Arch. Mech., 52, 3, pp. 347-395, Warszawa 2000

Irreducible representations for constitutive equations of

anisotropic solids III: crystal and quasicrystal classes Ds,, 1),
and D2md
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Institute of Mechanics I, Ruhr-University Bochum
D-44780 Bochum, Germany

A SIMPLE, UNIFIED PROCEDURE is applied to derive irreducible nonpolynomial represen-
tations for scalar-, vector-, skewsymmetric and symmetric second order tensor-valued
anisotropic constitutive equations involving any finite number of vector variables and
second order tensor variables. In this part, our concern is for the crystal classes and
quasicrystal classes Da,,414 and Dy, for all integers m > 1.

1. Introduction

WE CONTINUE OUR STUDY of irreducible nonpolynomial representations for
anisotropic constitutive equations involving any finite number of vector variables
and second order tensor variables. In the final part, we are concerned with the
crystal and quasicrystal classes Do,y and Doyg for all m > 1. These classes
are more complicated than those considered before, since we have to draw dis-
tinction between the reflection symmetry with respect to a plane and the two-fold
rotation symmetry with respect to an axis.

As it has been done in the preceding two parts, we shall apply the unified
procedure outlined in Sec. 3 in Part I of this series (see XiA0, BRUHNS and
MEYERS [21]. Henceforth the just-mentioned reference will simply be referred to
as Part I) to derive the desired results. For notations and preliminaries and for
some relevant references, refer to Sec. 1 — 3 in Part I for detail.

2. Crystal and quasicrystal classes s, 1)

The classes at issue take forms

s 3 2kn
(2.1) Dom+1n(n,e) = {(“I)AR?“{' (LR e = dm + 2’

Th = ﬂ""me, k=0,1,---,4m + 1}_
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They include the crystal class Dgj, as the particular case when m = 1. Note that
each 79,4 and each 79, respectively, correspond to the reflection with respect
to the Tg,41-plane and the two-fold rotation about an axis in the direction of
Tor, where r = 0,1,.--,2m. Accordingly, we shall call each T9,,; and each T3,
a reflection axis vector and a two-fold rotation axis vector of the group Daopy1h-
In particular, the two orthonormal vectors e (= tp) and €' (= T9,41) are a
two-fold rotation axis vector and a reflection axis vector of Day, 415, respectively.
Throughout this section, v is used to represent a two-fold rotation axis vector of
Dopyip, 6. v € {1.'2,- | r=01-- -,Qm}.

Throughout, for any given vector z we shall use 2z’ to denote the vector n x z,
ie.

z =nxaz.

A useful fact for the group Doy, y1p is: if T is a two-fold rotation (resp. reflection)
axis vector, then 7’ is a reflection (resp. two-fold rotation) axis vector.

Let Y = (Jy,--+,Js), where each J, is a skewsymmetric tensor or a symmet-
ric tensor. Then the identities

(22) f(QYQY)=f(¥), F(QYQ)=QF(Y)Qf, Qo=4=lI,

for every scalar-valued function f(Y) and every skewsymmetric and every sym-
metric tensor-valued function F(Y). From this fact and the fact that the group
Doysqpn and the central inversion —I generate the centrosymmetrical group
Dymson, each invariant f(Y) and each form-invariant function F(Y) under the
group Dayiqp turns out to be an invariant and a form-invariant function under
the larger group Dypion (D Domsan)- As a result, for the five sets of variables,
(W), (A), (W,Q), (W, A) and (A, B), results for functional bases and skewsym-
metric and symmetric tensor generating sets relative to the group Doy, 414, as well
as related invariants from the scalar products, can be obtained from the corre-
sponding results given in Sec. 4 in Part I by the replacement of m with 2m + 1.
Thus, in what follows, for the foregoing five sets of variables, we only need to de-
rive vector generating sets and their related invariants from the scalar products.
Moreover, according to Sec. 4 (xiii) in Part I, we can omit the set (u,v,r) of
three vector variables. Finally, for each of the sets of three variables, (u, W, Q)
and (u, A, B), from Theorem 2.1 and Theorem 3.3 in X1A0 [20] we know that it
suffices to supply a vector generating set and a functional basis.

2.1. Single variables

(i) A single vector u
Vo {(un)n, U gy (W)} (= Vi (w)
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Skw  {(u-n)nA U, (u-n)n A ngy, (1), Bams1 (W)N} (= Skwhyi1 (1))
Sym {Ln®n,u® ,1 Vg, (1), (- n)nV 4, (u-n)n Vg, (1)}
(= Symf,,41 (1))
R (c-n)(u-n),F-u,r mny,(1);
P41 (W) (t(rHN), (u - n) U -Hn, (u - n)ng,, (1) - Hn;

0o 0 0 o 0

} Cu, (u y Il) u-Cn, (11 X n)ﬂ?m(u}' Cun;

;::o

trC,n-Cn,u - Cu,]’lzm(

{(u-n),| 0 % 00m1 (W)} (= By (0).

The proof for the above results is as follows. According to Theorem 3 in
XI1A0 [17] isotropic functional bases and generating sets of the extended variables
(u, "Izm( ) n ® n) supply anisotropic functional bases and generating sets of the
vector variable u under the group Day,41n. Then, applying the related results for
isotropic functions, we know that the three presented sets I3, . (u), V3, . (u)
and Skwj,. . (u) supply a desired functional basis, a desired vector generating
set and a desired skewsymmetric tensor generating set, respectively. Moreover,
a desired symmetric tensor generating set is formed by the six generators in the
presented set Symy,, . ,(u) as well as the generator G = ngm(ﬁ) ® I']-zﬂl(a). Here
the decomposition formula u = (u- n)n+ u (see (2.15) in Part I) is used.

We need to show that the generator G is redundant. In fact, G is a 2-
dimvnwimml symmetric tensor defined on the n-plane. When the two vectors u
and ‘hm( u) on the n- plane are linearly independent, the three symmetric tensors
u®uu Vg, (1) and I — n ® n constitute a basis of the space of all symmetric
tensors defined on the n-plane. Hence G is redundant. G is obviously redundant
when 1 and qgm(ﬂ) are linearly dependent.

(ii) A single skewsymmetric tensor W
v ‘{G?m+l (Wn]n, rggm(Wn), WT] 2m (wn)s WQ“?m (Wn)} ( v?m-!—l (W))
R (r-n)azmii (Wn),?‘ ’an(wn}s ﬂ?ns(wn) - Wr, 1y, (WH) Wer.

According to Theorem 3 in XI1AO [17], a vector generating set for form-
invariant vector-valued functions of the skewsymmetric tensor variable W under
Dgppip is obtainable from an isotropic vector generating set for the extended
variables (n,,(Wn),W,n ® n). By applying the related results for isotropic
functions we know that the latter is just given by the presented set V5, . {(W).
Moreover, by considering W = E(n + €) and W3 = E(n + €'), we deduce that
each of the four generators in the set V,, (W) are irreducible.
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(iii) A single symmetric tensor A
V. {nn(a(A)), Aenn(a(A), o1 (A n)n,nz0n(A ),
| A nPasms1(A ) A 0+ J(A)Bams1(A )0} (= Vi (A))
R % n(a(A)),nn(a(A)) - Ae B, (r - m)azm1(A n),F o (A ),
| A nazmi1 (A n)(E - A 0) + J(A)Bom+1(A n)(r - n).
We show that the presented set V, . ,(A) obeys the criterion (2.3) given in

Part I. The case when fok = O can be treated easily. Let R;ﬁ O and K n = 0.
Then we have

rank{n,,(q(A)), Aen(a(A))}
D = rankVyp, 1 (A) > = 2if Boms1(q(A)) #0,
rank{n,,(q(A))} = 1 if Bem+1(a(A)) =0,

{ Glh(n) if ﬁ‘Zm.-l-] (Q(A)) ?& 0 )

F A mD'm L =
(A) 2m+1/ Coy(v,n,n x v) if Bom+1(q(A)) =0.

Let agm+1 (R n) # 0 and let D = rankVy;, . (A). Then we have

o [+] 4]
rank{nom(A n),n, An} =3 if Boms1(An)#0,

Tﬂ"k{na"Im(CI(A)):AeT]m(Q(A))} =3 if ﬁ?m-}-l (R n) == 01
ﬁ2m+l(Q(A}) # 0 3

ramk{n,.ﬁ n,ny,(q(A))} =3 if ﬁ2m+1(;\ n)
= Pam+1(q(A)) =0, J(A) #0,

| rank{n,ﬁ n} =2 i Bom+1(A 1) = Bams1(a(A)) = J(A) =0,

(4] (8]
I'(A)N Dopy1p = Cin(n x v) if A n# 0, Bams1(A n)
= Pam+1(q(A)) = J(A) = 0.
Let f\ n # 0 and agp41 (3 n) = 0. Then, we have

rank{no,m(A 1), m,nm(q(A))} = 3if J(A) #0,

m“kVSInH(A) Z o
rank{ns,,(An)} =1 if J(A)=0,
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and
[(A) N Dyyr = Co(v) if An#0, J(A) = azmsi(A n) =0.

It is readily understood that the four cases for A considered above exhaust
all cases for A. Thus, from the above results and Table 1 in Sec. 2 in Part I,
we conclude that the presented set Vi, ., (A) obeys the criterion (2.3) in Part I
and hence supplies a desired vector generating set. Further, by considering the
two tensors A; =nV (e + 7;) and Az = e V 71, we deduce that each of the five
generators in the set V3, ., (A) are irreducible.
2.2. Doy 1p-irreducible sets of two variables
(iv) The Dyypiip-irreducible set (u,v) of two vectors
L VQI:IH-I (I.l} U Vi{:n-l-l(v) (E Vi.;:n-f—l(u! V)}
0
Skw  Skwh,,.,(u) USkwh,, 1 (v) U{uAv,|u-n*™ (u:n)nAngy,(V)
o
+1V ] nl2m-1(v S Il)l’l A T|2m(u)} (E Skwgna+l(u1 V)}
0
Sym Symj, ., (u)USymb, . (v)U{uVv,|u-n*"(u-n)nVn,,(v)
— B —
+|v -0~ (v n)n Vng,(u)} (= Symyyq(u,v))
R r-V§.i(u,v),H:Skwh, . ,(2),C : Sym3,, .,(z),z = u,v;
4]
u-Hv;u C v;
2m—1 s 2m—1 = 0 5 5
]ll 7 nl (ll 2 n)nim(v) -Hn + |v % nl (V n)"l?m(“) Hn,
0 o | 0 o
a2 a0y (V) G o+ v a2 (v ) (B): G
(]

Igm-}-l(u) U Igm-}-l (V) U '{(u - n)(v 3 n]: {)l A V} (E Igm+1(“: V))

To prove the above results, we first work out the Dgpqip-irreducible set
(u,v), which is specified by (see (3.1) in Part 1) I'(z) N Domyin # I'(u,v) N
Domirp for z = u, v. Evidently, we have I'(z) N D14 # Ci for z = u, v. The
latter implies that either —RJ, or R}, or —RJ, pertains to the symmetry group
I'(z) of the vector z. Hence we derive: z = ae + be'; z = bv; and z = an + bv for

each z € {u,v}. These cases are equivalent to the three disjoint cases:

(2.3) an, a £0; ae+be', a®>+b* #0; an+bv, ab#0.

Considering the combinations of the above forms and excluding the cases
u=an, v=cn; u=an+bv, v=cn+dyv;
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u=ae+be, v=ce+de, fopi1(z) #0, z=uorz =v;
u=an, v=cn+dv; u=av, v=cn+dyv;

which violate the Dagy, 1 1,-irreducibility condition for (u, v), we derive the follow-
ing four disjoint cases for Dyp, 4 1,-irreducible set (u, v):

(cl) u=an, v=be + ce', a(b® + c?) # 0;

(c2Q)u=uae,v="bv,v#e ab#0;

(c3) u=ae+ be', v=cn+ de, bed # 0,

(c4) u=an+be, v=cn+dv, v# e, abed # 0.

With cases (c1) ~ (c4) we show that the two presented sets Skwj,, . (u,v)

and Symj,, . (u,v) obey the criterion (2.3) in Part I separately, and therefore

they supply the desired skewsymmetric and symmetric tensor generating sets. In
fact, for case (c1) we have

I'(u,v) N Dayyrn = Cia(n X v) if Bomy1 (V) =0,

rank{N,u A v,n Any,,(v)} =3
rank Sng,n+l (ll, V) 2 lf ﬁ‘2m+] (3) # 0 3

rank{u A v} = 1 if Boms1(V) =0,

i rank(Symj,, . (v) U{uVv,nV (nx {’r)}) =6

! if Bam1(¥) # 0,
rank Syms,, ., (u,v) > 2 Ie
rank{I,n®n,ve®v,uVvv} =4

! if Bom+1(V) =0.
For case (c2) we have

I'(u,v) N Dypy1p = Cip(n), rank Skwy,, . (u,v) > rank{uAv} =1,
rank Sym&,, ., (u,v) > rank{I,n ® n, u® {)1,3 ® 3} = 4;

For case (¢3) we have
rank Skwy,, . (u,v) > ra,nk{[:igm“(ﬁ)N, nA v,uAv,nA nz,ﬂ(ﬂ)} =.3;

rank Symgﬂl-f'l (ll, V) 2= rank(synlgm+i(v) U {'Sl Vn‘lm(ﬁ): uV V}) = 6;
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Finally, for case (c4), by using the formula (2.4) in Part I we have

rank Skwh,, . ;(u,v) > rank{n A nszﬁ),n A nzm({)r), uAv}i=3,

rank symgm—i-l_(us V) 2 rank(symgm—l—l{u) U Symgm-{-l(v)]

= rank(Sym(Cyp(e")) USym(Cip(n x v))) =6.

In deriving the last equality, Eq. (2.4) given in Part I has been used. From
the above results and Tables 2 — 3 given in Sec. 2 in Part I we deduce that the
foregoing facts concerning the two sets Skwj, ., (u,v) and Symy,_ ., (u,v) are
true. Moreover, by considering the pair u; = €’ and v; = n we infer that the last
two generators in the set Skw, . (u,v) are irreducible. Besides, by considering
the pair us = n and vo = € we infer that the last two generators in the set
Symf{,, . (u,v) are also irreducible.

Next, consider the two presented sets I3, .,(u,v) and V,7 . (u,v). The
former set includes as a subset the set {(u-n)2,| u [, (v-n)2,| v |2, (u-n)(v-n),
u- 3} The latter is a functional basis of (u,v) under the group Dep(n). Using
this fact and following the same procedure used in Sec. 4 (vi) in Part I, we infer
that the set I3, . ;(u,v) provides a desired functional basis for (u,v). Next, an
anisotropic vector generating set for the variables (u,v) is obtainable from an
isotropic vector generating set for the extended variables (u, v, ny, (ﬁ), Nom (3),
n ® n) (see Theorem 3 in X1A0 [17]). By using the related result for isotropic
functions we know that the former is just given by the presented set V3, . (u,v).

(v) The Dy, p-irreducible set (W, Q) of two skewsymmetric tensors

V é:n+1 (W) U 2f:n—i-l(n) U {W“2m{ﬂn)sﬂq2m(wn)a
[W[*™ Bayn i1 (Qn)(E : W) + [Q*™ Bopn i1 (Wn)(E : Q)}
(E V£:11+ 1 (W1 Q))
e Vé:n+l(w)s Vé;nﬁ—l (Q), n?n;(wn) - Qr, n2m(nn) - Wr,
(W™ B i1 (Qn)r - (B : W) + |Q* Byt (Wn)r - (E : Q);.
To prove the above result, we first work out the Dy, 1p-irreducible set
(W, Q), which is specified by (see (3.1) in Part I) I'(z) N Doypyin # I'(W,Q) N
Dopyp for z = W, Q. Evidently, I'(z) N Dyppy1p # C) for z = W, Q. The

latter means that either —RJ or R, or —R7Y, pertains to the symmetry group
I'(z) for each z € {W,Q}. Hence each z € {W,Q} takes one of the forms

(2.4) cEn, c#0; cBv,c#0; enAv, c#0.
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Thus, we derive the following five disjoint cases for the Dy, 1p-irreducible set
(W, Q):

(c1) W = aEn, Q = bEe, ab # 0;

(c2) W =aEn, Q =bnAe, ab # 0;

(c3) W = aEe, Q = bEv, v # e, ab # 0;
(c4) W =qaEe, Q =bn Av, ab # 0;

(cb) W=anAe, Q=bnAv,v#e, ab#0.

Then, corresponding to the above five cases, we have
rankVay, 1 (W, Q) > rank{ng,,(Qn), Wny,,(Qn), G} = 3,
r'lnkVZm«H (W, Q) P fank{ﬂ2m (.Q.Il), A2m+41 (.Qn)n, WT'Qm (Qn)} = 3»
rankVy,, (W, Q) > rank{ny,,(Wn), n,, (Qn), Qny,,(Wn)} = 3,
rankVyy, . 1 (W, Q) > rank{n,,,,(Wn), a2;m+1(2n)n, G} = 3,

I“]"nk“/Zr'n+I(‘V Q) > rank{“Zm wn) n2m(ﬂn) ﬂ'2m+1 Wn } = 3

where G is used to denote the last generator in the set V3, . (W, Q). From the
above results we infer that the presented set V) .,(W,Q) obeys the criterion
(2.3) in Part I and therefore supplies a desired vector generating set. Further, by
considering the two pairs W; = En and Q, = Ee, W, = Ee and Q; = En, we
deduce that the last three generators in the set V3, ., (W, Q) are irreducible.

(vi) The Doy qip-irreducible set (W, A) of a skewsymmetric tensor and a
symmetric tensor

V' Vst (W)U Vi1 () U{W(mtm(q(A)) + (=1)™ g (A n)),
(t:;WN)ﬂQm—i-I(A n)n:r Wo,.(q(A)), »
| A n]*™ 41 (Wn) A n+ [Wn|?*™ag,,11(A n)Wn}
(= Voms1 (W, A))
R Vi (W), Vi1 (A), (tm(a(A)) + (1) ngm(A n)) - W,
(r - 0)(trtWN)Bams1(A 1) - pr(a(A)) - Wr,
| A 0™z 41 (Wn)(F - A 1) + [Wn[azm41 (A n)(F -Wn).

Here and henceforth, p,,(q(A)) and m,,(q(A)) are the two polynomial vector-
valued functions of A given by (2.4) and (2.5) in Part 1I (see X1A0, BRUHNS and
MEYERS [22]).
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To prove the above result, we first work out the Da,, p-irreducible set
(W, A), which is specified by (see (3.1) in Part I) I'(z) N Dopi1n # (W, A) N
Doyiin for z = W, A. As has been shown in (v), W takes one of the forms
given by (2.4). Moreover, we have I'(A) N Dyp+1n # Ci. This implies that either
—R} or —RY, or R}, pertains to the symmetry group I'(A) of A. Hence, we

deduce that _R takes one of the forms
(2.5) aD; +bDg, a®> +b* #£0; a(v®v—Vv ®¥)+bn Vv, b#0;
a(vev—-v ®V)+bnVvy, b#0.
Considering the combinations of the above forms for A and the forms (2.4) for
W and excluding the cases
W = cEn, A= aD; + 5Dz, foms1(a(A)) # 0;
W = fEt, A= a(r®7 -7 ®7), T=;
W = cEn, .f)\:a(-rtgw—-r’@-r') +bnVve, T=1

which violate the Ds,, . p-irreducibility condition for (W, A), we derive the fol-
lowing nine disjoint cases for the Dy, ip-irreducible set (W, A):

(¢1) W = cEn, f\zaDl,ac#O;

(c2) W = cEn, A= aD; + bD;, i = 3, 4, be #0;
(c3) W = cBz, A= aD, + bDy, z € {e, &'}, bc # 0;
(W =cEv, A=aD, +bD;, i =3, 4, bc #£0,
(c4) § i=3: ve{ry |r=0,1,---,2m},

\ i=4: e#VvE {m|r=1;--,2m}.

(W =cnAv, A=aD; +bD;, i =3, 4, be #0,

(c8) § 1=3: e#ve{rw|r=1-,2m},

Li=2: wiE fay [ =101 2m]) .

Then, for case (c1) we have

F(W, A} N D?m-!-lh == Clh(n)s rankv£;1+l(WsA) > l‘aﬂk{mn{Q(A)),
Wo,.(a(A))} = 2.
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For case (c2), we have
mm(Q(A)) + (=1)™nam(A n) = (@®™ + b2™)e £0,
pm(q(A)} = a2m+le’

for i = 3, 4, and hence with D = rankV;;, . (W, A) we have

4

rank{aom1(A n)n,nam(A 1), W(m,(q(A))

+(=1)™ g (A )} = 3 if i = 3,

0

rank{ngm (A 0), W(mm(q(A)) + (—1)™nam(A n)),

ﬁzm-ﬂ(f& an} =3ifi=4.

\

For case (c3) we have (note that b # 0, i.e. P(A) =< q(A),e ># kn)

rankVyn, .1 (W,A) > rank{ny,,(Wn),n,,(q(A)), Aen,n(a(A)),
Wﬂm{Q(A)), me.(Q(A)}}

= rank{e,zsinmi(A),
zsin(m + 1)y(A) | z=€',n} =3.

For case (c4) we have (see the first equality for case (2))

0 o 0 & AS
rank{om+1(A n)n, o, (A n), aomi1(A n)Wn} =3 if ¢ =3,
(4] 0
D 2 rank{“Zm(A n)s“?m(wn):w(ﬂm(Q(A)) 4= (—1)mﬂ2m(A n))}
=3 if i=4,

where D = rankVy, . (W, A). Finally, for case (c5) we have

: 0
rank{aom+1 (Wn)n, ng,, (Wn), ny,,, (A n)}
=3 it =3,
rank Vi, . 1 (W, A) > <
rank{(tgm+1 (Wn)n, ny, (Wn),
0
\ ﬂzm+|(wn) An}:3 if i=4.
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From the above results and Table 1 in Sec. 2 in Part I, we infer that the
presented set Vi . ,(W,A) obeys the criterion (2.3) in Part I and hence is a
desired vector genemtmg set. Further, by considering the two pairs W; = En
and Ay =nVe, Wy=nAeand A, = nV e/, we deduce that the last three
generators in the set Vy!, (W, A) are irreducible.

(vii) The Dy, 4qp-irreducible set (A, B) of two symmetric tensors

0

v VQ":R-H( ] U V2m+1 B) U {((“m(Q(B)} o (—l)ngm(ﬁ n)} A n)n,
((mm(a(A)) + (=1)™ (A 1)) B n)n,

e 2m . 2 2 h 2m 2
| A n*"aymi1(B n) An+|Bn|*"azn+1(A n) Bn,

L8]

(ﬁ?m—f—l (A n}ﬁ2m+l (q(B)) =t ﬁ?m-f-l (ﬁ n)ﬁ?m-{—l (Q(A))]n}

(— 2m+1(A B))
R ‘VF:H+I(A)1 ) ijf:n-i-l (BJ

(r - 0) (7t (a(B)) + (=1)™ (B 0))- A n),
(r - 0)((mm(Q(A)) + (=1)™ 3 (A 1))- B n),

0 L8]

1 A “|2mf12m+1(l% n)f-An+|B n|2""ﬂ'zm+1(ﬁ n)r- B n,
0 0
(I‘ ; n)(ﬁQm%—l(A n)ﬁ2m+l (Q(B)) + ﬁQm—H (B n) 2m-+1 (q(A)))

Here and henceforth, m,,,(q(D)) is the polynomial vector-valued function of
the symmetric tensor D given by (2.5) in Part II (see X1A0, BRUHNS and MEYERS
[22]), with the replacement of A by D therein.

We proceed to work out the Dy, 4 qp-irreducible set (A, B), which is specified
by (see (3.1) in Part I) F(z) ﬂDszrm # I'(A,B) N Doy, for z = A, B. From

(vi) we know that both A and B take the forms given by (2.5). Considering the
combinations of the forms given by (2.5) and excluding the cases

A=aD +bDy, B= D) +dDs, fomi1(q(z) #0, 2= A orz = B;

0 L]

A=a(t®@T -7 ®7)+nVrt B=c(r®@Tt-7@7)+dnVr, t=m1;
,:)xz a(t@t—1 7)), ](E)iz c(r@T—-TRT)+dnV T, T="1y
which violate the Dy, 15-irreducibility condition for (A, B), we derive the fol-

lowing six disjoint cases for Doy, p-irreducible set (A, B):
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(cl)f&zaD],ﬁzc(v®v~v"®v"),v¢e,ac#0;
(c2) A= aD; + bD3, B= cD; + dDj, bd # 0;
3) A= aD; +bDs, B= cD; + dDy, bd # 0;
A=a(v®v—-v ®V)+btnVy, ﬁ:ch—l—dDi,i:& 4, bd# 0,
(c4) {3—3 e#v ety |r=1--.2r},
vE{To | ¥=0,1,+:+,2r};
c5) A= a(v®v— v ®V)+bnVV, B=cD; +dDy, bd £0, v#e.

Then, for case (c1) we have

F(AsB) n D‘zm+lh = Clh(n)a rankv2m+1(A:B) Z {Tlm(q(A})s

nn(a(B))} = 2.

For case (c2), by using K n=0and b#0,ie P(A) =<q(A),e >#km, we

have

0 0
I‘a.n]-:{l]gm(B n), a2m-+1 (B n)n) “m(q(A))‘

v

rankVy,, ., (A, B)
Aeﬂm(Q(A))}
= rank{n,e,e'sinmy(A),e sin(m + 1)¢(A)} =
For case (c3), by using 10& n = 0 we have
8]
ra‘nkvé:fn-f-] (Aa B) 2 rank{“?m(B n)! nm(Q(A))!
) 0
Bom+1(a(A))Bem+1(B n)n} =3,
when Bom 41 (q(A}) # 0, and

rank{ng, (B 1), n,u(q(A)), (m(a(A))- B n)n}
A)} =3,

IV

rankVs,, ., (A,B)

rank{e, v, nsin %(Zm +1—(=1)")y(

when Bomi1(q(A)) =0, ie. sin(2m + 1)1 (A) = 0 (note sin(A) # 0).

http://rcin.org.pl



IRREDUCIBLE REPRESENTATIONS FOR CONSTITUTIVE EQUATIONS... 359

For case (c4) we have

i rank{aom 4 (4?& n)n,

o ()
Nom(A 1), nz, (B n)} =3 if i = 3,
rankVy’ .1 (A, B) > { 2m (A 1), M2, (B 0)}

o o
rank{agmH (A n)ns n2m(A !1),

aansCAm) B} =3if§ =4

\

Finally, for case (¢5) we have

' 0 0
T&IlkVérm.l.l(A,B) 2 rank{n:Zm(A n): 7]2!11(]3 n): ((ﬂm{Q(B))

4]

0
+(=1)"n2, (B n))- A n)n}
= {e,v,b(c™ + d*™)(e-v')n} = 3.
Thus, from the above results and Table 1 in Sec. 2 in Part I we infer that the
presented set V! . (A, B) obeys the criterion (2.3) in Part I, and therefore it is

the desired vector generating set. Further, by considering the four pairs (A;, B;)
given by

Ay =nVT, By=Dy; As =Dy, Bs=nVmTy;
Ag:"t'1®'l‘1—"l"1®1'}1, B3zn\/e’;
vy =nVe’ As;=nVe, B;=nVe,

we deduce that the last four generators in the set V3 . ,(A,B) are irreducible,
respectively.

(viii) The Dgp,iqp-irreducible set (u, W) of a vector and a skewsymmetric
tensor

Vo Vo (@) U Vo (W) U {Wa} (= Vi, (u, W))
Skw  Skwh,, . (1) U SkwWami2(W) U {u A Wu, u A ny,,(Wn),
[u[2m W A ng,, (W) + (W™ 0 AWy, (1)}
(= Skwhp 41 (1, W))
Sym  Symj,, . o(u) USymy,, . o(W)U{uVv Wu,uVn,,(Wn),

0 [#]
[u|2" W V 1y, (Wn) + [W[2" 0§ VW, (0) }(= Syml,, (1, W))
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C:Sym},,.,(u),u- CW u;
By (0) U L g2(W) U {u - Wu, (u - n)( -Wn)} (= 1,4 (u, W)).

In the above table, the skewsymmetric tensor variable H is treated as having
the form H = ¢W with ¢ # 0, which is derived from the condition (3.3) in Part I
with (zg,2z) = (W,H) and g = Dy, 14 As a result, of the invariants from the
scalar products H : Skwj,. ., (u, W), we need only to retain the invariant trHW.
Moreover, consider the symmetric tensor variable C. The Dy, 15-irreducible set
(u, W) is specified by cases (c1) — (c6) given below. Setting z = C, Xy = (u, W)
and g = Dy q1p in the condition (3.3) in Part I, we derive (03= O for case (cl);
(q}= zD; + yD, for cases (¢2) and (c5); and C € span Symy,, . o(W) for cases
(c3), (c4) and (c6). From these we deduce that, of the invariants from the scalar
products C : Syms,, ., (u, W), we need only to retain the invariants given by

(4]
C : Symj,,.;(u) and C : Symy,, (W), as well as U - C W u, as has been
done in the above table. Here we would mention that for cases (¢2) and (ca) thc-
subspace Sym(C,(n)) is generated by the three generators I, n ® n and u@u

" 0 ) ; 4
in the set Sym$,, | (u) as well as the generator u VW u, and hence the invariant

0 o 0 . 1
u-C W uis resulted in.

To prove the results in the table given, we first work out the Doy, qin-
irreducible set (u, W), which is specified by (see (3.1) in Part I) I'(z) N Dayyi1p #
I'(u, W) N Dyppiqp for z = u, W. Considering the combinations of the forms for
u and W given by (2.3) and (2.4) and excluding the cases

u=an, W=cnAv; u=ae+be’, W=cEn, Bo,s(u)#0;
u=av, W=cEv; u=av, W=cnAv;
u=an+bv, W=cnAv;

which violate the just-mentioned Do,y . 1p-irreducibility condition, we derive the
following eight disjoint cases for the Dy, 1p-irreducible set (u, W):

(cl) u =aen, W = cEn, ac # 0;

(c2) u = ae, W = cEn, ac # 0;

(c3) u =an, W = cEe, ac # 0;

(c4) u=ae + be', W = cEz, z € {e, €'}, bc # 0;
(cb) u = an + be, W = cEn, abc # 0;
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u=an+bv, W =cEz, z € {e, €}, abc #0,
(c6) X B=e: wviE{ry |r=01;5:,2m},;

z=¢€: e#ve{w|r=1--,2m}.

With the above cases we show that the three presented sets Vg, ., (u, W),
Skwl,,,+1 (1, W) and Sym$,, ., (u, W) obey the criterion (2.3) in Part I. Case (c1)

can be treated easily.
For case (c2) we have

I'(u, W) N Dyyni1p = Cip(n), rankVi, ., (u, W) > rank{l?l? Wu} = 2,
rank Skwj,, ., (u, W) > rank{W} =1, |
rank Symi, . (u, W) > rank{I,n ®n,u ® u,uVv Wu} = 4.
For case (¢3) we have
rankVy,, .1 (u, W) > rank{(u - n)n,ny,,(Wn), Wu} = 3,

rank Skwh,, ., (u, W) > rank{W, u A ny,,(Wn), Wu A ny,,(Wn)} = 3,

rank SymY, ., (u, W) > rank{I,n ® n, W, n vV Wn, u V n,,,(Wn),
Wu V 113, (Wn)} = 6.

For case (c4) we have
rankVy, . (u, W) > rank{ﬁ, N2 (Wn), ag; 41 (Wn)n, Wu}

= rank{e’, e, aypi1(n X z)n,ae X z + be' x z} =3,

rank Skwh,,,;(u, W) > rank{W,uAn,,(Wn), lu|*"Wu A ns,, (Wn)

+HW[P™ 4 AWn,,, (1)} = 3,

rank{I,n ® n, W, nV Wn,u V ny,,(Wn),

vV

rank Symj, . (u, W)
uV Wu, [ul*™ u VWns,,(Wn)

" 4] o]
F[WP™ &V Wy, (0)} = 6.

For case (c5) we have

rankVy!, . (1, W) > rank{(u - n)n,u, Wu} = 3,
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rank Skwh,,,;(u, W) > rank{(u - n)nA u, W, uA Wu} = 3,
rank Symyj,, ., (u, W) > rank{I,n ® n, u® u, (u-n)nV 101,
uV Wu, i VWn,,, (1)} = 6.

Finally, for case (c6) we have the first two of the last three expressions above
and, moreover,

rank Symj,, ., (u, W) > rank{I,n ® n, W?,n vV Wn,
(u-n)nVv ﬁ,u VvV Wu} = 6.

Then, from the above results and Tables 1 — 3 in Sec. 2 in Part I we infer
that the three presented sets V3], . (u, W), Skwj,.. . (u, W) and Sym},,, , ; (u, W)
obey the criterion (2.3) in Part I, and therefore they supply desired vector,
skewsymmetric tensor and symmetric tensor generating sets, respectively. More-
over, by considering the pair u; = n and W, = Ee, we deduce that the gen-
erator Wu and the respective last two generators in the sets Skwf, . ,(u, W)
and Symj,, . ;(u, W) are irreducible. By considering the pair uz = n + e and
W, = En, we deduce that the two generators u A Wu and u V Wu are also
irreducible.

Finally, we show that the presented set I3, . ,(u, W) supplies a functional
basis for the Dgjy, 4 p-irreducible set (u, W). Towards this goal it suffices to
show that the former determines a functional basis for the Dy, 4qp-irreducible
set (u, W) under the group Dsp(n) (see the remark at the end of Sec. 4 (vi) in
Part I). In fact, the just-mentioned functional basis is obtainable from an isotropic
functional basis for (u, W, n®n) (see BOEHLER [5]). The latter is formed by the
invariants

(u-n)?, |u %, (trWN)Z [Wn[%u-W2u, (u-n) 2 -Wn,
(101 “Wn)(u- W?n).

The first six invariants given above are included in the set Iy, ., (u, W). The last
invariant is of the form (trW?)(u - n](l?l ‘Wn) + (trWN)(trW{Eu)){& ‘Wn).
The first term is redundant and the second term vanishes for each of cases (cl)
- (c6), and hence the invariant at issue is redundant.

(ix) The Daop41p-irreducible set (u, A) of a vector and a symmetric tensor

8]
V Vo (@) UV (A)U{A u} (= Vy,y(u, A))
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Skw Sk (1) USkwim2(A) U {fi A AR, (u- n)n A pry(a(A)),
A Ny (A 1) + (~1)™(u- n)n A m(q(A)),
Gom+1(A MDA+ A UA Ny (A 1)} (= Sk (u, A))
Sym  Symap,y1(u) USymy,, .o(A) U {(u-n)nV p,,(q(A)),

UV nam(A n) + (—1)™(u- n)n V mm(q(A)),

(o]

aom+1(A n)nV d+Auv ngm(f; n)} (= Symj,, ., (u, A))

0 00

R r: Vﬁ';niw] (l.l), r- VQ":n—H(A)) r -:& u; H: Skwgm+1 ('I.l); u- Cu;

O o 0
u

141 (W) U Timg2(A) U {8 - AG, G- A28, (u-n) & A n)
(E Jrj:.'n-{~1{u1ﬁ‘)}-

In the above table, the skewsymmetric tensor variable H pertains to
span Skwj,,.,(u) or span Skwg,,,2(A). This fact can be derived from cases
(c1) - (c6) for the Dgypiyp-irreducible set (A, B) that will be given below, as well
as the condition (3.3) in Part [ with zo = H and z € {u, A} and g = Doy y1h. As
a result, of the invariants given by the scalar products H : Skw,, ;(u, A), we
need only to retain those given by H : Skw4,, ., (u) and H : Skwgm12(A). More-
over, by applying cases (cl) - (c6) for the Doy, 41p-irreducible set (u, A) given
below and the condition (3.3) in Part I with Xy = (u, A) and (zo,z) = (A,C)
and g = Daps1p, we deduce that C € Sym(Ca,(n)) for case (¢5) below and
C € span Symy,,,.(A) for cases (c1) - (c4) and (c6) below. Accordingly, of
the invariants given by the scalar products C : Symj,, ., (u, A), we need only to

0
retain C : Symy,, »2(A) and u - Cu. The latter invariant results from the fact
that for case (¢5) below, the subspace Sym(C,(n)) is generated by the generator

u® u and the generators in the set Symy;u42(A).

To prove the results in the table given, we first work out the Dgpiin-
irreducible set (u, A), which is specified by (see (3.1) in Part I) I'(z) N Doy 1 #
I'(u,A) N Doy for z = u, A. Considering the combinations of the forms for

u and A given by (2.3) and (2.5) and excluding the case

(6]

u=cn, A=a(v@v-v ®Y)+bnVv;

u = ae + be', e eDy + dDy, Bomii(u) # 0 or fomsr(q(A)) #0;
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(4]
u=cr, A=a(t@T—-7TRT)+bVnT T="14;

u=cn+dv, f&=a{v®v—v’®\");

u=cn+dv, .&za(v@v—v'@v’)+bn\/v;

which violate the just-mentioned Dy, 15-irreducibility condition, we derive the
following eight disjoint cases for the Dy, 4 14-irreducible set (u, A):

&)

(c1) u = an, A= ¢D + dDs, a(c® + d?) # 0,
(c2) u = an, A= ¢D; + dDy, ad # 0;
((’:3)!1:&‘\*,11:6]31,0.65&0,99&\'6{Tzrl?‘=],”',2m};
(c4) u=ae+be', A=cDy+dD;, i =3, 4, bd #0;
(c5) u = an + be, A= cD; + dDs, abd # 0;
u=an+bv,R=CD1+dD,‘,z’=3,4,abdaé0,
(c6) § i=3: e#veE{ry|r=1,--,2m},
i=4: v€{rs|r=01,---,2m}.

With the above cases we show that the three presented sets Vi, ., (u, A),
Skwf,. .1 (u, A) and Sym},, . ;(u, A) obey the criterion (2.3) in Part I.
In fact, for case (c1) we have

F(ll, A] N D2m+lh = Cl.’!(n) if ﬁ?m+i(Q(A)) =0,
rankVy . (u, A) > rank{(u - n)n,n,,(q(A)), Aen,,(q(A))}

3 if 627::-{—1 (Q(A)) ?é 0 3
2 if .{3’2m+l (Q(A)) =0,

rank Skwgm+l (us A) 2 rank {}82m+1 (Q(A))N~ nA nm(Q(A)):

3 if ﬁ2m+l(q{A)) # 0?

nA pm(q(A))} — f
Lif ﬁZrn.+l(q(A)) =0,
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v

rank{L,n & n, A, ®am1(a(A)), 0 V n(a(A)),
nVpn,(q(A))}
rank{I,n® n,Dy,Dy,nVe,nve} =6
if Bom+1(a(A)) #0,
rank{I,n ® n, R, nVmn,(q(A))} =4
if fom+1(q(A)) =0.

rank Symj,. ., (u, A)

For case (¢2) we have
rankV, ;1 (u) > rank{(u - n)n, (A n), A u} = 3,

rank Skwh,..(u) > rank{nA 3 n, f& uA ngm(f; n),n Ang, (R n)
+(=1)"n Amy,(q(A))}

= rank{nAe,eAe,(¢* +d*™)nAe} =3,

0 0 o o 0
rank{I,n®n, A n® A n, A, A uVny,(An),

v

rank Symy,, | (u, A)
nV (& 1) + (~1)™nV mn(q(A))}
= rank{I,n®n,e’®e’ ,nve ,eve,
(d®*™ +c*™)nVe}) =6.
For case (c3) we have
I'(u, A) N Dami1n = Cra(n),
rankVyr, ;1 (1, A) > rank{u, n,,(q(A))} = 2,
rank Skw’, . (u, A) > rank{1 A AU} = 1,
rank Symf,,;(u, A) > rank{I,n ® n,u ® u, K} =4.

For case (c4) we have

(¢} e} 0
rank{u, az, An)n g, (An)} =3ifi=23,
kL S A g e A (R R Wi T

rallk{ﬁ,ﬂgm(ﬁ n),f\ n}=3 ifi=4,
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o]
rank Skwj,, . (u, A) > rank{nA A n,uAn,

4] o o
a2 41 (An)nAu+ AuA 'r|]- =3

rank Symj,, . (u, A) > rank{I,n ® n, ;i ne R n, f&, uVvn,

[e] 0 o]
aom+1(An)nvVu+ AuVn} =6,

where n = ngm(f& n).
For case (c5) we have (note that d # 0, i.e., (A) =< q(A),e ># k)

rankVomy1(u, A) > rank{(u - n)n, ﬁ,.& nr=3

rank Skwl,..1(u,A) > rank{(u-n)nA u,1u A A,
n A (q(A)),n A py(q(A))}
= rank{nAe,eAe’ ,nAe sinmip(A),
nAe sin(m+1)P(A)} =3,

o O

rank Sym&,, ., (u, A) rank{I,n ® n, u®u,(u- n)nV u, A,

v

nVm,(q(A)),nVp,(q(A))}
= rank{Iln®n,e®e,nVvVeeVe,
nVe'sinmy(A),n Ve sin(m+ 1)p(A)} =6.

Finally, for case (c6) we have
I'ElI‘lkV-;:n+l (u, A) 2 I‘El.Ilk{(ll ¥ n)n, ﬁ! T]?m(-g l’l)} == 3!
rank{(u - n)nA u, nA K n,uA nzm(,.g, n)}

=3 1if w=tie
rank Skwh,, ., (u,A) > #

rank{(u - n)nA u, nA A n, Aun N2m (;& n)}
:3 ],f ?:=-”—l, v=e,

[+]

rank{l,n@n,ﬁ n@ﬁn,f&,ﬁ@u.n(u-n)nv ﬁ} =6ifvizte,

0o 0 0]

D2 rank{l,n@n,ﬁ @1, (u-n)nVu, A, A uVny,(A n)}
=3 if i=4, v=e,

where D = rank Syms,, . (u, A).
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From the above results we infer that the three presented sets Vy, . (u, A),
Skw5,,+1(u, A) and Symyj,, . ;(u, A) obey the criterion (2.3) in Part I, and hence
they supply the desired vector, skewsymmetric tensor and symmetric tensor gen-
erating sets, respectively. Further, by considering the pair u; = nand A; =nVe/,

0
we deduce that the generators A u and the respective last two generators in the
sets Skws,, .1 (u, A) and Symy,, , ,(u, A) are irreducible. By considering the pair
u; = n and A; = e V€', we infer that the two generators (u-n)n A py,,(q(A))
and (u-n)nV py,,(q(A)) are irreducible. By considering the pair uz = v and
0
Aj = D,, we infer that the generator uA Aﬂ is irreducible.

Finally, we show that the presented I3, ;(u, A) supplies a functional basis
for the Doy, +1p-irreducible set (u, A) under the group Doy, +14. Towards this goal
it suffices to show that this set determines a functional basis for the set (u, A)
under the cylindrical group Dap(n) (see the remark at the end of Sec. 4 (vi)
in Part I). In fact, the latter is obtainable from an isotropic functional basis for

(¢}
(u, A,n®n) (see BOEHLER [5]), plus the invariants n- An and trA. By using the
related result for isotropic functions we know that the just-mentioned isotropic
o (4] (8]
functional basis is formed by the invariants u- A u, u- A ?u, (u-n) u - A n,

o
as well as certain D,op-invariants of u or A. Each of the latter is determined by
the basis I3, ,(u) or Iymy2(A). The first three invariants yield the last three

invariants in the set I5,, ., (u, A).

2.3. D4y 1-irreducible sets of three variables

(x) The Dy, 415-irreducible set (u, v, W) of two vectors and a skewsymmetric
tensor
0 0
V. {(u:n)n,u,(v-n)n,v, Wu, Wv}

Skw {W,uAv,(rWN)nA (u x v)}
Sym {I,n@n,ﬁ@ﬁ,%@g,uVWu,vVWv,qu,
(trWN)n V (u x v)}
R {(u-n) (v )2 [u ]| V[ (rWN)*} .

From the Dy, p-irreducibility condition for (u,v, W) (see (3.2) in Part I)
we know that (x, W) is Dy 1p-irreducible and I'(x, W) N Doy # C for each
x € {u,v}. Hence, case (cl) or case (c2) given in (viii) holds for each x € {u,v}.
It is evident that u and v are linearly independent. From these we deduce that
the Doy qp-irreducible set (u, v, W) is specified by u = an, v = be, W = ¢cEn
with abe # 0. With the aid of the latter, the presented results can be proved
easily.
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In the above table, the invariants from the scalar products have been omitted.
The reason is as follows. First, the invariants r-p, where { runs over the presented
vector generating set, have been covered before. Second, the skewsymmetric
tensor variable should be of the form H = ¢W, and hence here we need to
consider only the invariant trHW, which has been covered before. The other
form for H leads to I"(W, Q) N Dyypy1n = Ci, which has been treated in (iv).
Finally, the symmetric tensor variable C should be of the form ‘&: aDy + bD»,
and hence here we need to consider only the invariants trCG, where G is the
first six symmetric tensor generators given. The six invariants have also been
covered before. The other form of A leads to I'(W, C) N Doy = Ch, which
has been treated in (vi).

(xi) The Dgypyip-irreducible set (u,v,A) of two vectors and a symmetric
tensor

V. {(u-n)n,u,(v-n)n,v,n,(q(A)))
Skw  {uAv, uA :&:01, (u-n)n A p,,(q(A)), v A _fnc.)r,
(v-m)nAp,(q(A))}
Sym {Ln®n,u® u, Ve v,uVy, f&, (u-n)nVp,(q(A)),
(v-m)nVp,(q(A))}
R {(u-n)? (v n)? | 4[|V ]qA)P n An,trA, - Al} .

From the Da,, p-irreducibility condition for (u,v,A) (see (3.2) in Part I)
we know that (x, A) is Dyypiqp-irreducible and I'(x, A) N Doy 418 # C) for each
x € {u,v}. Hence, case (c1) with fom+1(q(A)) = 0 or case (c3) given in (ix)
holds for each x € {u,v}. It is evident that u and v are linearly independent.
From these we deduce that the Dy, p-irreducible set (u,v, A) is specified by
u=oan, v=bv, K: ¢D; with v # e and abe # 0. With the aid of the latter,
the presented results can be proved easily.

In the above table, the invariants from the scalar products have been omitted.
First, it is evident that the invariants r - and trCG, where ¢ and G run over
the presented vector and symmetric tensor generating sets respectively, have been
covered before. Next, the skewsymmetric tensor variable H should be of the form
H = ¢En, and hence here we need to consider only the invariant v-H f& v, which
has been given before. The other form of H leads to I'(W, A) N Dy p1n = Ch,
which has been treated in (vi).
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(xii) The Day, 4 1p-irreducible set (u, W, A)

4 {(ll ‘n)n, ﬂm(Q(A))aWﬂm(Q(A))}
Skw {W,(u-n)nAp,(q(A)), (u-n)(trWN)n A (n x n,(q(A)))}

Sym {Ln@n,A,(u-n)nVp,(q(A),AW-W A,
(u-n)(trWN)n V (n x n,,(q(A))) }
R {(u-n)? (trWN)? n- An,trA, |q(A)[*} .
From the Dy, 4 p-irreducibility condition for (u, W, A) we know that (W, A)

is Doy 1p-irreducible and I'(W, A) N Dypy1n # C1. Hence, case (cl) given in

(vi), i.,e. W = ¢En and R: aD; with ac # 0, holds. Further, we derive u = bn
with b # 0. With the aid of these, the four presented results can be proved easily.

By virtue of the same argument used in (x), we have omitted the invariants
from the scalar products.

(xiii) The D: 1p-irreducible set (u, A,B) of a vector and two symmetric
2m+ 3 ¥
tensors

4 V;:ri+1(u=A) U ng+1(u1B}

. 00 0o
Skw  {(u-n)nAp,(q(A)), (u-n)nAp,(q(B)), AB -~ BA}
Sym Symj,. .,(u,A)USymg,, ., (u,B)
R {(u-n)%trA,n-An,trB,n-Bn,trA.B.}.

From the Dgp, 4 14-irreducibility condition for (u, A, B) we know that (A, B)
is Domy1p-irreducible and I'(A,B) N Dyypi1n # €. Hence, case (cl) given in
(vii) holds. Further, we derive u = bn with b # 0. Thus, the Dy, -irreducible
set (u, A,B) is of the form

u = an, A bleRe—¢e ®@¢€), B= c(vev—v ®vV), abe #0,
vV=nxv,e#veE{r|r=1,--,2m}.
With the aid of the latter and the formula (2.4) in Part I, the presented results

can be verified easily. All the invariants and generators given here have been
covered before.

(xiv) The set (u, W, Q) of a vector and two skewsymmetric tensors

Any given set (u, W, Q) can not be a g-irreducible set for each subgroup
g COrth with —I ¢ ¢ and hence can be omitted. In fact, this fact is obviously
true if W and Q are linearly dependent. If W and Q are linearly independent,
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then we have I'(W,Q) N g = C; for each just-mentioned subgroup g. The
foregoing fact is also true.

2.4. The general result

Applying Theorem 2.1 in X1A0 [20] and incorporating the fact indicated at
the outset of this section, from (a) — (c¢) we obtain the following general result.

THEOREM 7. The four sets given by

I‘;;m+l(u); I4m+2(W)' I‘1m+2(A); I*im-{-?(WaQ:HQA: B$C)1

0 o e ) 0
u v, 11 rl)m( )1“' 'r]?m(u):

)(v
u- l'l) ﬂ Wn u w “a 62m+1( )(thN) (u * n)nmn(ﬁ) 1 Wn,
(l.l n)“2m+l Wl’l) l.l rlZm(wn] n?n&(wn) Wu s N2m Wn)

-1

—_

0 (8] o,
l(.)l'Al?l,(ll I'.l)'l‘.]l Anll Azﬂrn%n( ) All (ll n)ﬂ?m(

) A
'“m(Q(A))r “m(Q(A)) X Ae ﬁ? (l.l £ n)a’2m+1 (A n), u 'an{fg- n)a

| A n2a2ms1(A n)(8 - A n) + J(A)Boms1(A n)(u - n);

n1

=t o]

u-Wv, [u-n?™ 1 (u-n)ng, (v) - Wn+ |v- 0|1 (v-n)ny, (1) - Wn;
u A v, [u-n?" ! (u-n)ng, (V)- A nt |v-n[™ ! (v -n)ng, () A n;
Mo (Wn) - Qu, ny,, (Qn) - W,

W™ Bom i1 (Qn)u - (B : W) + |Q*™ By 1 (Wn)u - (E : Q);

(T (a(A)) + (=1)™nzm(A ) - Wa,

(u- ) (trWN)Bzm41(A n) — p,u(q(A)) - Wu, it - A W i,

| A 0™ a1 (Wn) (@ - A n) + [Wn[™ag,.1 (A n) (i -Wn);

(u - 0) (M (q(B)) + (~1)™ny0n (B 0))- A n),

(u-0)((7m(q(A)) + (~1)™nom(A n))- B n),

| A 0] a3n41 (B ) - An+|Bn™am1(An) 4B,

(- 1) (Bam1(A 0)Boms1 (Q(B)) + Boms1 (B 0)Bams1(a(A)));

(=]

and

0
VZm-H (u); V2,;n+l (W)! V{:n-fl (AJ! Wu; A u;
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and

and

Wy, (Qn), Qny,,, (W),

(W™ 41 (Qn)(E : W) + | Q2™ By (W) (E : Q);
W (mtm(a(A)) + (=1)™nym (A 1)),

(trWN)Bams+1(A m)n + Wo,,(q(A)),

| A n[*™ a1 (Wn) A n+ [Wn|?™agm1 (A n)Wn;
(T (a(B)) + (~1)™ny0n(B m))- A n)n,

(mm(a(A)) + (~1)™n3(A 0))- B n)n,

| A 0?41 (B n) A n+ | B /"y (A n) B n,

(ﬁ?m-ﬁ-l (K n)ﬁ?m—i—l {Q(B)) il B2m+1 (ﬁ n}ﬁ?m-H (Q(A]))n§

Skwgm-;_] [u); Skw4711+2 (w)! Sde‘m-{-‘Z(A)i
uA v, [u- 021w n)n Ang, (V) + [v - 02 (v - n)n A ng, (W);
0 0 O . 0 00 00
WQ-QW;A W+ W A, AW?2-W? A;AB - BA,
0 o0 0 00
BnA ABn, A nA BA n;
uA W, u Ay, (W), [u2 Wu Ay, (Wn) + W27 & AW, (1);
Q 4]
a A Al (1n)nAp, (q(A)), uAN s, (A n)+(~1)™ (u-n)nAm, (q(A)),

(.l’:_),n+1(}g, n)nA u s 10& uA Hzm(f& n);
(trWN)n A (u x v); (u-n)(trWN)n A (n x n,,(q(A)));

Syl“gm-{-l (u); Symyy, 12(W); Sym g (A);

u Vv, [u- 02" (@ n)n Vg, (V) + v n?m (v - n)n v ng, ();
WQ + QW, [trQN|(trQN)Wn V NWn

+[trWN|(trWN)Qn V NQn;

(9] o] (4] [0} o o0 (4 ]
AW-WA,(trWN) AnVN A n;AB + BA;

uV Wu,u Vny,(Wn),

[u[ W V 1y, (W) + [W[2™ & VWi, (W);
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(- )0V pr(a(A)), 1 V napm(A 1) + (=1)™(u-n)n V ma(a(A)),

241 (R n)nV u+ K u Vﬂzm{fk n);
(rWN)n V (u x v); (u - 0)(trtWN)n V (n x n(a(A)));

where (u,v) = (ll;;,llj), (W, Q,H) = {W;hwnwﬂ)x (A,B,C} = (AL, A,
An), i>i=1,,8;0>1> =18 N>M>L= 1, supplya
functional basis and irreducible generating sets for scalar-, vector-, skewsymmetric
and symmetric tensor-valued anisotropic functions of the a vectors uy, -+, u,, the
b skewsymmetric tensors Wy,---, Wy and the ¢ symmetric tensors Ay, ---, A,
under the group Doy for each m > 1. In the presented result, n and e are two
orthonormal vectors in the directions of the principal azis and a two-fold rotation
azis of the group Daopyip-

In the above result, I4,12(W,Q,H, A, B, C) is used to represent the invari-
ants depending on two or three symmetric and/or skewsymmetric tensors given
in Theorem 1 in Part 1, with the replacement of m by 2m + 1 therein.

3. Crystal and quasicrystal classes D4

The classes at issue take the forms

2km g‘”ﬁze

(31)  Dana={(-1)*R¥, (-1)*RE, |6s=T—, ox=R

k=1,:,4m}.

They include the crystal class Dyy as the particular case when m = 1. Each oy,
and each o9, are a two-fold rotation axis vector and a reflection axis vector of
the group Dynq, respectively. In particular, both e (= o4m) and €' (= ogy,) are
two mutually orthogonal two-fold axis vectors of Dgy,pq. Throughout this section,
o, u and v will be used to represent one of the vectors oy, one of the reflection
axis vectors og,_1 and one of the two-fold rotation axis vectors og,, respectively.
A useful fact for the group Day,g is: if ¢ is a two-fold rotation (resp. reflection)
axis vector, then ¥ = n x T is also a two-fold rotation (resp. reflection) axis
vector.

For the five sets of variables, (W), (A), (W,Q), (W,A) and (A,B), it fol-
lows from the same argument indicated at the start of Sec. 2 that results for
functional bases and skewsymmetric and symmetric tensor generating sets rela-
tive to the group D4, as well as related invariants from the scalar products, are
obtainable from the corresponding results given in Sec. 4 in Part I by the replace-
ment of m with 2m, and hence we shall omit them in the process of derivation
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to come. As a result, in what follows, for the foregoing five sets of variables, we
only need to derive vector generating sets and their related invariants from the
scalar products. Moreover, according to Sec. 4 (xiii) in Part I and Sec. 2 (xiv) in
this part, there is no need to take the set (u,v,r) of three vector variables and
the set (u, W, Q) of a vector variable and two skewsymmetric tensor variables
into account.

3.1. Single variables

(i) A single vector u

V

Skw

Sym

{1, Bom ()0 — (u - 0)0 X 1y 1(8)

(- 0¥ In + By (W0 X Moy (W)} (2 Vi, (W)
{Engm_1 (@), (u - n)ag, ()N — fay, (1)nA 1,
Bam(WN + (u-n)"™=1nA u} (= Skwj, (u))

{I,n®n,u®u,nV(nxng,_;(1)) + dm(u-n)Dy,

(u-n) U V(R X gy, (1)) = fom(W)nV 1,

Bom (W) U V(1 X Mgy, 1 (1)) + (u-n)~1nv u} (= Symy,, (u))

=iy (l' Y n)ﬁ?m(ﬁ) = (u ¥ n)[na ?‘1 rl')m—l(u}]r

0

(r-n)(u-n)"™=1 = By (0)[n, ¥, ngm_y (0)]; trH(Engm_, (1)),

(trHN) (u - n) o () + Bom () U -Hn,

(&)

(trHN) A (1) — (u-n)*™~! 4 -Hn;

0

trC,n - Cn, i - C1, [0, C 0. Mgy (8)] — dim (u - n)trCD,,
(u-n)n, C“ Nam—1 ()] + Bam (1) 1 - Cn,

Bom () [0, CU, Mg (W)] — (u-n)™1 4. C

{(u-n)%| 1 2, g (W), (u- 0)fom(0)} (= I, (u))

First, we prove that the presented set I (u) supplies a desired functional
basis. In fact, the latter is obtainable from an isotropic functional basis for the

extended variables (u, G,n®n) with G = nV (n X ngym_1 (1)) + 81m (u-n)Dy (see
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Theorem 4 and Theorem 6 in X1A0 [17] (!). Here and henceforth, the Kronecker
delta dy,, takes values 1 and 0 when m = 1 and m > 2 respectively. Applying the
related result for isotropic functions we know that the just-mentioned isotropic
functional basis is formed by the invariants

u-u,(u-n)?trG,trG% trG* n- G'u,u- G'u,u- G(n ® n)u,

where ¢ = 1, 2. From the above invariants we derive the set I} (u).

Next, we prove that the three presented sets Vi, (u), Skwj, (u) and
Symf, (u) supply the desired vector, skewsymmetric tensor and symmetric ten-
sor generating sets, respectively. Towards this goal we show that each of them
obeys the criterion (2.3) in Part I. In fact, the case when u = 0 is trivial. In what
follows, suppose u # 0. The respective last two generators in the foregoing three

(o] 4] 0o 0 0
sets produce n and n X ng,_;(1), B2, (u)N and nA u, u V(n x ng,,_;(u)) and

nVv {)1, when A = (uéQ;:‘]i‘:g_l ﬁ::[{?] = (u=n)"+ (,Bgm(l?l)}z # (. Hence,

we have
rank{n, n x ng,,_; (1), u} = 3 if aom(U)A £ 0,
rankVy,, (u) > { rank{n,u} = 2 if asn,(0) =0, u£0,

rank{u} =1if A=0or u=0,

rank{N, nA U, Eny,,_; (1)} = 3 if agm(0)A # 0,
rank Skwj,, (u) > ¢ rank{nA u} =1 if ay,(1)A =0, u#0,
0if u=0,

; rank{I,n@n,ﬁ@ﬁ,nvn’,nV ﬁ,ﬁvn’} =6
if Q’Qm(&)ﬁ #0,
n

rank Symj,,(u) > { rank{I,n®n,u @ u,nV u} =4 if ayn,(u)A =0,
u# 0,

| rank{I,n ® n, 6, D2} = 2 + 0y if U= 0,

') In (3.21) and (3.30) therein, some corrigenda should be made. Here and later they are:

o
the vector-valued functions 1,,,_,(z), z :8, Wn, A n, appearing in (3.21) and (3.30) (for
m = 1) and D, in (3.31) should be changed to N1,,. _,(z) and D, respectively.
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where n’ = n x TEQm__l({,l). From these results and

Cin(w) if azm (W) = 0, u# 0,
I'(u) N Domg =< Ca(v) if A=0, U#£0,
Comp(n) if U=0, ie. u=cn,
as well as from Tables 1 — 3 in Sec. 2 in Part I, we deduce that the three sets

at issue obey the criterion (2.3) in Part I, respectively. The three presented
generating sets are minimal.

(ii) A single skewsymmetric tensor W

V. {n xngpn_1(Wn), W(n X ngp_q(Wn)), W(n X 01 (n x Wn)),
Bam(Wn)n} (= V3, (W)

2m
R [nv I', Nom—1 (Wn)L [ns WI‘, Nom—1 (wn)]! [n= Wzr! MNam—1 (Wn)]!
(r - n)Bom (Wn).

We show that the presented set V., (A) supplies a desired vector generating
set. In fact, an anisotropic vector generating set for W under the group Dapnq
is obtainable from an isotropic vector generating set for the extended variables
(W,n xng,,_ 1 (Wn),n®n) (see Theorem 4 and Theorem 6 in X1A0 [17] and the
preceding footnote). From the related result for isotropic functions we know that
the latter is just given by the presented set Vi, (W). Further, by considering the
two tensors W; = E(n + e) and Wy = En + n A oy, we infer that each of the
four generators in the set Vi, (W) is irreducible.

(iii) A single symmetric tensor A

V {nx ng,-,._l(ii n), A (0 X ngm_1(A 0)), Bam(A 1) A 1, B (q(A))n,
J(A)anm(q(A))n} (= Vi (A))

R [n! T Nom—1 (A Il)], [n1 A r, “|2-m—1(1(i n)]:ﬁ2m{-:i n) ?‘ . K n,
(r-n)Bm(q(A)), (r-n)J(A)am(q(A)).

We show that the presented set V3! (A) supplies a desired vector generating
set. To this end we show that this set obeys the criterion (2.3) in Part I. The

(o] (4]
case when A= O is trivial. In what follows, suppose A# O. First, utilizing the
equality

4]

(3.2) lgt (n x ']2m—1(-; n)) = _ﬁi!m(;- n)n + Ae(n X Tlﬂm—l(A n)),
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we have
0 j o g o
rank{A n,n(A)’, Bom (A n}n} =3 if Bam(A m) # 0,

rankVy,, (A) > rank{n,n(A)", Aen(A)'} =3 if [34,,1(3 n) =0,
J(A) #0,

where n(A) =n X 1y, (10& n). Second, we have

rankVyy, (A) > rank{n X ny,1 (A n),n} = 2if J(A) = cr:ﬂ:(A ) '=4;
rank{n x T]2m_1(A n)} =1 ifJ(A)= Bam(A n) =0,

with K n # 0. Third, we have

WV (A) > rank{ B, (q(A))n} = 1 if An—«O Bm(q(A)) #0,
e 0 if | An|=pn(q(A)) =

0
The cases for A # O involved in the above results cover all possible cases. Thus,
from the above results and from

Cin(w) if An#0, J(A) = agm(A n) =0,

Co(v)if An#0, J(A) = fom(A n) =0,

Ca(n) or Cpy(n, 0 x p) if An=0, fu(q(A)) #0
[ Da(n,v,n x V) if | A n| = fn(q(A)) =0,

F(A) N DQ?rlrf = 4

for K;& O, as well as Table 1 in Sec. 2 in Part I, we infer that the presented
set obeys the criterion (2.3) in Part I. Further, by considering the three tensors
Ay =nV(e+o0;)and Ay = 0y ® 0, and Az = D; + nV o, we deduce that the
five generators given are irreducible respectively.

3.2. Dy, 4-irreducible sets of two variables
(iv) The Dgg-irreducible set (u,v) of two vectors

0

Vo {u,v, a0, (Q)vx U, @ (V)ux v} (= Vil (u,v))
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Skw  Skwj, (u) USkwh, (V) U{uAv,
((u-n)ua- n|2"“lugm(3) +(v-n)|v- n]Qm'lagm(ﬁ))N}
(= Skwy,, (u,v))
Sym Symj, (u) USymj,, (v)U{uVyv,
(u-n)|u- n[zm“agm[{)r) v V(nx v)
+(v - n)|v - 02" ag, (1) U V(nx 1)} (= Sym}, (u,v))
R ryur- v,agm('g')[r,u,g],azm(ﬁ)[r, v, &];
H : Skwh,,(u), H : Skw),,(v),u - Hv; C : Symj,, (u),
C : Symj,, (v),u- (03 v; (trHN)((u - n)|u - nizm—lagm(%)
+(v - )|V - 02" g (8)); (- 1) - 02 g1 (V) 1, ¥, CV]
+(v-n)|v- n|2m+lagm(a)[n, u, E:fn];
L. ()ull (v)U{(u-n)(v-n),u-v} (= L,(a,v))

To prove the above results, we first work out the Dj,,4-irreducible set (u,v),
which is specified by (see (3.1) in Part I): I'(u,v) N Dopa # I'(2) N Doppa, 2 =
u, v. Evidently, we have I'(z) N Dapmg # C). The latter implies that Ry or —Rj
or RY, pertains to the symmetry group I'(z) for each z = u, v. Hence, we deduce
that each vector z € {u, v} takes one of the forms:

(3.3) en, ¢c#0; an+by, b#0; cv, c#0.
Considering the combinations of the above forms and excluding the cases
u=an, v=>bn; u=an, v=cn+ du;

u=an+by, v=cn+dy;, u=av, v=cy;

which violate the Dy,,4-irreducibility condition for (u, v), we derive the following
four disjoint cases for Da,4-irreducible sets (u, v):

(cl) u=an, v =be, ab # 0;

(c2) u=ae,v=>bv,v#e ab#0;

(e3) u=ce, v=an+ bu, be # 0;

(c4) u =an + boy, v = cn + du, u # oy, bd # 0.

Then, for case (c1) we have

(3.4) rankVy, (u,v) > rank{u,v,ux v} =3,
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rank Skwhy, (u,v) > rank{Eng,_1(V),u A v,N} = 3,
rank Symj,. (u,v) > rank{I,n ® n,v @ v,n V (nVng,,_; (V)),
uVv,vV(nx 3)} = 6;
and for cases (¢2) — (c4) we have (3.4) and
rank Skwh,, (u,v) > rank{En,,,_ 1( )y Engpm_1(V), uAv}i=3,

rank Symj, (u,v) > rank{I,n®n,u ® 1,

nV (0 X Mgy (), 0V (1 X Mgy (V)),u V v} = 6.

From the above results we deduce that the three sets at issue obey the cri-
terion (2.3) in Part I, respectively, and hence they supply the desired vector,
skewsymmetric tensor and symmetric tensor generating sets. Further by conqid
ering the pair up = n and v = p; we infer that the generator ﬁgm( vjux v and
the respective last two generators in the two sets Skw’, (u,v) and Sym},,(u,v)
are irreducible, respectively Moreover, by exchanging ug and vy we know that
the generator ﬁgm( Jvx u is also irreducible.

By means of the relevant arguments used in (iv), (viii) and (ix) in Sec. 2,
it can be proved that the set I (u,v) given here and the sets I} (u, W) and
I, (u, A) given later supply the desired functional bases for the Dy, 4-irreducible
sets (u,v), (u, W) and (u, A), respectively. Henceforth, this procedure will not
be repeated.

(v) The Dgp4-irreducible set (W, Q) of two skewsymmetric tensors
V' Vo (W) U V3, () U {Q(n X Ny (Wn)), W(n X 13,1 (Qn)),
((trWN)[trWN|?™~ Loy, (Qn) + (trQN) [trQN|?>" L ay,,, (Wn))n}
(= Vam(W,0Q))
R 1 Vo, (W),r-Vy,(Q),[n,Qr,ny,_(Wn))], [0, Wr, ngp,_1(Qn)],
(r-n)((trWN)|trWN[>*" 1 ay,, (Qn) + (trQN)|trQN|*™~ ! a,,, (Wn)).

To prove the presented results, we first work out the Da,,4-irreducible set
(W, Q), specified by (see (3.1) in Part I): I'(W, Q) N Doyg # I'(2) N Dopa, 2 =
W, Q. Evidently, we have I'(z) N Dyqg # C1. The latter implies that RY or
—Rj, or Rj, pertains to the symmetry group I'(z) of z for each z = W, Q.
Hence, we deduce that each skewsymmetric tensor z € {W, Q} takes one of the
forms:

(3.5) CEn, ¢c#0; cEu, c#0; cEv,c#0.
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Considering the combinations of the above forms and excluding the case W =
¢ which violates the Dg,,g4-irreducibility condition for (W, Q), we derive the
following five cases for Doy,g-irreducible set (W, Q):

(c1) W = aEn, Q = bEocy, ab # 0;
(c2) W = gEn, Q = bEe, ab # 0;
(c3) W = aEe, Q =bEv, v # e, ab # 0;
(cd) W = aEoy, Q = bEp, u # o1, ab # 0;
(c5) W = aEpu, Q = bEe, ab # 0.

With the above five cases we prove that the presented set V3, (W, Q) obeys
the criterion (2.3) in Part I. We have

rankVa,, (W, Q) > rank{n X nyp,_1(Qn), Q(n x ng,_;(2n)),
W[ﬂ X T'|21r:r1-~l(£)n))]' =3,

rankVj, (W, Q) > rank{n x ny,,_;(Q2n), W(n X ny,,_1(Q2n)),
aom(Qn)n} = 3,

rankVy, (W, Q) > rank{n X ng,,_1(Wn),n X ng,,_1(Qn),
W(n x nyp,—1(2n))} =3,

for cases (cl) - (c3), respectively, and
rankVy (W, Q) > rank{n x ny,,_1(Wn), W(n X ng,,_;(Wn)),
n x n?m—l(nn)} =3,
for cases (c4) — (c5).
Thus, we infer that the presented set Vi, (W, Q) supplies a desired vector
generating set. Further, from case (c1) we know that the last two generators in

the set Vj (W, Q) are irreducible. By exchanging W and Q in case (cl1) we
know that the generator Qns,,_;(Wn) is also irreducible.

(vi) The Dgpq-irreducible set (W, A) of a skewsymmetric and a symmetric
tensors

V' Vg (W) UV (A) U{(trWN)azm(A n)n,
(om (Wn) + (trWN)|trWN | 1) a,,(q(A))n,

(trWN)?"2W (1 X nam_1 (A 1)) + | A "2 A (0 X Ngpm—1 (Wn))}
(= V{.(W,A))
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Rt Vom(W),r- Vam(A), (r - n)(trWN)azm(A n),
(r-n)(a, (Wn) + (trWN)|trWN|2m_1)am(q(A)),

(trWN)2™=2[n, Wr, o1 (A 0)] — | A [?™2[n, A 1,15, (Wn)].

To prove the above result, we first work out the Dy, 4-irreducible set (W, A),
which is specified by (see (3.1) in Part 1) I'(z) N Dopg # I'(W,A) N Dypa
for z = W, A. Evidently, I'(z) N Dojpg # C; for 2z = W, A. Hence, the
skewsymmetric tensor W takes one of the forms given by (3.5). In a similar way
we deduce that the symmetric tensor A takes one of the forms

4]
A= aD, + bDy, a? + b # 0;

(3.6) A=au@p-y@W)+bnvy, ' =nxp, b#0;
R:a(v@v—v’@v’)+bn\!v’, vi=n v Bk,

Considering the combinations of the forms given by (3.5) - (3.6) and excluding
the cases

W = cEn, A= aD; + bD2, fam(a(A)) # 0;
W = cEo, R: alo®o— o' @),

W = cEo, Kza(c@a-cr'@a’)+bn\/(r;

which violate the Dog,q-irreducibility condition for (W, A), we derive the follow-
ing five disjoint cases for Dyy,g-irreducible set (W, A):

0

(c1) W =cEn, A=a(c® 0 — ¢’ ® ¢'), ac # 0;

(c2) W = cEn, A= alc®@o—o ®@c')+bnVd, be#0;

(c3) W = cEg, R: alc® o —0o @c')+bo Vo, be#0;

(c4) W = cEoy, Rz alc®o -0 @0c')+bnVd, o#o0y, be#0;
(ch) W = cEe, A alc®c—d ®@c)+bnVva, o#e, be#0.

With the above cases we prove that the presented set V., (W, A) obeys the
criterion (2.3) in Part L. First, using the formula (2.4) in Part I and the equalities

(3.7)  rank(V(Cin(a)) UV(Cia(b))) =3, rank(V(Cia(a)) UV (Ca(b))) =3,
for any two noncollinear vectors a and b, we have
rankVy, (W,A) > rank(V,,,, (W) UV, (A))
= rank(V (I'(W) N Dapg) U V(I'(A) N Dapg)) =3

http://rcin.org.pl



IRREDUCIBLE REPRESENTATIONS FOR CONSTITUTIVE EQUATIONS... 381

for case (c4) and for case (¢5) with o = og,—;. For case (c1) we have
I'(W,A) N Dymg = Cz(n),
rankV;! (W, A) > rank{Bn(q(A))n, am(q(A))n} = 1.

2m
For case (c2) we have

rank{n(A)’, A n(A), Wn(A)'} = 3

if '@ = Gor—i,
rankVy, (W, A) > i

rank{n(A)’, (trWn)az, (A n)n, Wn(A)'} =3

o= O2p 4
where n(A)' = n x ngm_i(f& n). For case (¢3) we have

rank{n(W)', Wn (W), A n(W)'} = 3

if = dopq
rankVZ (W, A) > =

2m 0
rank{ B (q)n, am (q)azm (Wn)n,n(W)', A n(W)'}
=3 i e=w05,
where q = q(A), n(W)' = n x ny,,_(Wn).
Finally, for case (c5) with ¢ = o9, we have

(8]

rankVy (W, A) > rank{n X ny,,,_1(Wn),n x ny,,,_1 (A n),

(o]

A (n X Nam—1 (wn))} =3.

From the above results and Table 1 in Sec. 2 in Part I, we infer that the set
Vor (W, Q) obeys the criterion (2.3) in Part I, and hence it supplies a desired
vector generating set. Further, by considering the two pairs: W; = En and
A;=nVe, W3 = En and A; = e® e, we deduce that the last three generators
in the set V3 (W, A) are irreducible.

(vii) The Dspg-irreducible set (A, B) of two symmetric tensor variables

(6]

V. Vi (A)UV(B) U{A (1 X Ngp_1 (B 1)), B (1 X Nlzp_y (A 1)),
(1 = 81n) (@m(Q(B)) azm (A n)
+(la(A)| - [a(B))™~"[n, a(A), a(B)]am(a(A)))n,
(1 = d1m)(@m(a(A))aom B n)
+(Ja(A)| - |a(B)))™ ' [n,a(B), a(A)]am (a(B)))n} (= Vi, (A, B))
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R r Vi (A),r -V, (B), [0, A r,nym (B 0)),[n,B r,n5m_1(A n)],
(1 = 1m)(r - 1) (e (q(B))azm (A n)
+(la(A)[ - |a(B))™ ' [n,q(A),q(B)]an(q(A))),
(1 = d1m)(r - n)(am (Q(A))QQm(B n)
)

+(la(A)[ - [a(B)))™~ [0, a(B), a(A)]am (a(B))).

We show that the presented set Vi, (A,B) supplies the desired vector gen-
erating set, i.e. it obeys the criterion (2.3) in Part I. To this end, we first work
out the Dy, 4-irreducible set (A,B). From the Ds,,4-irreducibility condition for
(A,B) (see (3.1) in Part I), we know that I'(z) N Dy # Ci for z = A, B.
Hence, considering the combinations of the forms given by (3.6) and excluding
the cases

A= aD; +bD,, B=cD; + dD3, fom(q(z)) £0, z = A or 3 = B;
R=a(a®c—0'®a’)+bn\/a’, ﬁzc(a@a—u'@a')+dn\/c’;
0 0 ' '
A=a(lc®0c-0'®0d'), B=clc®0c -0 ®0d')+dnVd;

which violate the Dy, 4-irreducibility condition for (A, B), we derive the following
five disjoint cases for the Dy, 4-irreducible set (A, B):

(c1) K a(o) ® 01 — o) ® ), E’.z c(o®o - o' ®d'), 0# 0y, o}, ac#0;
(c2) R ale®Re—e' ®é€'), }§= c(vev—v' ®V), v=o0y #e, €, ac#0;
(e3) zi alc®0c—0d' ®d')+baVd, f%= c(c®@0c—0'®@c’) +dnVd', bd # 0;
(C4)3 G(U‘]@Gl—c’l@o”l)+an0’l,ﬁ=c(a®u—o’®u’)

+dn V o', o # o1, bd # 0;
(ch) Aanl+bD4, ]%-: c(vRv—-v@V)+dnVY, v=o0y #£e, ac#0.

Here and henceforth, we denote u’ = n x u for every vector u
Then, for cases (c1) we have

I'(A,B) N Dypmg = C2(n), rankVy, (A,B) > rank{B,(q(A))n} = 1.

Case (c2) does not hold for m = 1, since the group Doy has only two two-fold
rotation axis vectors, i.e. e and e'. For case (¢2) with m > 2, we have the first
expression above and

rankVs,, (A, B) > rank{f,,(q(A))n, [n,q(A),q(B)]am (q(A)n} = 1.
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For case (c3) we have

s

rank{n(B), B n(A), A n(B)'} =3 if ¢ = o2,_1,
rank{n(B), A n(B)', m(q(A))azm (A n)n} = 3

rank Vs, (A, B) > ¢ if m>2, o=0y,
rank{n(B)', A n(B)’, A1 (q(A))n} = 3 if m = 1,
| o€ {ee'},

where n(D)’ = n x ng?n_]_(](:)) n), D = A, B. For case (c4), by using the formula
(2.4) in Part I and (3.7) we have

rankV,,, (A, B) > rank(Vy, (A) U V,,,(B))
= rank(V(Cyp(01)) U V(F(B) A'Doma)) =3

Finally, for case (c5) we have

o0

ra'nkV;:n(As B) > rank{n X T]Zm—l{i n)sn X Tl?m-l(B n),
[ o
B (0 X Nyp_1 (A n))} = 3.

From the above results and Table 1 in Sec. 2 we deduce that the presented
set Vi, (A, B) obeys the criterion (2.3) in Part 1. Further, by considering the four
pairs (A;, B;) given by

Ai=e®e, Bi=nVo;; As=nVo;, Bp=eVe;
A:] =e®e, B3=ﬂ®0’2, m22; A4 =n® gy, Bq =e®@e m 22,
we infer that the last four generators in the set V,, (A, B) are irreducible.

(viii) The Dg,4-irreducible set (u, W) of a vector and a skewsymmetric
tensor

¥ VQm( )U V U {Wll trWN)QQm U}H} Qm(u W))
Skw {EnZ‘m—l(u})W! {“ A n)QQm(Wn)N)

[uf?™=2u A (1 X Mgy (W) + (trWN)2""1n A ngy,,_y ()}
( SkWZm(ui W))
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Sym  Symj,, (u) U Symy,, (W) U {di,,(u - n)(trWN)D,,
W u V(n x Nom—1(Wn)), (trWN) u V(nx ),
[ul*™2uV (0 % Ny (Wn)) + (rWN)* 0V gy, (1)}
(= Sy, (u, W)

R ng( ) trHW: i - G, 4 - G W i
m (1) U Ly (W) U {(u - n) U -Wn,u -W? u} (= Iy (u,W)) .

Here, the skewsymmetric tensor variable H is of the form H = ¢W. The
other case leads to I'(W, H) N Dy,,q = C, which has been treated in (v) in this
section. Moreover, the vector variable r pertains to the space spanVy! (u). In
fact, for each of cases (c2) — (c6) for the Dg,,4-irreducible set (u, W) that will
be given, from the condition (3.3) in Part I with (z,z) = (u,r) and g = Dayg,
we derive the foregoing fact for r. For case (c1), we derive r = an + boy, ;. The
case when b # 0 is excluded, since the pair (r, W) yields case (c5) that has just
been covered. Finally, from the condition (3.3) in Part I with (zg,2z) = (W,C)
and g = Da,,4, we derive that the symmetric tensor variable C pertains to the
space span Symy,, (W) for cases (c1) - (c4) and to the space Sym(Csp(n)) for
cases (c5) — (c6).

Owing to the facts shown above, of the invariants from the scalar products,
we need only to 1erain Lhu:,o listed in the above table. Of them, the two invariants

0 0.0
Cu and u C W u result from the fact that the four generators I, n ® n,

uU®uand u VW 1 generate the space Sym(Cyy,(n)) for either of cases (c5) -
(c6). As has been indicated earlier, here we omit the invariants C : Symy,, (W).

We proceed to show that the three presented sets Vi (u, W), Skw}, (u, W)
and Sym$,, (u, W) supply the desired vector, skewsymmetric tensor and sym-
metric tensor generating sets, i.e. each of them obeys the criterion (2.3) in Part
[. Towards this goal we first work out the Ds,g4-irreducible set (u, W), which is
specified by (see (3.1) in Part I) I'(z) N Dopmg # I'(u, W) N Doy for z = u, W.
Hence, u and W take one of the forms given by (3.3) and (3.5), respectively. Con-
sidering the combinations of the forms given by (3.3) and (3.5) and excluding the
cases

W =cEu, u=an; W =cEu, u=an+ bu':

W =cEv, u=av;

which violate the Dy, 4-irreducibility condition for (u, W), we derive the follow-
ing six disjoint cases for Do, 4-irreducible set (u, W):

(c1) W = cEe, u = an, ac # 0;
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(c2) W = cEo, u=an+ boy, o-0y #0, be # 0;
(c3) W =cEo, u=uae, c#e, ac # 0;

(c4d) W = cEn, u = an, ac # 0;

(cb) W = cEn, u = an + boy, bc # 0;

(c6) W = cEn, u = ae, ac # 0;

For case (cl) we have

3.8 rankV,, (u, W) > rank{u,n x ny,,_;(Wn), Wu} = 3,
2m 2m—1

rank Skw?,

o (1, W) > rank{W, agm(Wn)N,u A (n X ny,, 1 (Wn))} = 3,
rank Sym$,, (u, W) > rank{I,n ® n, W2 nvWn W u vn(W)',
uVn(W)'} =6,
where n(W)' = n x ny,_1(Wn).
For case (c2) we have

(3-9) rank ;:,,(U,W) 2 ramk{n,n X ’12":—]{&]311 X T'|:e!m-1(“"'j’n)v‘}‘ﬁl} =3,

(3.10) rank Skwj, (u, W) > rank{W, En;}mhl(ﬁ),
uh\ (n X r|2m—1(wn))} =3,

(3.11) rank Syms,. (u, W) > rank{I,n ® n,u®u,nV (n X Nom—1 [{Jl)),
nVWn,uV (n xng, (Wn))} =6.

For case (¢3), we have (3.8), (3.10) and (3.11). For case (c4) we have
I'(u, W) N Dypg = Com(n), rankVy, (u, W) = rank Skws, (u, W) =1,
rank Symy,, (u, W) = rank{I,n ® n, d1;, D1, 01mD2} = 2(1 + 1m).

For case (c5) we have (3.9) and
rank Skwi, (1, W) > rank{W, Enyp_ (1), 0 A ngp_y (1)} = 3,

0

rank Symf, (u, W) > rank{I,n ® n, u®u,nV(n x Nam—1(1)),
0 18] 0
nVno,_i(u),uVv(nx u)} = 6.

Finally, for case (¢6) we have the last two expressions above and

rankVy’ (u, W) > rank{u, Wu, asm, (U)n} = 3.
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From the above results and Table 1 in Sec. 2 we infer that the three presented
sets of generators obey the criterion (2.3) in Part I, respectively. Further, by con-
sidering the pair u; = e and W; = En, we infer that the respective last two
generators in the two sets Vi, (u, W) and Sym, (u, W) are irreducible. More-
over, by considering the pair us = n and Wy = Ee, we deduce that the last two
generators in the set Skwj, (u, W) and the generator W u V(n X ngym_1(Wn))
are also irreducible, respectively. Finally, by considering case (c4) we deduce that
the generator d;,,(u - n)(trWN)D; is irreducible.

(x) The Ds,,g4-irreducible set (u, A) of a vector and a symmetric tensor

VoV (u) UVYL(A) U{A u, (1 = d1m)aam(@)am(a(A))n}
(= Vo (u, A))
Skw  Skwam(A) U {Engy_ (1), 8 A All, (u - n)am(q(A))N,
(u- n)agm(K n)N, [u*"2u A (n x Ny [f& n))

+a(A)2™2nA A (1 X Nayp_1 (W)} (= Skwl, (u, A))
Sym  Symf, (u) USymy,(A) U {(u - n)am(q(A))(AeN — NA,),

2m
(u-n) AnV(nxny,_ (A n)),

v ¥ 0 o
[uf2™~2u V (0 X Nigm_1 (A 1)) + [q(A)P™2nV A (0 X Nzm—1 (1))}
(= Sym,, (u, A))
R r- Vo (u);
12 (@)U Lim(A)U{(u-n) 4 - A n,4- AQ,u-A 20}
( A)).

For each nonvanishing skewsymmetric tensor H and each Dy,,,4-irreducible set
(u, A) (see cases (c1) - (c6) given later), we have I'(zg, H)NDapmq = I'(u, A,H)N
Dy with zg € {u, A}. From this fact and the condition (3.3)2 in Part I with
z = H and g = Dsy,g, we derive H = O. Moreover, by means of the relevant
procedure used at the start of (ix), for the vector variable r and the symmetric
tensor variable C we derive r € spanV,, (u) and C € span Symy,,(A) from cases
(c1) - (c6) given below and the condlmon (3.3) in Part I with (zo,2z) = (u,r),
(A,C), and g = Dj,g. Owing to these facts, of the invariants from the scalar
products, we retain the invariants r- Va,,(u) only. Besides, as has been indicated
earlier, we omit the invariants C : Symy,, (A).

We proceed to show that the three presented sets Vi, (u, A), Skwj,, (u, A)
and Sym$,, (u, A) supply desired vector, skewsymmetric tensor and symmetric

http://rcin.org.pl



IRREDUCIBLE REPRESENTATIONS FOR CONSTITUTIVE EQUATIONS... 387

tensor generating sets, i.e. each of them obeys the criterion (2.3) in Part L
Towards this goal we first work out the Dj,,4-irreducible set (u, A), which is
specified by (see (3.1) in Part I) I'(z) N Dopmg # I'(u, A) N Doypg for z = u, A.
Hence, u and A take one of the forms given by (3.3) and (3.6), respectively.
Considering the combinations of the forms given by (3.3) and (3.6) and excluding
the cases

u=cn, A=aD; + Dy, Pam(a(A)) # 0;
u=cn, ﬁ=a(u®p-p'®u’)+bn\’u';
u=an+by, A= cp@p—p u);
u=an+bpy, A=c(u®p—- 1 @) +dnVvy
u=cv, Rz a(v@v—v"@‘v');

n=1cv, Rza[v@v—v't@\r']—%bnv\-’;

which violate the Dyp4-irreducibility condition for (u,A) (see (3.1) in Part I),
we derive the following six disjoint cases for the Dypg-irreducible set (u, A):

(cl) u = an, ch(c@c—a‘@o’), ac # 0;

(c2) u = an, Rz cDy + dDy, ad # 0;

(c3) u = an + boy, ch(m@c] — 0oy ®d)) +doy Val, bd #0;
(c4) u=an+boy, A=c(c®0 -0’ ®¢’) +dnV o, o # o1, bd # 0;
(c5) u = be, A= cD, +dDa, bd # 0;

(c6) u = be, ch(cr@c—c’@a’)+nga’, o#e, bd #0.

For case (c1) we have

Coy(n,0,0’) if 0=09-1,
F(u, A) nDzmd = ] ( : ) 2r—1
Ca(n) if o= o9,

rankV,, (u, A) > rank{u} = 1,
0if =001,

rank Skwj,, (u, A) > _
rank{(v - n)a;,(q(A))N} =1if o= oy,
(o]
rank{I.n®n, A} =3 if e=o09_1,
rank Symj,,(u, A) > { } dr

rank{I,n @ n, JDL AN —-NA.}=4if 0 =09
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For case (¢2) we have

(o] 4]
(3.12) rankV,, (u) > rank{u,n X ns,,_1(A n), A u} =3,
rank Skws, (u, A) > rank{nA }0\ n, aom (R n)N,
8]
uA (n X n?m—l(A ﬂ))} == 39
I (o] 0 0o 0 '
rank Symsj,, (u,A) > rank{In®n, A n® A n,A,AnVn(A),

uVvn(A)} =6,

where n(A)' = n X ngy,1 (R n).

For case (c3) we have
rankVy (u, A) > rank{n,n x ng,_; (1), A B} =g
(3.13)  rank Skw”_(u,A) > rank{Eng,,_;(1),nA A (n X Ngm_1 (1)),
uA Au} =3,
(3.14) rank Symj, (u,A) > rank{I,n ® n,{)l ® ﬁ,n\/ 1{311 R,
nV A (1% Ny (W)} = 6.
For cases (c4) we have
rankVy,, (1, A) > rank{n, n x n—zm_l(ﬁ),n X n-z,,l_l(fk n)} =3

(3.15) rank Skwh,,(u, A) > rank{Eny,,_ 1( ) nA A n,
WA (1 X flgp_1(A M)} = 3,
(3.16) rank Sym,,(u,A) > rank{I,n ® n, u® {Jl nv {)1.. R,
uV (1 X Ny (A )} =6.
For case (c5) we have (3.13) — (3.14) and (note that 8;(q(A)) # 0)
rankVy,(u, A) > {u, & u, fu(a(A))n, (1 = dim)an(a(A))n} = 3.
Finally, for case (c6) we have (3.12) and (3.15) - (3.16).
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Thus, from the above results and Tables 1-3 in Sec. 2 in Part I, we deduce that
the three presented sets of generators obey the criterion (2.3) in Part I. Further,
by considering the pair u; = n and A; = nV e, we infer that the generator
[¢]

A u and the respective last two generators in the two sets Skw/  (u, A) and

SymY,, (u, A) are irreducible. Moreover, from case (cl1) we know that the two

generators (u-n)a,(q(A))N and (u-n)a,,(q(A))(AeN —-NA,) are irreducible.

By considering, respectively, the pairs us = o] and Ay = e ® e, uz = o3 and
o

A; = e®e (for m > 2), we know that the generator a A A‘I(.)l and the last

generator in the set V! (u, A) are irreducible.

3.3. Sets of three variables

As indicated at the outset of this section, we need only to treat the four sets
(u,v,W), (u,v,A), (u,W,A) and (u, A,B). We shall demonstrate that each
set X just mentioned is Dg,nq-reducible, i.e there is a proper subset S C Xp such
that I'(S) N Dypg = I'(Xo) N Dapa.

First, let Xg = (u,v,D) with D € {W, A} a skewsymmetric or a symmetric
tensor. Suppose that Xg is Dapg-irreducible. Then (u,v) is Dypg-irreducible
and I'(u,v) N Dyypg # Cy. From these and cases (c1) — (c4) derived in (iv), we
know that u = an and v = be with ab # 0 (see case (c1)). Since the group
I'(v) N Doy, i.e. Cy(e) has only two subgroups, i.e. €y and Cs(e), we deduce
I'(u,D) N Dopg = Cy or I'(v,D) N Dappg = Co(e) = I'(v) N Dypg. Either of
the two cases mentioned above indicates that the (u,v,D) is Ds,,4-reducible,
contradicting the foregoing presupposition.

Second, let Xy = (u,D,A) with D € {W,B} a skewsymmetric or a sym-
metric tensor. Suppose that Xy is Domg-irreducible. Then, both the set (u, A)
and the set (D, A) are Dgyg-irreducible and I'(z, A) N Dyypg # Cy, 2 = u, D.
From these and cases (c1) - (¢6) derived in (x) and cases (c1) - (cb) derived
in (vi) (for D = W) and cases (cl1) - (c6) derived in (vii) (for D = B), we
know u = an, A= b(c ® o0 — ¢’ ® ¢') (see case (cl) in (x)), D = W = ¢cEn
(see case (c1) in (vi)) and D=8 = d(c ® 0 — & ®d’') (see cases (c1) — (¢2) in
(vii)), where abed # 0 and o, & € {0},--*,04m} and (o - 7)o x ¢ # 0. Thus,
we deduce I'(u,D,A) = Cy(n) = I'(D, A), in contradiction to the foregoing
presupposition.

3.4. The general results

Applying Theorem 2.1 in Xi1A0 [20] and incorporating the fact indi-
cated at the outset of this section, from (a) — (¢) we obtain the following general
result.
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THEOREM 8. The four sets given by
I3, (0); Ism (W); Iim(A); Lim(W,Q,H,A,B,C);u-v,(u-n)(v-n,
1) Bom (W) + (u- )0, V, Mgy ()],

1) Bom(V) + (v - 0)[1, U, N1 (V)],

i:'.

-0)(v - )4 — By (V) [, U, Mg (V)]
-n)(u- )41 — By () [0, V, Mgy (0)];
-n) 0 -Wn,u -W2 u, trW(En,,_, (1)),
trWN)(u - n)ag,, (u )‘i‘ﬁ?m(ﬂ) u-Wn,
trWN) By (1) — (u - n)*™=! 4 -Wn, [0, 0, 0y, (Wn)),
[n, Wu, ny,,_1 (Wn)], [n, W?u, ny,,_(Wn)],

i:

d

::

(v
(
(
(
(
(
(

0 0

(u‘n)ﬁgm(Wn)-u . A& (u-n) - Y nu-A2u,
[n,f& n, Nom—1 ( ]— Sim(u - n)trADy, (u - n)[n, Kﬁ Nam—1 (1 )]
+Bam(0) U - An, Bom (W)[n, Au, Nam-1 (1))

—(u-n)ml g An, [0, U, ngpn g An] n, A, N2m— I(An)]
ﬁzm(A n) i A n, (u-n)Bn(q(A)), (u-n)J(A)am(q(A));
Az (V)[r, u, V], (W) [, v, U;
u- Wy, (trWN)((u - n)|u - n|?™ Lagn,( 3} + (v-n)|v- nlgm_lt.‘tzm(ﬂ) i
u- _X v, (u-n)u-n|?™ag,( (v) )n, v v R‘?’]
+(v - n)|v - n|2m+lay, (u)[n, u, Au]
[0, Qu, Ny, (Wn)], [0, Wu, nyy,_y (Qm)],
(u- 0)((trWN)|trWN|2"~ L ag,, (Qn)

+(trQN)|trQN|*"~ ! oy, (Wn));
(u- n}(trWN)agm(A n), (u-n)(ag,(Wn)
+(ErWN) [T WNP™ )y (q(A)),
(trWN)*™~2[n, W, o1 (A 0]

_[ R ]2m—2[n1 K u, ﬂzm(Wﬂ)]s ﬁ s .g A% ﬁ
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and

and

0 0 o 0
[H, A u, n‘}.m—-l(B n)] [n! B U, Nom—1 (A n)]?

(1 = 61m) (u - 0) (et (a(B))azm (A n))
+(la(A)| - [a(B)))™ " [n,q(A), q(B)]am (a(A)),
(
)

(1 = b1m) (1 - 1) (0t (q(A)) a2 (B 1))
+(lq(A)] - [a(B)))™ ' [n,q(B),q(A)]em (a(B)));

Vit (1), Vi (W), Vi1, (A);

ﬂzm(u)"x u, O’Qm(v)“x V§Q(ﬂ X Nom—1(Wn)), W(n x ny,_, (Qn)),
((trWN)|trWN|?*™ 1y, (2n) + (trQN)|trQN|*™ ! ag,,(Wn))n;
(trWN)agm (A n)n, (a2 (Wn) + (trWN)|trtWN|2™~ 1) oy (q(A))n,
(trWN)?™2W (n X 31 (A 1)) + | A [P™2 A (0 X ngm—1 (Wn));

A (1 X Ny (B 1)), B (0 X g1 (A 1)),

0
(l == ‘ilrn){am{Q(B O’Zm(A n)

+(la(A)[ - |a(B))™ ' [n,q(A),q(B)]am(q(A)))n
(1 == alm)(a'm{ (A))U’Em(B n)
+(|la(A)| - la(B))™ ! [n,q(B),q(A)]am (a(B)))n;

W, (tr WN) gy ()05 A 0, (1 = b1n) a2 (@) (q(A));

Skws,,, (1), Skwapm (W), Skwym (A);
uAv, ((u-n)u-n?"lay, (V) + (v-n)|v- 02" lag,(a))N;
0 (0] (8] o 00 O 0
WQ-QW; AW+ W A AW?2-W?A;AB - BA,
0 o 0 (4] 0o 0
B nA AB n, A nA BA n;
(u - n)ag,(Wn)N,
[u?™=2u A (0 X Ny (W) + (' WN)?" 11 A nigp,y (W);
0 0
U A AU, (u-n)an(q(A))N, (u- n)az, (A n)N,

o]

: 0
Iu|2m 2u A (n X Nym-1(A n)) + |q(A )|3""_2n/\ A (nx Tl?m—l(ﬁ));
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and
Symj, (u), Symy,, (W), Symy,, (A);
uVv,(u-n)u- nl2’“+1(rgm(3) v V(nx v)
+(v - n)|v - n*™*lay,, (1) U V(nx w);
WQ + OW,
[trQON|(trQN)Wn V NWn + [trWN|(trWN)Qn V NQn;

AW -W A, (trWN) AnVN A n; AB + BA:

S1m (u - n)(trWN)Dy, W 1 V(n X 19y, (Wn)),

(trWN) 1 V(nx 1),

[u/2™=2u V (0 X N9y (Wn)) + (trWN)2"~In v n,,. (0);

(- n)am(q(A))(AeN — NA,), (1-n) A nV (1 X nzm_1(A n)),

[¢]

y 0 o
[ul**2u V (0 X N1 (A ) + [q(A)P" 20V A (0 X 120 (0));

where (u,v,r) = (w,u;,u), (W,QH) = (W,,W,;, W), (A,B,C) =
(Ar Ay A, k2 g >t =L& @ > 7> =1 N>M>
L=1,---,¢, supply a functional basis and irreducible generating sets for scalar-,
vector-, skewsymmetric and symmetric tensor-valued anisotropic functions of the
a vectors uy, -+, Ug, the b skewsymmetric tensors Wy, -+, Wy, and the ¢ symmet-
ric tensors Ay, -+, A, under the group Doy for each m > 1. In the presented
result, n and e are two orthonormal vectors in the directions of the principal axis
and a two-fold rotation axis of the group Dspqg.

In the above theorem, I3, (W.Q,H, A, B, C) is used to represent the invari-
ants depending on two or three symmetric and/or skewsymmetric tensors given
in Theorem 1 in Part I with the replacement of m by 2m therein.

4. Concluding remarks

Based upon symmetry-reduced decompositions of the domain of any finite
number of vector variables and second order tensor variables in XiAo0 [16, 20],
a simple, unified procedure for constructing both generating sets and the func-
tional bases is designed and developed in the recent work (X1ao [18 - 19]) and
this series of works. This unified procedure reduces the tough problem of deter-
mining irreducible representations for anisotropic functions of any finite number
of vector variables and second order tensor variables to that of determining irre-
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ducible representations for anisotropic functions of certain sets consisting of not
more than three vector and/or second order tensor variables. The g-irreducibility
conditions for sets of two and three variables (see (3.1) - (3.2) in Part I) further
provide a considerable simplification in dealing with representations for sets of
two and three variables. The condition (3.3) in Part 1 is helpful to remove some
redundant invariants in forming the scalar products of the variables r, H and
C and the presented generators. In addition, the notion of isotropic extension
of anisotropic functions and the much well-known results for isotropic functions
(see, e.g., SPENCER [13], WANG [14], SmiTH [12], BOEHLER [3]) are essential.
The former was originated earlier from LOKHIN and SEDOV [9] and independently
introduced and successfully applied to derive systematic results for anisotropic
functions in some cases for the first time by BOEHLER et al. [4 - 7] and developed
later by many researchers, refer to, e.g., Liu [8], BETTEN, BOEHLER, SPENCER
(see [6]), RycHLEWSKI [10], ZHANG and RYCHLEWSKI [23], BETTEN [2], ZHENG
and SPENCER [25], et al.; see also the reviews by BETTEN [1], RYCHLEWSKI and
ZHANG [11] and ZHENG [24] for detail. A substantial generalization in this aspect
has been given very recently by one of the authors (see X1A0 [15, 17]).

By applying the above unified procedure, together with the results for
isotropic extension of anisotropic functions and the much well-known results for
isotropic functions, we have derived irreducible nonpolynomial representations
for scalar-, vector-, skewsymmetric and symmetric tensor-valued anisotropic func-
tions of any finite number of vector variables and second order tensor variables
under all crystal classes and quasicrystal classes as subgroups of the cylindrical
group Doy,

Thus, of all kinds of material symmetry groups of solids, only the five cubic
crystal classes and the two icosahedral classes have not yet been covered. Ac-
cording to Theorem 3.2 in X1A0 [16], the unified procedure outlined in Sec. 3 in
Part I also applies to these classes, except for the fact that the set (A, B, C) of
three symmetric tensor variables should be added.

Although the procedure used merely involves irreducible representations for
one, two and three variables, many details concerning these representations need
to be examined. Such a situation results from the complexity of nonlinear
anisotropic tensor functions. In reality, much effort and labour should be made
even for isotropic tensor functions. Nevertheless, once the results for relevant
representations are derived, their correctness can be guaranteed by checking the
fulfilment of Criteria 1 and 2 given in Part I, as has been done. Towards this goal,
it is crucial to work out the related g-irreducible sets of two or three variables
from the conditions (3.1) or (3.2) in Part I. This crucial aspect has been treated
in a definite and rigorous manner.

This series of papers is concerned with material symmetries of solids, which
are described by finite and continuous infinite subgroups of the 3-dimensional full
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394 H. X1a0, O. T. BRUHNS AND A. MEYERS

orthogonal group. Other kinds of material symmetries, such as those of liquid
crystals etc., are characterized by subgroups of the 3-dimensional unimodular
group U(3). It is expected that the procedure used may be extended to cover the
latter kinds of material symmetry groups and other groups. The main basis in
this more general aspect has been laid down by RycHLEWSKI [10]. In the latter,
the existence and reality of isotropic extension is proved to be true in the most
general sense that an arbitrary group acts on an arbitrary set.
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