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On interactions of frictional cracks
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THIs PAPER DEALS with the estimation of the stress intensity factors for interacting
Mode-II cracks undergoing frictional sliding under overall compressive stresses. Crack
interaction effects are examined via the Kachanov method that is extended here to
account for frictional and cohesive resistance on crack faces. The accuracy of the
obtained results is verified through comparison with the “exact” numerical solutions
obtained using a boundary element method.

1. Introduction

THE PROBLEM OF A LINEAR ELASTIC solid with a multitude of interacting, arbitrar-
ily located, open cracks under uniform remote loading 0> has been considered
by many authors over the past 20 years. A general algorithm of solving such a
problem is as follows. Using the superposition principle, a multiple crack problem
is reduced to a subproblem of a single crack but loaded by unknown tractions that
are induced by the other cracks. The unknown tractions are then interrelated
through singular integral equations which, except for a handful of special cases,
do not lend themselves to rigorous analytical methods of solution. Consequently,
one has to solve the problem numerically or resort to approximate techniques.
As for the numerical approach, a boundary element method (BEM) proved quite
effective in solving 2D multiple crack problems when formulated in terms of the
complex variable method and the dislocation distribution along crack contours
(cf. [1, 2]). A rather obvious reason behind the popularity of the BEM vs. FEM
in crack problems is that in the BEM approach only the boundary of the problem
geometry requires discretization. For multiple cracks, where a large number of
model runs are necessary, this feature is of primary importance. On the other
hand, the tractions on the interacting cracks were accurately approximated using
Legendre or Chebyshev orthogonal polynomials ([3, 4, 5, 6, 7]). Recently, Ju and
TSENG [8] presented a comprehensive appraisal of these asymptotic polynomial
techniques for crack interaction problems in plane elasticity.

The present note is focused on strong interactions of straight cracks randomly
distributed in an infinite, homogeneous, linear elastic, two-dimensional matrix un-
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der the action of compressive loading. It is assumed that the cracks are endowed
with frictional-cohesive resistance and are constrained against normal opening.
In compressive stress fields these cracks may slide in Mode-11 provided they are
inclined at nonzero angles to the direction of maximum compression. This prob-
lem is of practical importance for geotechnical applications where materials are
typically deformed under compressive overall stresses. The basic mechanisms
underlying inelastic deformation of brittle solids under compression are those of
tension cracking and frictional slip. Usually, these two mechanisms are coupled
but there are instances where frictional sliding takes the upper hand or precedes
the crack growth. For example, in low-porosity rocks some of the preexisting flaws
will close under external compression and slide with friction before they sprout
curvilinear wings growing subparallel to the direction of maximum compression
(the so-called sliding crack mechanism, e.g. [1, 9]).

The objective of this note is to compute the stress intensity factors (SIFs)
at the tips of interacting closed cracks once sliding along their faces has been
initiated. For this purpose, a relatively simple yet remarkably accurate method
developed by KACHANOV [6] will be extended to account for the frictional contact
of cracks faces. In order to illustrate the capabilities of the proposed framework,
a number of test examples will be solved and the results confronted with the
numerical solutions obtained using the boundary element method. Some aspects
of this note are also addressed in the conference paper [10].

2. Method

In essence, the method devised in KACHANOV [6] is based on the following
central assumption: The unknown tractions induced on a considered crack by the
presence of other cracks can be approximated by the tractions that would have
been acted on the considered crack if the other cracks were loaded by uniform
average (normal and shear) tractions.

To assess the validity of this statement and to fully understand its impact on
the calculation of SIFs, the reader is referred to the original paper [6] or related
papers [11, 12]. On the other hand, since it is intended to keep this note self-
contained, the key points of the Kachanov method will be made clear in the course
of the analysis to follow. Note that this method yields very good predictions for
freely opening cracks even if their tips are very close one to another. There are,
however, some limitations to the method which will be discussed later on.

Consider two closed cracks in an infinite, linear elastic plate (Fig. 1) with
the local (crack-attached) coordinate systems (z%,y%) and the global coordinate
system (xi, x2). To facilitate drawing, only two cracks are shown but the ensuing
equations are formulated for an arbitrary 2D crack array (L = 1,2,...,N). The
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actual (contact) shear and normal stresses existing on the faces of L-th crack are
denoted by T;T’y, aé’. The boundary-value problem A can trivially be decomposed
into two subproblems B, C. On the other hand, the problem C can be represented
as a superposition of N subproblems, each involving only a single crack but
subject to unknown shear and normal stresses T;;'", a;"‘. Unlike for open cracks
considered in [6] where the sign convention for stresses was inconsequential thus
omitted, the signs of the superimposed stresses in the compression case (Fig. 1 A-
E) are strictly observed. Here, the adopted sign convention is that of continuum
mechanics, i.e. compression is viewed negative. Consequently, for closed frictional

cracks it follows from Fig. 1 that
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F1G. 1. Superposition of stress for interacting frictional cracks in infinite, linear elastic
plate under compression.
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where 'ra?;"‘, rrj"L are the resolved (due to the remote loading 0 shear and normal
stresses in the continuous material along the line of L-th crack; .cﬂTLy Acr are
the interaction terms, i.e. shear and normal stresses generated by all other cmcks
along the line of L-th crack in the continuous material. Note that as long as the
crack remains closed, it holds o,‘, = (. Otherwise, U;L - (U;’OL + Aaé‘).

A necessary prerequisite for the computation of the SIFs is the determination

of the loading of crack faces ( ;f,‘,ay ). Once T,;;:‘, D’;L are known, the SIFs can

be computed according to the well-known formulas, [13]:

(2.3) Kf(xch) = \/-,-?/”i"‘i *L(¢)dc,
1 i CL:tC L
M/L‘/cL:FcT (©)d,

where p*t = —cr;‘[‘, b = I, , due to the sign convention and ¢’ denotes the
half-length of a straight crack. For closed cracks only (2.4) is relevant.

It is claimed here that irrespective of whether the interacting cracks are open
or frictional, the central assumption of the Kachanov method remains valid: the
unknown crack interaction stresses Aay, AT” are induced only by uniform aver-
age tractions (as yet unknown) acting on the other cracks’ faces. A far-reaching
consequence of this assumption is that it yields a functional form for the un-
known stresses Aa‘[‘ ATL since the problem of a single crack loaded by uniform
tractions has analytlcal sohmon Following KAcHANOV [6], denote by P‘(‘ and

TX the standard stress fields that are generated in the continuous materlal by
the K-th crack loaded by uniform normal and shear tractions of unit intensity,
respectively. These standard stress fields can be computed using a suitable West-
ergaard function (as it is done in this paper) or can be found in textbooks on
linear fracture mechanics. Hence, the crack interaction terms Ao, A7k (gen-
erated in the continuous material) can be expressed in the follawm;_, genera_l form

(2.4) Kfp(%c")

(25)  Aof = -l [PE(os®) + TE (2K oY, K, L=1,..,N;(K # L),
2.6 Atk = —olP [BE(oXy + TE (i miP, KL =1,..,N; (K # L).
Ty y

In (2.5) and (2.6), the summation convention applies to the repeated indices K
while it does not apply to the indices placed in parentheses i.e. (L); n¥, m?%
are crack-attached normal and tangential unit vectors; the Macauley bracket ( )
denotes the average value of the bracketed quantity. The standard stress fields
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PS’ and TK are usually written assuming positive unit intensities of normal

and shear tractions. However, in the considered case, the average normal stress
(internal pressure) (O’;K> and the average shear stress (7, ’K) acting on the crack
faces are subject to the adopted sign convention. Hence, Lhe minus signs in (2.5)
and (2.6).

If the Eqs. (2.5) and (2.6) are to hold for the averages (O‘;K), (T;;{) of an

arbitrary crack, they also have to hold for ( ;"‘)‘ (T;{;) of the L-th crack itself.

This is nothing else but a rule of self-consistency. Applying this rule to the
Egs. (2.5) and (2.6), i.e. averaging them, leads to

(2.7) (Ack) = —AfE(o3®) — Al (2K,
(2.8) (Athy = —Af*(o3X) — A (),

where Af; L are the Kachanov transmission factors (interaction matrices) defined

as follows:
(-’a)

(Ph){'{')‘ﬂ.
R AKL )( }(L)nfb) o
(29) AKL = )(PK)(L)m(L) GaEaky
M. o= }(T1(>(L)m
(2.10) At =0; (K=1L).

For convenience, the notation of the transmission factors in (2.9) has been slightly
changed as compared to that in the original paper [6]. For example, AX" denotes
the average shear stress (lower index 2) on crack L due to unit normal stress (lower
index 1) on crack K. Incidentally, it seems that there is a misprint with regard
to the formula (13b) in the original paper. Namely, in the limit case of K = L
(crack interaction with itself) it should be Af_‘;K =0, (2.10), and not AKK = isy
as in [6]. Note that to compute the transmission factors, the st’mdard stress
fields generated by the uniformly loaded K-th crack have to be integrated along
the line of the L-th crack. For a given configuration of N cracks this is usually
done by numerical integration.

The actual stresses 7, 0, induced by the frictional-cohesive contact on the
crack faces are interrelated through a law of dry friction. A simple Coulomb-Mohr
law is adopted for this purpose:

(2.11) Tay = Fret pog,

where 7, is the cohesion and p is the coefficient of dry friction, both being positive
constants. In Eq. (2.11) and the equations to follow, the upper signs hold for
cracks oriented at 0 < @ < 7/2 while the lower ones for —7/2 < ¥ < 0, Fig. 1.
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Making use of (2.1), (2.2) and (2.11), it follows that

(2.12) = 1 & po Pk — 720 & pAel — Argy,

Averaging (2.12) and using (2.7), (2.8), the following system of N linear equations
is obtained

(218) (05T £ pall - ABE) 2Ky = T & polt — 7258,
(K,L =1,2,...,N).

The right-hand side of (2.13) specifies the remote loading conditions and the
friction-cohesion resistance on each crack’s faces. In other words, it represents the
effective (net) shear stress that drives the crack sliding. The crack array geometry
and the influence of friction on the transmission of shear stresses are reflected
by the left-hand side. The system of equations (2.13) with the transmission
factors (2.9), (2.10) and a given load (o} Bl 'rf;"') of the crack faces constitute
the govemmg:> system of linear algebraic equations from which the average shear
stresses (1'_;;() can be computed.

If the average values of shear stresses (T;‘,‘;") are known, it is straightforward
to compute the whole distribution of 'r'“'“ From (2.12), when combined with

(2.5) and (2.6), it follows that
(2.14) ru =T }J,UGOL - 'rf;" + nEL)T{(‘ {'r:,‘:‘) (:F;m + m“ )) :

Finally, combining (2.14) and (2.4), the K;; factors for interacting frictional
cracks read

Kfi(+c) = Vel ('r;.’;“‘) +7.F ;m“’“‘))

o () etk (L) _ . (L)
+ N0l n; / T‘ :I:,un m; )

Al wnit (Tzog(L) £ 7 ?;u-oﬁc(l'))

e (LJ (L)
+ :rrc“* / CL+ pe Ty )
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3. Test examples

To evaluate the predictive capability of the present model, the basic
Egs. (2.13), (2.14) (2.15) have been implemented numerically. For this purpose,
a source FORTRAN code has been assembled based on a similar code for open
cracks [14]. The numerical algorithm is relatively simple except for the weighted
integrals in (2.15) which required some special treatment. The following three
test examples of an infinite, linear elastic plate under uniaxial compression with:

e a pair of collinear inclined cracks (Fig. 2, insert),

e a pair of symmetrically inclined cracks (Fig. 3, insert),

e a pair of stacked cracks (Fig. 5, insert),
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F1G. 2. Two collinear cracks under uniaxial compression. Normalized K, factors vs.
relative distance of crack tips for g = 0.3 and 7. = 0. Solid lines depict present solution,
squares — BEM solution.
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have been solved using the developed code. In parallel, the same three test
problems have been solved using the BEM source code [15, 16].

In Figures 2, 3, 4, 5 the present solutions are compared with the ’exact’
numerical ones obtained by means of the BEM. For the selected test examples
the normalized Ky factors vs. the relative distance of crack tips d/c are plotted
for frictionless (¢ = 0) and frictional contact (# = 0.3) on crack faces. The
normalization factor Ky is the stress intensity factor for the respective single
crack under a given load with all other cracks absent. On the example of the
inclined cracks (insert in Fig. 3), an intermediate step of the method, namely
the computed average shear stress (7;7,) vs. d/c, is also illustrated and compared
with the respective BEM data in Fig. 4.
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FiG. 3. Two symmetrically inclined crack under uniaxial compression. Normalized K/,
factors vs. relative distance of crack tips. Solid curves — present solution, squares —
BEM data for u=0, p =0.3 at 7. = 0.
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Typically of open cracks, collinear configurations induce amplification of
stresses and stress intensity factors as cracks approach one another. In the case of
frictional cracks this effect is maintained, as can be seen in Fig. 2. On the other
hand, the stacked crack configurations (Figs. 3, 4, 5) promote shielding (for the
most part) as d/c becomes smaller.
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0.00 0.20 0.40 0.60 0.80 1.00
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FiG. 4. Average shear stress (‘r;; as predicted by Eq. (2.13) vs. BEM data (diamonds)
for inclined cracks of Fig. 3.

All figures clearly show that the accuracy of the extended Kachanov method
is excellent even at very small distances betwveeen the crack tips. This could have
been expected for the aligned cracks since Kachanov’s method has always been
working fine for collinear crack arrays. Howeveer, stacked crack configurations are
an acid test for the method. Surprisingly erowigh, for two parallel stacked cracks
(Fig. 5) the present results and the BEM catta are practically indistinguishable
with the exception of the outer tip at p =0..3 and d/c = 0.05. But even there

http://rcin.org.pl



338 M. BAsISTA

the error is merely 0.8%. The least accurate results are obtained in the case of
inclined cracks for inner tips (labeled B in Fig. 3) at u = 0.3 and d/c = 0.05.
Nevertheless, the error in this case is less than 3% which is still reasonable for
practical applications.
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FiG. 5. Two stacked cracks under uniaxial compression. Normalized K, factors vs.
relative distance of crack tips. Solid curves — present solution, squares — BEM data, for
= 0l p="03wt 7 =0,

4. Conclusions
It has been shown in this paper that the Kachanov method of crack interaction
analysis can successfully be extended to the case of frictionally sliding cracks.

Introducing the Coulomb-Mohr law for the frictional contact on crack faces, the
basic equations of the original model were modified accordingly and implemented
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numerically. The test examples were solved in a twofold manner: using the
present code and the BEM program. The agreement between the obtained results
is remarkably good even at crack tip distances as small as 0.05 of the crack length.

There are at least two reasons for the observed accuracy of the present model.
First of all we have been dealing with somewhat biased, though important, situa-
tions of straight cracks and distributed loading on crack faces. For such situations
the Kachanov scheme is best suited. The applicability of the method in case of
point-force loads on crack faces has yet to be checked. To this end, some pre-
liminary results are presented in [17]. Secondly, the formulas for the SIFs (2.3),
(2.4) involve the unknown crack-face tractions only in an integral sense. This is
in tune with the basic assumption of the method stating that it is the average
tractions that contribute most to the SIFs. As for 3D crack configurations, it is
known from the analysis of open cracks (cf. [11]) that the method performs in
3D even better than in 2D cases.

It should be pointed out though that this effective and elegant method has
its limitations. It is contingent on the knowledge of standard stress fields, thus
confined actually to straight (or penny-shaped) cracks. If the cracks grow out of
their original planes, which is often the case in real situations, the simplicity and
applicability of the method decrease.

Acknowledgment

This work has been supported by the Polish State Committee for Scientific
Research (KBN) under the Grant no. 7 TOTA 050 15. The author wishes to thank
B. Lauterbach for running the BEM program in the considered test problems.

References

1. H. Horit and S. NEMAT-NASSER, Brittle failure in compression: splitting, faulting and
brittle-ductile transition, Phil. Trans. Roy. Soc. London, A 319, 337-374, 1986.

2. A. BETTIN and D. Gross, Crack propagation in materials with local inhomogeneities under
thermal load |in:] Thermal Effects in Fracture of Multiphase Materials, KK.P. Herrmann and
Z.S. Olesiak [Eds.|, Lecture Notes in Engineering, Springer Verlag, 59, 85-93, 1990.

3. D. Gross, Spannungsintensitaetsfaktoren von Risssystemen, Ing. Archiv, 51, 301-310, 1982.

4. Y. Z. Cuen, General case of multiple erack problems in an infinite plate, Eng. Fracture
Mech., 20, 591-597, 1984.

5. H. Horii and S. NEMAT-NASSER, Elastic fields of interacting inhornogenetties, Int. J. Solids
Structures, 21, 731-745, 1985.

6. M. Kacuanov, Elastic solids with many cracks — a simple method of analysis, Int. J. Solids

Structures, 23, 23-43, 1987.

Y. BENVENISTE, G. J. Dvorak, J. ZArzour and E. C. J. WunG, On interacting cracks

and compler crack configurations in linear elastic media, Int. J. Solids Structures, 25, 1279~
1293, 1989.

=1

http://rcin.org.pl



340 M. BASISTA

8. J. W. Ju and K. H. TsENG, An improved two-dimensional micromechanical theory for brittle
solids with rendomly located interacting mierocracks, Int. J. Damage Mech., 4, 23-57, 1995.

9. M. Basista and D. Gross, The sliding crack model of brittle deformation: an internal
variable approach, Int. J. Solids Structures, 35, 487-509, 1998,

10. M. Basista, Micromechanical, phenomenological, and lattice modeling of brittle damage
[in:] Modeling of Damage and Fracture Processes in Engineering Materials, M. Basista
and W. K. Nowacki [Eds.|, IPPT PAN, Warszawa, 236-298, 1999.

11. M. KacHANOV, Elastic solids with many eracks and related problems, Advances Appl.
Mech., J. Hutchinson and T. Wu [Eds.], 30, Academic Press, New York, 259-445, 1993.

12. C. MavcGe and M. Kacnanov, Effective elastic properties of an anisotropic material with
arbitrary oriented interacting cracks, J. Mech. Phys. Solids, 42, 561-584, 1994.

13. H. Tapa, P. Paris and G. Irnwin, The Stress Analysis of Cracks Handbook, Paris Produc-
tions Inc., St. Louis, MO, 1985.

14. CH. WAGNER and D. Gross, Untersuchungen zur Wechselwirkung zwischen Defekten und
einem Einzelriss, DFG-Arbeitsbericht, Gr 596/15-1, Institut fiir Mechanik, Technische
Hochschule Darmstadt, Germany 1988.

15. B. LAuTERBACH and D. Gross, Crack growth in brittle solids under compression, Mech.
Mater., 29, 81-92, 1998.

16. B. LauterBach and D. GRross, Analysis of microcrack interaction in brittle solids [in:]
Fracture and Damege Mechanics, M.H. Aliabadi [Ed.], University of London, UK, 213-
222, 1999.

17. M. Basista and D. Gross, A note on crack interactions under compression, Int. J. Fracture,
accepted for publication.

Received December 6, 1999.

http://rcin.org.pl



