® may not be
equal.

4.1. Increasing deformation

4.1.1. 5 < sq. At levels of deformation satisfying s < s,, no material network
has undergone conversion. Thus overall material response is given by that of the
original material. From (3.6) and (4.1), the current Cauchy stress for s < s, is
determined as

1 &k 0
(4.2) TN = —pr+2u0 | &£ 1+%2 0|,
g g

where p is an indeterminate scalar. The shear stress component when s < s, is
seen from (4.2) to be
(43) Tia(k) = Ty (k) = 2u(k.

4.1.2. s > s,. The stress in a material network formed at the deformation
state s > s, depends on the current response of the remaining original material
and on that of all newly formed networks. From (3.15) and (4.1) the current
total Cauchy stress as deformation increases on s > s, is found to be

1. ke
(4.4) T=—pl+2b(s)p™ | k 1+k% 0
U
3 1 k—k 0
+2,u.(2)/a(§) k—k 14+(k—k)? 0 |ds
4 0 0 1
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The current shear stress Ty9(k) is thus

(4.5) ?@ = b(s)pWVk + p?@ /a(é){k — k)ds.

Sa

4.2. State parameter s

It has been stated that any choice for the deformation state parameter s(k)
which increases monotonically with &k is valid. In a regime of positive current
shear £ > 0, the simplest function which satisfies this requirement is s = k.
The present work is not concerned with the possible justification of any more
complicated form. Therefore, let s = k for the study of simple shear, so that the
underformed state is represented by s = k= 0.

The forms for a(s) and b(s) discussed below have been introduced by
RAJAGOPAL and WINEMAN [18]. The only restriction on the conversion rate
function a(s) has been stated in Sec. 2 and is repeated here for convenience:

(4.6) a(s) =0, L5% <t a(s) >0, ¥

As in the case of the state parameter s(Iy, I3), a(s) is chosen as a simple func-
tion which satisfies the requirements imposed. Let s = s, > s, denote the value
of the deformation state parameter at which microstructural transformation is
completed. It is assumed that no further conversion occurs as s increases beyond
8., regardless of the nature of the associated deformation. The maximum defor-
mation must be finite, so s is assumed to vary on the finite domain s € [s,, s.].
In examples studied in this work, deformations for values of s > s, are not
considered. Let a(s) be given as the quadratic polynominal

0, § < 84
(4.7) a(s) =< a(s—5s.)(s—sc), S € [Sa,8¢]
0, $> 8

where « is a constant. A typical form of a(s) is shown by the dotted line in
Fig. 1.
Let C represent the total volume fraction of new network that has been
formed when the conversion process is complete:
Se

(4.8) C= / a(3)ds.
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1.0 %

o

0.0 s, s

F1G. 1. Typical forms of conversion rate function and volume fraction of original material
versus deformation state parameter.

It is emphasized that C represents the volume fraction of converted material
when the deformation state reaches s = s.. For any other value of s € [sq. sc],
the current fraction of converted material is less than C. It follows from (4.7)
and (4.8) that
(4.9) a= ——_GC ;
(8c — 3&)3

A simple expression for the volume fraction b(s) of material remaining in the
original network can be formed in terms of the above quantities. First impose the
restriction C' < 1. Assume now that each original material network which under-
goes scission is replaced by exactly one new network, in effect, that “conservation
of network junctions” holds. This implies that

]

(4.10) b(s) =1— / a(8)ds.

Sa

From (4.7), (4.8) and (4.10), it can be seen that b(s) = 1 — C for s > s
A typical form of b(s) is shown by the dashed line in Fig. 1. The form (4.10) and
the assumptions which underlie it are not necessary. The analysis that is carried
out here can be easily redone when (4.10) does not hold.

With the substitution s = k, (4.7) through (4.10) can be rewritten to give
expressions for a(k), C, a and b(k) in terms of k, k, = s, and k. = s..
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4.3. Shear stress-shear relations

Let the shear stress be non-dimensionalized through division by the modu-
lus 1) of the original material. From (4.3), the dimensionless shear stress for
k < kqis
(4.11) Tia(k) = TV (k) = 2k.

When the current level of deformation satisfies k > k,, the non-dimensional shear
stress is found from (4.5) to be

(4.12) Tio(k) = 2b(s)k + Qﬁ/a(ﬁ)(k — k)ds.

Here i = p®/uV) is the ratio of the shear moduli of the newly formed and
original materials.

For all of the results in this example, the activation criterion is considered to
be satisfied when k, = 0.5; conversion is considered to be complete at k. = 2.65.
These values are selected solely to facilitate demonstration of the effects implied
by the constitutive equation over what is assumed to be a reasonable range of
simple shear deformation for highly elastic materials.

Figure 2 shows plots of the shear stress T}, versus current shear k for various
values of C. The solid line corresponds to a standard neo-Hookean model with
no microstructural transformation (C = 0.0), while the curves lying below it
show the results for varying values of the conversion fraction C. Here i = 1.0 is
assumed. All of the plots coincide for & < k,. It can be seen from Fig. 2 that the
microstructural transformation which begins when k = k, induces a softening
of the overall mechanical response of the material for all shear deformations
k > k,. Moreover, this softening becomes more pronounced as C' increases.
When C' = 1.0, a loss of monotonicity of response is evident. This effect is
discussed in greater detail below.

Figure 3 shows plots of T}, versus k at various values of the conversion fraction
C when i = 2.0. These results demonstrate the effect of the conversion process
when the shear modulus of the newly formed material networks is greater than
that of the original material. The plots display a softening effect similar to that
observed in Fig. 2. As was the case above for i = 1.0, overall response becomes
softer with increasing C. However, it is clear from Figs. 2 and 3 that the total
loss of stiffness in shear is not as great in the case of i = 2.0. The higher modulus
of the newly formed material leads to higher stress Tg} (k — k) in material formed
at state § = k than is the case when ji = 1.0. This effect tends to counteract
the relaxation of stress in the material element which occurs when it undergoes
scission and healing at state k. Hence the total stress Tj2(k) remains higher for
k > k, when ji = 2.0. Response remains monotonic for all values of C.

http://rcin.org.pl



5
neo—Hookean cC=075 .
1 C=0.25 GREO s S0
o S ;
4 L
3 -
A
2 —
l -
0 i T T T T T Lz T T
0 05 1 15 2 25

F1G. 2. Shear stress versus shear deformation as deformation increases for various con-
version fractions, with i = 1.0, k, = 0.5 and k. = 2.65.
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F1G. 3. Shear stress versus shear deformation as deformation increases for various con-
version fractions, with g = 2.0, k, = 0.5 and k. = 2.65.
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Figure 4 repeats the set of shear stress-shear plots with i = 0.5. The modulus
of newly formed networks is now lower than that of the original network. The
general form of the response is similar to that shown in Figs. 2 and 3. As may be
anticipated, the reduced stiffness of the material formed at state k slows the re-
generation of the stress that is released when that material undergoes conversion.
Thus both the conversion process itself and the reduced modulus of the newly
formed material contribute to the softening of overall response for k > k,. As can
be seen from a comparison of Figs. 2 and 4, the reduction of overall stiffness is
greater when i = 0.5 than when /i = 1.0. Furthermore, the loss of monotonicity
occurs at a lower value of C for g = 0.5.

5
neo—Hookean c=0.75
C=0.25 =10 -~
C=0.5 ...
4 -
31 -
Tll ,. , A
o e
e el
1 - T~
0 . TR T \ T ¥
0 05 1 15 2 25
k

F1G. 4. Shear stress versus shear deformation as deformation increases for various con-
version fractions, with i = 0.5, k, = 0.5 and k. = 2.65.

Figures 2 through 4, with values of i € [0.5,2.0], show softening of response
due to the conversion phenomenon. While the tangent modulus for C = 1.0
and i = 2.0 appears greater than the neo-Hookean modulus p(!) near k = 2.5
(Fig. 3). the secant modulus alvays remains lower than p(!). It should be pointed
out, however, that the scission of original networks and the formation of new
networks in their place does not necessarily have this effect. Figure 5 shows Tis
versus k for C = 1.0 and g = 4.0. It can be seen from this figure that response
first softens after the initiation of conversion, as ’.ﬁg(k) is lower than the corre-
sponding stress for the purely neo-Hookean material. As conversion proceeds,
though, a hardening behavior becomes apparent, with the shear stress becoming
greater than that for the neo-Hookean case. For k near k,, the rupture of original
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networks entails release of the stress in those networks, which accounts for the
early softening. As the deformation of subsequently formed networks relative to
their new reference configurations increases at larger k, the much higher modulus
1?) of the new networks ultimately causes the effective stiffness of the material to
be greater than in the neo-Hookean case. The assumption of i > 1 in the present
constitutive equation may have application to the strain-dependent crystalliza-
tion of polymers. PETERLIN [11] has studied this phenomenon; additional work
has been done by NEGAHBAN [8] and NEGAHBAN and WINEMAN (9]. Henceforth,
examples presented in this work will consider only cases of conversion-softening,
whereby the secant modulus of the material is reduced by the conversion process.

-3
>

1
..

o

0 0.5 1 15 2 25

F1G. 5. Shear stress versus shear deformation as deformation increases for i = 4.0, with
C'=11.0; ka= 0.5 and %, = 2:65.

4.4. Monotonicity of response

The plots of Tys versus k for C = 0.25, C' = 0.5 and C = 0.75 in Fig. 2 all
display monotonic response. However, the curve for C = 1.0 clearly exhibits a
local maximum. It may be assumed that a local maximum first appears at some
value of C' € (0.75,1.0). That the rapid scission of original material networks
could lead to such a loss of monotonicity has been discussed above. This situation
arises if the negative quantity db/dk achieves a sufficiently great magnitude for
some value of k. Since db/dk = —a by (4.10), monotonicity may be lost if a
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becomes large enough. When k, and k. are held fixed, (4.7) and (4.9) indicate
that the fraction of total conversion C acts as a scaling factor of the conversion
rate function a for any chosen value of k € [kq, k;]. When the conversion fraction
reaches a critical value C = C*", a becomes large enough to produce a point of
inflection in the stress-shear curve. A value satisfying C' > C then leads to a
local maximum of Ty in k.

In order to study the conditions which cause the T'? — k relation to become
non-monotonic, consider the derivative of the shear stress (4.12) with respect to
the shear k for k € [kq, kc):

(4.13) % = 9i1 = FIB(K) -+ i~ EalEl.

Here a has the form of (4.7) and b the form of (4.10). To see more clearly
the influence of the parameter C on the derivative (4.13), recall from (4.7) the
definition of a for k € [ky, kc]. The constant « is given by (4.9). When k, and k.
are prescribed, a(k) can be written as

(4.14) a(k) = Chy(k),

where hy (k) is defined as

U‘; = ka)(k = kc)
{kc & ka)g
With the use of (4.14) and (4.15), Eq. (4.13) can be written in the form

(4.15) hy(k) = -6

o k
(4.16) % =2C [(,& -1) /hl(!})dﬁ' - khl(k)jl +2.
Rl.‘n

Equation (4.16) shows that dT}2/dk depends on the conversion fraction C and
the ratio of moduli i. Monotonicity is lost if dT:*z/dk < 0 for some k € [kq, kc]-
Therefore, monotonicity of response depends on both the extent of microstruc-
tural transformation and the relation of the material properties u") and p(?.
In determining C*°* for different values of /i, it will be convenient to examine
three distinct ranges of ji.
First let 1 = 1. Equation (4.16) then gives

The condition for the shear stress-shear deformation curve to have a negative
slope for k € [kq, k] becomes

(4.18) 1 — Ckhy (k) < 0.
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It can be seen from (4.15) that hj(k) > 0 for k € (ka,kc). Thus the condition
(4.18) can be written as

(4.19) e

khy (k)

Recall additionally the restriction C < 1, which has been imposed above.

1= e r——

pesssmemena=="

S TR R 2 28

FiG. 6. Shear stress versus shear deformation as deformation increases for various con-
version fractions and 1/kh, vs. shear deformation, with g = 1.0, k, = 0.5 and k. = 2.65.
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_ As an illustration of the condition (4.19), Fig. 6 shows 1/kh; versus k and
T2 versus k. The quantity 1/kh; is plotted only on the domain k € [0.7,2.5]; T,
is represented by the dotted line for C = 1.0 and by the dashed line for C' = 0.83.
It can be seen that the domain on which (4.19) holds corresponds to the domain
on which dT}s/dk < 0 when C = 1.0.

Given k, and k. and with /i = 1.0, the critical value of C at which a point of
inflection in the stress-shear curve first emerges can be found from (4.19) as

1

s e
(420) C kcrhl (kcr) ?

where £ is the value of k at which the local minimum in 1/kh; occurs. It

satisfies the condition 111/ KSE B (RET
(4.21) % =

Owing to the simplicity of hy(k) in (4.15), the numerator of the derivative (4.21)
is a quadratic polynomial in k. Equation (4.20) can thus be solved in closed
form for A°*. With g = 1.0, this value is found to be £ = 1.86. Equation (4.20)
then gives C°" & 0.83. It can be seen from the figure that the derivative dT},/dk
vanishes at k = £ when C = C° = 0.83. The critical values C" and £ are
indicated by light dashed lines on the 1/kh; — k curve of Fig. 6.

For values of gz # 1.0, a cubic polynomial arises and a closed-form solution for
k" is not possible. Let i < 1. It is assumed that there exist values of k at which
dff‘u/dk = (. The critical value of the conversion fraction at which dTy3/dk =0
first emerges is found from (4.16) to be

0.

1

(4.22) % =

kcr
kThy (k<) + (1 — ) [ hy(k)dk
kaq

k
Since the term (1 — 1) /e‘u{fc]dfc > 0, comparison of (4.20) and (4.22) indicates

A
that C' is smaller when ji < 1.0 than when 2 = 1.0. Less conversion is required
to cause the shear stress-shear deformation relation to lose monotonicity if the

newly formed networks are softer than the original material.
Consider now the case g > 1. If 1 is sufficiently large, it can be seen from
ke

(4.16) that the positive term (g — 1) /h, U::)d,fz may dominate, with the result
*‘:ﬂ

that d'f'u/dk > 0 for any conversion fraction C. On the other hand, if f is near
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unity, a negative slope may be expected somewhere on k € [k, k.]. The existence
of a local maximum, then, depends on f.

Figure 7 shows the shear stress-shear curves produced for C = 0.75 when the
ratio of shear moduli has the values ji = 2.0, ji = 1.0 and i = 0.5. It can be seen
from the figure that decreasing the shear modulus of the newly formed material
relative to the modulus of the original material leads to softer overall response for
k > k,. It has been indicated that high stiffness of the original material relative
to that of the newly formed networks could lead to a loss of monotonicity. This
situation corresponds to low values of . While the curves for ji = 2.0 and i = 1.0
show monotonic response, a local maximum is evident in the stress-shear graph
when i = 0.5. It may be assumed that this loss of monotonicity first occurs
at some critical value g € (0.5,1.0). At i = g, there is a value of k > k,
at which the generation of stress in the relatively soft newly formed material is
exactly matched by the relaxation of stress due to the conversion process.

When kg, k. and C are prescibed, an analysis analogous to that used to find
C® in (4.13) through (4.22) can be performed to find 2. Equation (4.13) can
be rewritten as

dT
(4.23) i = 2Ab(k) = ka(k) + [t - b(k)]}.
5
neo—Hookean  Z=10
3 =20 _p=0.5
S= R
?Il .| pifal ey, %
1 o
0 t T X T T T - T ¥
0 0.5 1 15 2 25
k

F1G. 7. Shear stress versus shear deformation as deformation increases for various shear
modulus ratios, with C = 0.75, k, = 0.5 and k, = 2.65.

http://rcin.org.pl



470 H. E. HUNTLEY, A. S. WINEMAN, K. R. RAJAGOPAL

The condition for the stress-shear curve to have a negative slope becomes

(4.24) b(k) — ka(k) + a[1 — b(k)] < 0,
or, since 1 — b > 0,
: ka(k) — b(k)
{4.20} TE‘(—k—)—
For convenience, let
(4.26) hath) = &) b(g“,
so that (4.25) becomes
(4.27) ho(k) > fi.

The critical value of 4 at which monotonicity of the stress-shear relation is first
lost, is given by hyo(k°) = . The critical shear & is found as a solution of
dhy (k") /dk = 0. For o < ", the release of stress due to network conversion
dominates and there is a range of values of k > k, over which df“lg/dk < ),
When a(k) has the form of (4.7) and b(k) that of (4.10), dha(k")/dk = 0 cannot
be solved for £ in closed form. A numerical solution is not carried out here.

4.5. Reversal of deformation

Assume that deformation is reversed, so that current shear k decreases after
reaching a maximum value k*. If k* < k,, the Cauchy stress given by (4.2) holds
during the process of decreasing deformation. When k* > k,, the current stress
is formed from (2.5) and (4.4) as

1 k 0
(4.28) T(k) = —pL+2b(k*) | & 1+Kk% 0
8. 0 1
e 1 k—k 0
+2,a/a(f{:) k—k 1+(k—-k)2 o |dk.
ka 0 0 1

In non-dimensional form, the current shear stress is then
ke
(4.29) Tio(k) = 2 | b(k*)k + ﬁ/a(i&)(k — k)dk

ka
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Equations (4.28) and (4.29) hold regardless of the forms used for a(k) and b(k).
The present theory of microstructural transformation assumes that no further
conversion occurs during the reversal of deformation. Thus the shear stress in
each material network is directly proportional to the shear deformation of the
network relative to the state at which it is formed. For the original material,
that deformation is the current shear k; in a newly formed element, it is given
by k — k. The roles of these two deformation measures can be seen from (4.28).
It is useful to rewrite (4.29) in the form

K k2
(4.30) Tia(k) = 24 |b(k*) +,a/au})die k-a[a(fc)fcdk
ka ka

From (4.30), it is clear that there is a straight-line relation between the shear
stress Ty2 and the current shear k during reversal of deformation. Making use of
the specific forms for a(k) and b(k) proposed in (4.7) and (4.10), Eq. (4.30) can
be written as

£
(4.31) Tia(k) = 2 [(1 — @)b(k*) + i)k — ﬁfa(i-)f}df;} .
ka

It is evident from (4.30) that the slope of the Ty2 — k curve as k decreases depends
on the material parameter . It can be shown from (4.7), (4.9) and (4.10) that
the fraction of original material b(k*) decreases as C' increases; thus the slope of
the shear stress-shear deformation curve also depends on C.

Inspection of (4.31) reveals that the slope increases with C' when i > 1.0.
A greater value of C means that as deformation increases, a larger volume fraction
of material undergoes conversion to newly formed networks with shear modulus
ii® > i) Thus the effective stiffness Ty /k increases. The slope of Ty5 versus k
decreases for larger C' when i < 1.0. As the fraction of conversion C is increased,
more original material converts to new networks with modulus pu@ < () The
effective material stiffness decreases and with it the slope of the shear stress-shear
deformation curve for decreasing deformation. For fi = 1.0, (4.31) reduces to

kl
(4.32) Tia(k) =2 |k - f a(k)kdk
ka
The slope of the stress-shear curve during reversal of deformation is thus indepen-

dent of the conversion fraction C' when the moduli of original and newly formed
networks are equal.
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Figure 8 replicates the plots from Fig. 2 of the dimensionless shear stress T}o
versus k for different values of the conversion fraction C, with g = 1.0. Figure 8
also plots T2 versus k for the various values of C' as deformation is reversed
from k* = 2.0 to the residual shear state denoted by k™, where total current
shear stress Ty = 0. Let this process of deformation increasing to k = k* and
subsequently decreasing to k = k™ be referred to as the deformation cycle. The
straight-line relation between Ty5 and k during reversal of deformation is evident
from the figure. It can also be seen that, for ji = 1.0, the slope of this line is
unaffected by C.

-

25

F1G. 8. Shear stress versus shear deformation as deformation increases and subsequently
decreases for various conversion fractions, with it = 1.0, k, = 0.5 and k. = 2.65.

Figure 9 shows T}s versus k at various values of C for the same deformation
cycle when i = 2.0. It can be seen from the figure that the shear stress-shear
curve for decreasing deformation is still a straight line, but that the slope is now
steeper when the conversion fraction is greater.

Figure 10 shows the shear stress f‘;g versus k for the deformation cycle, with
various C' and with 2 = 0.5. Here the slope of the Tyis — k lines for reversal of
deformation is seen to decrease as the conversion fraction C is increased.

4.6. Permanent set

When k* < k,, all response is elastic and there is no residual deformation
when the net external shear traction is returned to zero. Setting T2 = 0 in (4.30)
gives the residual shear deformation for k* > k, as
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F1G. 9. Shear stress versus shear deformation as deformation increases and subsequently
decreases for various conversion fractions, with g = 2.0, k, = 0.5 and k. = 2.65.
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FiG. 10. Shear stress versus shear deformation as deformation increases and subse-
quently decreases for various conversion fractions, with g = 0.5, k, = 0.5 and k. = 2.65.
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P
p / ali)edi

(4.33) S

=
b(k*) +;1/a(”-)dfc

ka

Equation (4.33) holds for all admissible forms of a(k) and b(k). Now consider
the specific forms given by (4.7) and (4.10). It is known that with k, and k.
specified, the only parameter affecting a(k) and b(k) at a prescibed value of k is
the fraction of conversion C. Thus it can be seen from (4.33) that the residual
shear deformation k™ depends on three coupled factors: the conversion fraction
C'; the ratio of original and new moduli ji; and the state of maximum shear
k* reached before reversal of deformation. The partial derivatives of ™ with
respect to each of these quantities are studied below.

Let a(k) in (4.33) be given by (4.14). The partial derivative of k™ with
respect to C' is found from (4.33) to be

k.
ﬁ-/‘hl(;.:)fcdi;‘
8kres £
(4.34) = - 5
10— 1)/;.»,1(1})“”}
k(&

where hy (k) is given by (4.15). The inequality k™ /90C > 0 holds for all admissi-
ble values of fi and for all k* € [kq, kc]. Thus k™ increases with C. Greater values
of C imply that larger fractions of the original material have undergone conver-
sion and adopted as their reference configurations the states of shear k € [kq, k*].
As deformation is reversed from k£ = k*, an increasing amount of the converted
material is sheared in the negative sense relative to its reference configuration,
with k—k < 0. If k < k, is reached, all converted material elements are in states
of negative shear. The negative shear stress f‘g){k — k) = 2ji(k — k) associated
with the relative deformation of the network formed at state & tends to reduce
the total positive shear stress Tya(k) as current shear k is reduced. Thus the
condition Ty (k) = 0 is satisfied at a higher value of residual shear k.

The partial derivative of the residual shear k™ with respect to f is found
from (4.32) as
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o
b(&-*)/a(fc)fcdfc
' akres 4 ka
(4.35) o % 3
b(k*)+ﬁ/a(f})dk
ka

Inspection of (4.35) reveals that k™ /0 > 0. As in the case of increasing C, the
physical reason is the more rapid generation of negative shear stress T{?(k — k)
in the converted material as current shear k is reduced from k*. In the case of
increasing fi, however, f’g)(k — k) is greater in each newly formed network due
to greater stiffness of the newly formed material relative to the original material.
Thus Tlg(k) = 0 is satisfied at a larger k™ as ji increases.

Differentiation of k™, given by (4.33), with respect to the maximum shear
k* gives

8kl'(35 £}

(4.36) =

B
k) |k* + (- 1) /a(f}}(k* — k)dk
e :

14+ (= 1)/a(£~)dfc

ka

In the integrand in the numerator of (4.36), the term k* — k > 0, as k* > k for
all k € [ky, k*]. The term fi — 1 may be either positive or negative, depending
on the value of fi. All other terms in (4.36) can be shown to be positive. It is
thus possible that 9k™ /9k* < 0 for some k* if ji is sufficiently small. The larger
the value of k* € [kq, k], the more total conversion occurs for a given C during
the process of increasing deformation. For sufficiently large j, this causes the
condition "f‘]g(k“’s) = ( to be satisfied at a larger k™ as shear is reduced from k*
and hence causes Ok™ /ak* > 0.

The variation of the residual shear £™ with each of the three parameters
discussed above is presented in Figs. 11 through 14. For all of the figures, shear
deformation has been reversed from a maximum of k* = 2.0. Figure 11 shows
plots of k™ versus C for various values of fi. It is evident from the figure that k™
increases monotonically with C for all C' € [0.0,1.0], as given by (4.34). While
ji clearly influences the results shown in Fig. 11, the general trend of increasing
residual shear resulting from increasing total microstructural conversion holds for
all values of g shown.
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Fia. 11. Residual shear deformation versus conversion fraction for various shear modulus
ratios, with &* = 2.0, k, = 0.5 and k. = 2.65.
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F1G. 12. Residual shear deformation versus shear modulus ratio for various conversion
fractions, with k* = 2.0, k, = 0.5 and k. = 2.65.
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F1a. 13. Redidual shear deformation versus maximum shear deformation for various
shear modulus ratios, with C = 0.75, k, = 0.5 and k. = 2.65.
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F1G. 14. Residual shear deformation versus maximum shear deformation for various
conversion fractions, with & = 1.0, k, = 0.5 and k. = 2.65; when k* < k,, k' = 0.0.
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Figure 12 shows k™ versus f for different values of C. At all values of C
considered, the residual shear can be seen to increase monotonically with f, as
indicated by (4.35). Varying the value of C does not alter this general trend, as
seen in the figure: greater values of C' serve largely to shift the entire relation to
a higher range of k™ for all 4 € [0.5,2.0].

Figure 13 plots k™ versus k* for various moduli ratios 2 when the conversion
fraction is taken as C' = 0.75. Figure 14 shows the k™ — k* curves for various
C when i = 1.0 is chosen. The figures show the development of greater residual
shear when the material is first deformed to a greater maximum shear k*. They
also show the region of zero residual shear deformation for £* < k,. It is thus
apparent that the values of [i chosen for the plots are sufficiently large to ensure
monotonically increasing k™ — k* curves on k* € [k, = 0.5,2.5]. It should be
noted that Figs. 13 and 14 also show the range of purely elastic deformation
k € [0,k, = 0.5] on which all strain is recovered when Tja(k) = 0.

5. Conclusion

The constitutive equation proposed by WINEMAN and RAJAGOPAL [23] for
materials undergoing microstructural change has proven to be successful in de-
scribing qualitatively some of the important responses exhibited by polymeric
materials subjected to large deformations. Stress softening, yield and permanent
set are all predicted. Moreover, the extent of permanent set is seen to depend
on the maximum level of shear deformation attained before unloading. As evi-
denced by the neo-Hookean example, the constitutive equation can predict this
complex response without an overwhelmingly complicated mathematical struc-
ture. Relatively few material-property parameters are required, indicating hope
that practical experimental programs could determine the necessary constants
for a specific material. Finally, it should be noted that the equation is not purely
phenomenological, but is based on assumptions of the micromechanics of finite
deformation processes in polymers.
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