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WE sTUDY THE EFFECTIVE HEAT conductivity of regular arrays of perfectly conducting
spheres embedded in a matrix with the unit conductivity. Quasifractional approxi-
mants allow us to derive an approximate analytical solution, valid for all values of
the spheres volume fraction ¢ € [0; @max] (@max is the maximum limiting volume of a
sphere). As the bases we use a perturbation approach for ¢ — 0 and an asymptotic
solution for ¢ — Ymas. Three different types of the spheres space arrangement (sim-
ple, body and face-centred cubic arrays) are considered. The obtained results give a
good agreement with numerical data.

1. Introduction

ONE OF THE MAIN TASKS of the theory of dispersed media is a theoretical prediction
of effective transport properties. The problem could be formulated in a number
of mathematically equivalent ways, but here we shall discuss it in the language

') The main results of this paper were presented at the 32nd Solid Mechanics Conference
(Zakopane, 1998) [12, 13].
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of heat conductivity: we wish to determine the effective heat conductivity & of
infinite regular arrays of identical, perfectly conducting spheres of the volume
fraction ¢, embedded in an isotropic matrix with the unit conductivity.

BATCHELOR [1] displayed a number of light distinct physical problems which
can be solved by analogous mathematical methods. One of these is the above
mentioned conductivity problem, while others involve calculating the dielectric
constant, the magnetic permeability, the electric conductivity, elastic constants,
etc. Thus, prediction of the effective conductivity of a two-phase medium spans
many fields, and a great deal of efforts have been devoted to its resolution. There-
fore, we can not possibly summarise even a small fraction of the previous inves-
tigations of the subject. A detailed review can be found, for example, in ref. [1].
Here we shall give a brief account of those papers of direct relevance to our work.

The calculation of k for general types of composites was originally discussed
by J. C. MAXWELL [2], and subsequently has been considered by many others.
The solution for the case of small spheres (y tends to zero) was first examined by
Lord RAYLEIGH [3], who described the polarization of each sphere in an external
field by an infinite set of multipole moments. This method has recently been
extended, with the aid of modern digital computers, so that a large number of
multipoles can now be calculated [4, 5].

In the case of large, nearly touching spheres (¢ tends to its maximum limiting
value Ymax ), KELLER [6] derived an asymptotic solution of the problem. His work
was extended by BATCHELOR and O'BRIEN [7] and by VAN TuyL [8]. However,
there still remains a certain parameter range which is covered neither by the
asymptotic approach nor by the solution based on the assumption of small .

Practically any physical or mechanical problem, which includes a variable
parameter, can be approximately solved as this parameter approaches zero or
infinity. How can this “limiting” information be used in the study of the system
at the intermittent values of the parameter? This problem is one of the most
complicated ones in asymptotic analysis. In many instances the answer to it
is alleviated by two-point Padé approximants [9]. Some effective applications
of two-point Padé approximants to the theory of dispersed media can be found
in [10]. z .

Unfortunately, the asymptotic formula for ¢ — @max contains the logarithmic
function; that is why two-point Padé approximants in its “pure form” can not be
used in the problem under consideration. This point is most essential for two-
point Padé approximants because, as a rule, one of the limits (A — 0 or A = o)
for real mechanical problems gives expansions with logarithmic terms or other
complicated functions. In order to overcome these obstacles, during the last few
years the so-called quasifractional approximants are widely used in physics [11].

Here we use quasifractional approximants to derive an approximate analytical
expression of k, valid for all values of the spheres volume fraction ¢ € [0; Ymax]
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[12, 13]. As the bases we use the coefficients of the perturbation expansion of
k at ¢ = 0 and the asymptotic formula for ¢ — pnax. Three different types
of the spheres space arrangement (simple cubic (SC), body-centred cubic (BCC)
and face-centred cubic (FCC) arrays) are considered. The obtained results give
a good agreement with numerical data.

This paper is organized as follows: in Sec. 2 and in Sec. 3 we define the “lim-
iting” solutions for ¢ — 0 and for ¢ = @max. The quasifractional approximant
is developed in Sec. 4. In Sec. 5 the obtained results are compared with known
numerical data, and in Sec. 6 we discuss the advantages and limitations of our
method.

2. Solution for the case of small spheres

Lord RAYLEIGH [3] was the first to analyze the case when spheres are arranged
in the SC array. He developed a solution for the case ¢ — 0 by replacing the
spheres by dipoles and higher-order multipoles, and obtained

; 2+ A 1-X . 1073 14/3 &
9 =] — = M St :
(2.1) k=1 J(p(l + ¢ 1 3,\(1@ +O((p ) .

where ¢ is the spheres volume fraction; A is the heat conductivity of spheres;
d=1.57,

MEREDITH and ToBI1AS [14] extended Rayleigh's analysis and calculated the
coefficient of the O(¢'*/?) term. The validity of Rayleigh’s method, however,
was questioned, because it involves the summation of non-absolutely convergent
series. MCPHEDRAN and MCKENZIE [4] have modified Rayleigh’s procedure in
order to overcome these difficulties and, hence, this method has now a sound
theoretical basis.

An alternative method, which avoids the difficulties encountered in Rayleigh’s
original treatment, was devised by ZUzZOVSKY and BRENNER [15]. They used the
method of generalized functions to develop a series expression for &k to 0(1,020"3)
and found that the coefficient of O(p'%/3) in (2.1) reported by MEREDITH and
ToBiAs [14] was in error. But, owing to a numerical slip in calculations, some
results of Zuzovsky and Brenner were incorrect. The next development of this
method was carried out by SANGANI and ACRIVOS [5], who corrected the previous
errors and obtained the following perturbation expansion for k in terms of ¢:
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A-1 ) :
where L; = m‘ 1 € N (here we consider the case of perfectly con-
ducting spheres, A = oo; L; = 1); the constants ay,...,ag for the three cubic

arrays are listed in Table 1.

Table 1. The constants ai, ..., ag.

ay az az a4 s ag

SC array 1.305 0.231 0.405 | 0.0723 | 0.153 0.0105

BCC array | 0.129 —0.413 0.764 | 0.257 0.0113 0.00562

FCC array | 0.0753 | 0.697 | —0.741 | 0.0420 | 0.0231 | 9.14-1077

It should be stressed that further development of this method by taking into
account the terms of higher order in the perturbation expansion (2.2), however,
does not allow us to calculate k correctly in the case of large spheres (¢ = @max)-

3. Solution for the case of large spheres

In the case of perfectly conducting large spheres (A = 00, — ©max), the
problem can be solved by means of a reasonable physical assumption that the
flux of heat occurs entirely in the region where spheres are in near contact.
Thus, the effective conductivity is determined in an asymptotic form for the
flux between two spheres, which is logarithmically singular in the gap width,
justifying the assumption. KELLER [6] solved this problem correctly to O(Inx),
where x is the dimensionless gap width (x — 0). BATCHELOR and O'BRIEN (7]
extended Keller’s work to include touching spheres and near-perfect conductors,
and derived the following asymptotic expansion for A = co and ¢ = Pmax:

(3.1) k=-MInx — My+O(x™"),

where ¥ = 1 — (¢/@max)*/? is the nondimensional gap width between the neigh-
bouring spheres, x = 0; M; = 0.5¢maxp, p is the number of contact points at
the surface of a sphere; M, is a constant, dependent on the type of spheres space
arrangement. The values of M;, M; and @max for the three cubic arrays are
listed in Table 2.
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Table 2. The constants M;, M2 and @ax-

M 1 M. 2 Pmax

SC array /2 0.7 /6

BCC array | v3x/2 | 24 | V3=/8

FCC array | 2n | 7.1 | V2x/6

VAN TuyL [8] has recently calculated the next higher order terms in the
asymptotic expansion (3.1).

4. The quasifractional approximant

Now we go on to the problem of evaluating the effective conductivity k in
terms of the quasifractional approximants [11, 12]. So, we consider a function
of ¢ determined by the power series expansion (2.2) at ¢ — 0 and knowing the
asymptotic expansion (3.1) at ¢ — @max. A singularity of the searching solution
involves the logarithmic function in the expression (3.1). In order to reproduce
this singularity, the quasifractional approximant has to contain a similar term,
so it can be written as follows:

(4.1) k= (Pi(p) + Pp™ P + Byln) /Q(p),

where rational functions P;(y), Q(¢) and constants P, P; are determined from
the following conditions: (i) the expansion of (4.1) in powers of ¢ at ¢ — 0
coincides with m leading terms of the perturbation expansion (2.2), and (ii) the
asymptotic behaviour of (4.1) at ¢ — @Ymax coincides with n leading terms of the
asymptotic expansion (3.1). Thus, we obtain:

m
Q) =1-p—ae'™  Pilp) =) aip'l;
i=0

OLm=1
B +1)/3
°F (Pl (‘Pmax) 1= Q(‘Ptna.x)MZ) /@Tax o =
here coefficients «; are determined as follows: ag = 1, ag = 2 — Q(@max)M}/

(30max): @10 = —a1 — Q(Pmax) M1/ (10014 ), aj = —QPmax) M1/ (jpHlae), 5=
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5. Numerical results

The quasifractional approximant (4.1) represents an approximate analytical
expression of k, valid for all values of the spheres volume fraction ¢ € [0; ¢max]-
It should be stressed that taking into account more terms of the “limiting” expan-
sions (2.2) and (3.1) (i.e., increment m and n) leads to the growth of the accuracy
of the obtained solution (4.1). Let us illustrate this dependence for the case of
the SC array. We calculated & for different values of m and n. In Fig. 1 our
analytical results are compared with experimental measurements of KHARADLY,
JACKSON [16] and MEREDITH, ToBiAs [14]. Finally, we restrict m = 19 and
n = 2 for all types of arrays, so far as it provides a satisfactory agreement with
numerical data and rather simple analytical form of the solution (4.1).

12
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Fi1G. 1. Effective conductivity of the SC array. Analytical results (4.1) for different
values of m, n (solid curves) are compared with experimental data [14, 16] (dots).

Numerical results for the BCC and the FCC arrays are displayed in Fig. 2 and
Fig. 3 respectively. The obtained solution (4.1) is compared with experimental
results of MCKENZIE et al. [17] for the BCC array and with numerical data [17]
for the FCC array. The discrepancy between our analytical solution (4.1) and
numerical results does not exceed 3.6%, 4.1% and 6.7% for, respectively, the SC,
the BCC and the FCC arrays.
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Fi1G. 2. The BCC array. Obtained analytical solution (4.1) (solid curve) is compared
with experimental measurements [17] (dots). m = 19, n = 2.
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F1G. 3. The FCC array. Analytical results (4.1) (solid curve) is compared with numerical
data [17] (dots). m =19, n = 2.
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6. Concluding remarks

Main advantages of the quasifractional approximants are the simplicity of
the algorithms and the possibility of using only a few terms of the expansions.
Besides, it is possible to take into account the known singularities of the functions
defined.

On the other hand, one of the important features of using quasifractional
approximants is the control of accuracy of the realized approximation. Sometimes
to this end one can use numerical methods or experimental results.
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