Arch. Mech., 52, 2, pp. 303-318, Warszawa 2000

Magnetohydrodynamic convective flow in a rotating channel
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ComBINED FREE AND FORCED convective flow of an electrically conducting viscous
incompressible fluid in a rotating parallel plate channel with perfectly conducting
walls is investigated. Exact solutions of the governing equations for the fully developed
flow are obtained in closed form. It is found that the resultant shear stresses at the
walls decrease with the increase in both the rotation parameter K* and the magnetic
parameter M?. The rate of heat transfer at both walls decreases with the increase in
the Grashof number G.

1. Introduction

THE STUDY OF FLUID FLOWS subject to the magnetic field and rotation finds wide
applications in many fields of geophysical and astrophysical interest. VIDYANIDHI
[1] has considered the effect of rotation on the hydromagnetic flow within a non-
conducting parallel plate channel. On the other hand, NANDA and MOHANTY
[2] have investigated the hydromagnetic flow in a rotating channel with perfectly
conducting walls. However, the effect of combined free and forced convection
flow does not receive much attention in literature. However, this study may have
some bearings on the process of cooling of turbine blades, power generation, geo-
physical and astrophysical problems. Recently GUPTA [3] has studied the effect
of combined free and forced convection on the flow of a viscous incompressible
fluid in a parallel plate channel rotating with uniform angular velocity about an
axis perpendicular to the plates.

In the present paper we have considered the combined free and forced con-
vective flow of an electrically conducting viscous incompressible fluid confined
between two horizontal perfectly conducting plates, rotating at a uniform angu-
lar velocity £2 about an axis perpendicular to their planes, in the presence of an
applied uniform transverse magnetic field parallel to the axis of rotation. Exact
solution of the governing equations for the fully developed flow is obtained in a
closed form. The asymptotic behaviour of the solution is also analysed for both
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small and large rotation parameter K? and the magnetic parameter M?, to get
some physical insight into the flow pattern. Heat transfer characteristics are also
studied taking into account the viscous and Joule dissipations.

2. Mathematical formulation and its solution

Consider the steady, fully developed combined free and forced convection
flow of an electrically conducting viscous incompressible fluid within a perfectly
conducting parallel plate channel z = 4L due to a constant pressure gradient
along the z-axis. A uniform magnetic flux density By is imposed along the z-axis
about which both the fluid and plates rotate at a uniform angular velocity (2.

Since the plates of the channel are infinite in the z and y directions, all
physical quantities except the pressure and temperature will be functions of z
only. Rotation induces cross-flow, the velocity of fluid and magnetic field may be
assumed as ¢ = (u*,v*,0) and B = (B;_, Be, By), respectively, compatible with
the fundamental equations of magnetohydrodynamics where q is the velocity
vector and B is the magnetic field vector. The equation of continuity leads to
a conservation of mass i.e. V :.g = 0 and the solenoidal relation is V- B =
0. Therefore, under these assumptions, the equations of momentum and the
magnetic induction in a rotating frame of reference can be written as

. orP é*w* By 0B
(2:1) —2pv* = = + L 552 + o TR

o' By 0B,

(2.2) 200u* = p 552 -+ I-T 3

(2.3) 0=—%—pg—i(B;a£;+350£;)1
(2.4) % + opeBo i:i =0,

(2.5) ?-;;1 + ope By E;: =0,

where p, pt, pe, o, g and p are, respectively, the fluid density, coefficient of vis-
cosity, magnetic permeability, electrical conductivity, acceleration due to gravity
and modified pressure including the centrifugal force.

Assuming uniform axial temperature variation along the channel walls, the
temperature of the fluid can be assumed in the form

(2.6) T—-Ty= Nz + ¢(z),
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where N is the uniform temperature gradient, 7' is the fluid temperature and Ty
is the temperature in the reference state.
Using the equation of state under the Boussinesq approximation

(2.7) p = poll — B(T - Tp)).

We obtain from Eq. (2.3) after integration

1 L * *
(2.8) P = —pog [[1 - B(T - Tg)]dz — o (Bz‘! A4 By2) + F*(x),
“ ol
where f is the coefficient of thermal expansion and py is the density of reference
state.

Making use of Eqs. (2.6) and (2.8) in Eq. (2.1), we obtain

(2.9) o0y = —gpNz - L@ du | Bo dB;
po dz dz? pepo dz

where v = p/po.
Introducing non-dimensional variables

u*E _v'L
vR’ i vR’

n U=

L E‘
(2.10)

* * : y dF‘
B, = B;c/d;u't‘uBﬂRr By = By/J;U'EVBORs R= (L'i/POVz) (_ dz ) 3

Equations (2.9), (2.2), (2.4) and (2.5) reduce to

(2.11) %+M2%+21(2v=~1+Gn,
(2.12) g% M"'% -2K*u =0,

(2.13) ‘i;ﬁ” :% =0,

(2.14) d;% + % = 0

where M = ByL(o/pov)'/? is the Hartmann number, K2 = 2L? /v is the rotation
parameter, and G = g8NL*/v*R is the Grashof number.
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The boundary conditions for the velocity field are the usual no-slip conditions
at the plates, i.e.
(2.15) u=v=0 atn==%l

Since the plates are assumed to be perfectly conducting, the boundary con-
ditions for magnetic field are

dB dB

2.16 =" = +1.
(2.16) o a 0 atn==1
Combining Eqs. (2.11) and (2.13) with Egs. (2.12) and (2.14) respectively, we
obtain 2p o
(2.17) + M?*— - 2iK*F = -1 + G,

dn? dn

d’b  dF
b il CRR TP

(2.18) di? + o 0,
where
(2.19) F=u+1i andb= B, +1B,.

The boundary conditions (2.15) and (2.16) become
(2.20) =0 and-d—EZ =0 &t np=:=%L
dn
The solution of Eqs. (2.17) and (2.18) subject to the boundary conditions (2.20)
is
(a —iB)? ( ch(a + iﬁ)n) sh(a +i8)n
2.21 F — | [ e s e S Sl il ol (e
(Z:22) ) = (@5 gy dlasip ) C \hiasia )|
(@ —ipB)? sh(a +i8)n )
2.22 == -
G2 M= e |\ areanrg "

G v 2ch(a +18)n 2cth(a + 1f3)
t3 (” " (a+iB)sh(a + iB) T (c + iP) “1)] '

where
- % (4 + ak)'% 4 2] i
) | o /2
L 4 4 a2
ﬁ~\/§[[M+4K) M2

Considering the expressions of F(n) and b(n) given by (2.19), one can easily
obtain the z and y components of the velocity and magnetic field from Eqs. (2.21)
and (2.22), respectively.
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In the absence of the buoyancy force (i.e. G = 0), the solutions (2.21) and
(2.22) reduce to the results obtained by NANDA and MOHANTY [2].

Now we shall discuss a few particular cases of interest of the general solution
given by Egs. (2.21) and (2.22).

Case1: M?<«1and K2«1

Since M? and K? are very small, neglecting higher powers of M? and K? in
Egs. (2.21) and (2.22), we obtain

(224) L e %(l—ﬂg) +31;G (n* —n) + M? [—21—4(5—5n2+n4)

G 3111305
+m(7n—10n + 3n )] + ey

1 ;
(2.25) v = K? (5 — 69 +n%) + i(m —109® + 3n5)] LS

12 180

; 1 3 G 2|l (& I
(2.26) B$=E('f] ~v,r)+ﬁ{—l+2n - )+ M 5 5n — 21 — 0

b rop o g
+%(7n '+ )]+..‘,

(221) B, =K’ [1% (57; _ond é;-f’) & gga (702 — 5 + nﬁ)] o

Equations (2.24) - (2.27) reveal that in a slowly rotating system when the
conductivity of fluid is low and the applied magnetic field is weak, the effect of
magnetic field on the secondary flow v and on the induced magnetic field com-
ponent B, is negligible while the primary flow » and the induced magnetic field
component B, are uneffected by rotation. In absence of the rotation and mag-
netic fields, the problem reduces to the free and forced convection flow through
a horizontal parallel plate channel due to a constant pressure gradient. In this

case, the critical Grashof number G = 3

Case 2: K?>>1 and M?~ O(1).

When rotation is very large and the applied magnetic field is weak, we can
expect a boundary layer type of flow. For the boundary layer on the upper plate
n = 1, writing (1 — ) = £, we obtain from Eqs. (2.21) and (2.22) the results

http://rcin.org.pl



308 S. K. GHosH AND P. K. BHATTACHARIJEE

(2.28) = (12;{5;) exp [~K (1 4 :Ii,zz) E] sin [K (l - %) 5] ]
(2.29) u=%§[—1+(1—€)G+(1— cxv{ ( 4K2) }
XCO%{K( _”(2)6}]

(230) B, = -21? [éc+ (1;@0) exp{ _K (1 o ;f(z) E}

2
xsiu{K(l——fﬁ)E—FgH.

(231)  By= - [K{—l 4.8 %Gg(g-z)} + 24 “J@G’

M? M?
<o { & 1+ gz eeos {1 (1- ) e+ ]

Equations (2.28) - (2.31) demonstrate the existence of a thin boundary layer of
M2\

in the vicinity of the wall (n = 1). This layer
Ve y (m=1) y
may be identified as a hydromagnetic Ekman layer and can be considered as a
classical Ekman boundary layer modified by a uniform applied magnetic field
parallel to the axis of rotation. The exponential terms in the expressions (2.28)

thickness O{ K |1+ —

- (2.31) damp out quickly as £ increases. When ¢ > 57, we have

K(1+ M?/4K?)
1

G 1 1 G
(2.33) B R-1g5 BiR 5 [K{—l + €+ 50{(&—2)} +§] .

Equation (2.32) reveals that in the certain core, given by € > 1/K(1+ M?/4K?)
about the axis of the channel, i.e. outside the boundary layer region, the velocity
in the direction of pressure gradient vanishes while it remains in the y-direction.
Thus, in the central core, the fluid will be moving in a direction normal to the
pressure gradient and the axis of rotation. It is also evident from Eqs. (2.32) and
(2.33) that, in the central core, the velocity and the magnetic field components
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are independent of the applied magnetic field, and the magnetic field component
B, is very weak of order O(G/4K?).

Case 3: M?2>1 and K?~O(1).

In this case also the flow has a boundary layer character and we obtain the
velocity and magnetic field components from Eqs. (2.21) and (2.22) as

(2.34) % = 1 —exp(—ME)} + G {-1+&+exp(—ME)}],

ol
2
(235) v = 7o {2+ ME)exp(~ME) ~ 2} + G {2(1 ~ )

—(2+ Mé&)exp(-ME)}],

{2.36) By = ﬁl-g— {{—-lﬁ-ﬁﬁ-%exp[—Mﬂ}+G{%E(2-§)
1
f( - exp(—an}] ,
, KE 1 3
(237) By =12 [{2 — (24 3 exp(~ME))E — - exp(~ME) + G {62~ ©

1 3
- L3 eMexp(-ME) + o exp(—Ma}] .

Expressions (2.34) — (2.37) demonstrate the existence of a thin boundary layer of
thickness O(1/M) near the plate n = 1 which is independent of the rotation pa-
rameter K 2. This layer may be identified as the Hartmann layer. It is interesting
to note that the secondary velocity v and magnetic field B, are very weak being
O(K?/M*), while the primary velocity u and magnetic field B, are unaffected
by the rotation of the fluid. Therefore from expressions (2.34) and (2.35) we may

- 1 i Bl
conclude that in the central core given by £ > 1 the fluid will be moving in the

direction of the pressure gradient.

3. Results and discussion

The non-dimensional shear stress components at the plates n = %=1 are
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du - 1 ash2a + Bsin2f
(3:1) dn - (a2 + B2) [:F (ch2a + cos 2/3)
G ash2a — fsin2f (a? - B?) }
& { (ch2a —cos2B) (a2 + 62)} )
(3.2) dv L 1 [ Bsh2a — asin 2/
' 7] — T (a2 +p?) (ch2a + cos 23)

G Ash2a + asin 2/ 208 H
(ch2a — cos2B) (a2 +82) ]

The upper and lower signs in the Eqgs. (3.1) and (3.2) correspond to values at
the upper wall (n = +1) and the lower wall (7 = —1), respectively.

! du 5 P g 2
The primary shear stress — will vanish if the critical Grashof number

M lp=—1
equals
(3.3) G = _ai(ash2a + Bsin 2,6]’
(az — a3)

where

a = ch2a — cos 283,

a1 = a(a® + f%)/(ach2a + cos 26),
(3.4)

ay = (o + %) ash2a + aff?,

az = (o + 2)Bsin 2B + ac’.

The numerator in (3.3) is always positive, since ch2« > cos 2/ for all values of
M? and K2. Thus when as > ag, there will be an incipient primary flow reversal
at the lower plate when the temperature of the lower plate decreases.

Similarly, the secondary shear stress — will vanish if the critical

n n=-1
Grashof number equals

_a (Bsh2a — asin 23)

(3.5) Goy = —

as = (a® + %)(Bsh2a + asin2p),
as = (2af)(ch2a — cos 2).
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Equations (3.5) and (3.6) show that for the decrease in the temperature at
the lower wall, there will be an incipient reversed secondary flow near the lower
wall (n = —1), Bsh2a > asin2f and a4 > a5 or fsh2a < asin2f and a4 < as.
Also due to the increase in temperature in the axial direction of the lower plate,
the secondary flow shows the reversal when fsh2a > asin2f and ag > as or
fAsh2a < asin2f and ag > as. Proceeding exactly in the same way, we observe
that the primary flow reversal near the upper plate n = 1 occurs, if

(3.7) . =% (ash2a + [ sin2f3)
. ok (az — a3) '

Equation (3.7) reveals that the primary flow reversal occurs only when tem-
perature of the upper wall increases in the axial direction.
Similarly, for secondary flow reversal at the upper plate n = 1, we get

(3.8) Gy = a (ﬁslif::?in 2B)

Equations (3.7) and (3.8) are the same as (3.3) and (3.5) respectively, taken with
opposite sign.

The values of the critical Grashof numbers G, and G, given by (3.3) and
(3.5), respectively, for which the primary and secondary flow reversal occur near
the lower plate, are given in Tables 1 and 2 for various values of K? and M2. It is
observed that G, and G,y decrease with the increase in the rotation parameter
K?. Hence we may conclude that rotation exerts a destabilizing effect on the
primary as well as on the secondary flow.

Table 1. Critical Grashof number G...

M?/K? 1.0 2.0 3.0 25.0 81.0

10 1.437079 1.403206 1.356935 1.036904 1.006681
15 1.340707 1.327579 1.307924 1.052206 1.009877
20 1.285041 1.278675 1.268736 1.065118 1.012967
25 1.248529  1.244960 1.239268 1.075641 1.015942

Table 2. Critical Grashof number G,,.

M?*/K? 1.0 2.0 3.0 25.0 81.0

10 2439813 2.351326  2.229098 1.276532 1.129143
15 2.009786 1.979156 1.933043 1.285473 1.131058
20 1.791160 1.777421 1.755917 1.291425 1.132857
25 1.659765 1.652515 1.640924 1.294541  1.134537
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The resultant shear stresses at the plates 7 = 1 and n = —1 are, respectively,
1/2
du\ 2 dv\? 4
(3‘9) = o + s y
dn /=1 dn /-
and i
2 2 .
(3.10) T = ((—iy—) 32 (d_v)
dn =1 dn o1

The values of 7, and 75 have been calculated numerically and are presented
in Tables 3 and 4 for various values of K2 and M2. It is observed that both
and 7 decrease with the increase in either X2 or M2.

Table 3. Resultant shear stress 7; at the plate n =1 for G = 0.2.

M?/K* 1.0 2.0 3.0 25.0 81.0

10 0.268977 0.261635 0.251059 0.115098 0.063697
15 0.218611 0.215692 0.211190 0.113824  0.063633
20 0.188317 0.186856 0.184539 0.112111  0.063539
25 0.167693  0.166853 0.165495  0.110057  0.063416

Table 4. Resultant shear stress 7, at the plate n = —1 for G = 0.2.

M*/K* 1.0 2.0 3.0 25.0 81.0

10 0.355559  0.347190 0.238894  0.165038 0.093297
15 0.295138  0.291708  0.505540 0.163032 0.093175
20 0.257682 0.255926 0.181505 0.160462  0.093105
25 0.231636  0.230604  0.163680 0.157465  0.092804

The primary and secondary velocity profiles have been plotted versus 7 for
various values of K2 and G (when flow does not separate) in Figs. 1 and 2. In
Fig. 1 it is found that for fixed G, the primary velocity u decreases while the
secondary flow is of an oscillatory nature with increase in K?. Figure 2 reveals
that when K2 is small, the primary velocity increases near the lower wall n = —1
while it decreases near the upper wall 7 = 1 with the increase in G. The effect of
G on the secondary velocity (—v) is reversed as compared with the effect on the
primary velocity u. It may be noted that due to the presence of buoyancy force,
the velocity profiles are no longer symmetric.

The magnetic field components B, and B, have been depicted versus n for
various values of K and G in Figs. 3 and 4. It is observed from Fig. 3 that
the magnetic field component B, decreases with the increase in K? while the
magnetic field component B, is of oscillatory character with the increase in K.
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Figure 4 reveals that the magnetic field components B; and B, decrease with
the increase in G.

M%=10 G=02
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»
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. -.30r o
‘\\ \K2=3 ! ,/I
b, TP .‘.J_‘_’
-.40t
FiG. 1. Velocity distributions (— u x 10, - - - - ¥ x 10) in primary and secondary flow
directions.
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4. Heat transfer

For the fully developed flow, the energy equation is

OT-T) K P(T-Ty) , u dur\?  [(dv*\?
AL ox _pOCp 022 +pon dz i) dz

dREN? . fABIN®
Eg LI
where C), is the specific heat at constant pressure and k is the thermal conductiv-
ity. The last two terms in the parentheses are the viscous and Joule dissipation,
respectively.
Using (2.6), (2.7), (2.10) and (2.19), Eq. (4.1) becomes

1
4
p%poan

) d?0 ] [dF dF Mgggd_b_] |

a =T T
where

P, = (4/K)Cp,  0(n)=¢/NL,  Ki=po’R/KNL’,

dFAR _ (' () dbdb _ (dB.\*  (dBy\?
dn dn — \dp dn) ' dndn  \ dn dn )
We assume the reference temperature Ty in such a way that temperature at

the plate n = —1 is Ty + Nz and thus, by virtue of (2.6), we get ¢(—1) = 0.
Hence the temperature boundary conditions are

(4.3) 0(-1) =0 and 0(1) = ¢(1)/NL = N,(say),

where N is the wall temperature parameter.

Substituting the values of F(n) and b(n) from Eqgs. (2.21) and (2.22) in
Eq. (4.2) and solving the resulting differential equation subject to the boundary
conditions (4.3), we obtain the expression for é(n) which is rather complicated.
We omit the details of calculations since they are lengthy. We have calculated
numerically the rate of heat transfer at both the plates for various values of K?
and G and presented the results in Tables 5 and 6. It is observed from Tables 5
and 6 that the rate of heat transfer at both the plates decreases with the increase
in G. On the other hand, with increase in K2 , the rate of heat transfer at the
upper plate increases while that at the lower plate decreases.
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Table 5. Rate of heat transfer dd_& for P, = 0.025, K; = 0.5, N; = 0.5 and M? = 10.

Nly=1

G/K? 1.0 2.0 3.0 25.0 81.0

0.0 0.218247  0.220370 0.223320 0.247559  0.249672
0.2 0.201979  0.204935 0.209022  0.244038 0.248510
0.4 0.185251 0.189052 0.194295 0.240429 0.247332

Table 6. Rate of heat transfer ﬁ for P, = 0.025, K; = 0.5, Ny = 0.5 and M? = 10.

n=-1

G/K*? 1.0 2.0 3.0 25.0 81.0

0.0 0.134156  0.131785 0.128517 0.102536  0.100336
0.2 0.103589  0.102013 0.099832 0.084113 0.081915
0.4 0.073481 0.072689 0.071576 0.065779  0.068062
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