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Propagation and reflectivity of transient heat waves
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WE consipEr A riGip HEAT conductor characterized by two relaxation times and
derive a linear hyperbolic equation for the temperature which can properly describe
heat waves. The wave splitting technique is applied to the propagation problem whose
solution is expressed in the form of the Laplace transform of the wave propagator.
The reflectivity of a heat pulse is then obtained at an interface between two different
conductors. Explicit results for both the propagation and the reflection probelms are
worked out under suitable conditions which allow for a second sound propagation in
low temperature rigid conductors. The characteristic relaxation times of a reflecting
conductor are also determined as the solution of an inverse reflection problem.

1. Introduction

A LARGE PART of the recent theories of heat conduction is modelled in such a way
as to comply with the fundamental requirement of a finite propagation speed.
Beside the strong physical motivation which supports these theories, a growing
experimental evidence of heat waves seems to point out that the usual diffusion
equation for the temperature fails in describing transient phenomena in special
circumstances |1, 2|. Heat waves (second sound) have been detected in liquid
helium II and in dielectric crystals in narrow ranges of very low temperatures
[3, 4]. Hyperbolic heat conduction has been also observed in processed meat at
room temperatures [5]. In this last case the use of a Cattaneo’s type constitu-
tive equation for the heat flux has been proved to give excellent agreement with
experimental results. The heat flux in Cattaneo’s constitutive model is charac-
terized by an exponential kernel with a single relaxation time and represents the
most simple generalization to the Fourier’s law allowing for a hyperbolic heat
equation. On the other hand, experimental results on solid heat conductors at
low temperatures suggest that different relaxation times exist in connection with
different mechanisms of heat conduction. This is due to the fact that any con-
ductor possesses substructures which relax at different rates. Really, heat can be
carried by free electrons or by ballistic phonons, transmitted by electron-electron,
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4 M. RoMEO

electron-phonon or phonon-phonon collisions and by interactions of phonons and
electrons with the lattice impurities. In many cases, a realistic model can be
obtained accounting for only two or three different mechanisms which compete
in heat transport.

In the present paper we introduce a phenomenological model for a rigid con-
ductor adopting a constitutive equation for the heat flux characterized by an
exponential kernel with two different relaxation times. We show that, along with
a linearized form of the balance of energy, this assumption yields a hyperbolic
heat equation which generalizes the Cattaneo model. The coefficients of the heat
equation are shown to depend essentially on the relaxation times which ultimately
characterize the conductor’s behaviour. The remainder of the paper is devoted
to the analysis of the linearized hyperbolic system for the temperature € and
the heat flux ¢ within the phenomenological model previously outlined. In some
sense, this analysis extends the results obtained in [6] for a rigid conductor gov-
erned by the Cattaneo model. Transient wave solutions are studied and expressed
in terms of the Laplace transform of a wave propagator. As shown in the last
section, explicit inversion of the solution can be carried out under suitable con-
ditions on the relaxation times which allow for second sound propagation in low
temperature conductors. As it occurs in all propagation phenomena, the interac-
tion of transient heat waves with an interface between different heat conductors,
plays a fundamental role in many direct and inverse problems. For this reason
we have applied the usual wave splitting technique to analyze the reflectivity
of heat pulses on a discontinuity surface within the conductor. The procedure
parallels the known approaches on wave propagation in dissipative media and
leads to a reflectivity function characterized by the relaxation times of both sides
of the interface. In the last section it is also shown that reflected pulses can be
exploited to determine the relaxation times of the reflecting conductor. This in-
verse problem is solved in the case in which the incoming wave is a second sound
pulse.

2. Heat flux with two relaxation times

Let us consider a rigid isotropic heat conductor which occupies an unbounded
region B of the physical space. The absolute temperature 8 = 6(x,1) is taken
as a bounded function of the position and time, defined on the vector space
V x R where V c R®. A constitutive model accounting for a finite speed of
heat propagation in a rigid conductor was introduced by GURTIN and PIPKIN
[7] within the thermodynamic theory of materials with memory. In the linear
approximation they obtained the following expression for the heat flux in an
isotropic conductor:
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oo

(2.1) q(x,t) = — /a(s) g(x,t — s)ds,

0

where g(x,t) = VO(x,t) is the temperature gradient. If a(s) = -exp —s/T),
T
from Eq. (2.1) follows the Cattaneo’s equation,

(2.2) T 0qQ+q = —K g,

where k and 7 are respectively the heat conductivity and the characteristic re-
laxation time. In [7] it is assumed that the free energy density 1), the entropy
density n and the heat flux q deend on the summed histories of # and g, i.e.,
0'(s) = [y O(t— A)dX and g'(s) = [, g(t — A) dX. However, as shown by MORRO
[8], an effective model, (:ompat:blo mth a hnltc speed of heat propagation can be
obtained by replacing the dependence on #¢ and g' with the dependence cn the
histories 6'(s) = @(t — s) and g'(s) = g(t — s). The qualitative features of the
model, with respect to heat waves, do not change if we restrict the constitutive
functionals to the form

(2.3) P =9(0,8"), n=N(0g), q=Q(6b,8")

As an example, a Maxwell-Cattaneo kernel for Eq. (2.1) has been considered in
[8] assuming a quadratic dependence of 3 on the heat flux. As shown in [9], this
assumption is required by the compatibility of Eq. (2.2) with thermodynamics.
Consistently with the analysis in [8], we generalize here the previous example
assuming that the relaxation kernel a(s) be characterized by two different times
71 and 75. More precisely, we assume that Eqgs. (2.3)3 and (2.3); take the following
form

(2.4) q(x,t) = ]/exp et |G
1_] 0
£ c’oex 9/1’
(2.5) P(x,t) = p[f(x,t)] + Z Bij[0(x, )] / p( Lg(x,t—s)ds
o= /
/E‘Xp —3/7;) 2l b )
0

The quantities x;(0) (i = 1,2) in (2.4) are supposed to be C? functions of 6 and
the relaxation times 7; > 0 (i = 1,2) are taken to be constant. In Eq. (2.5) ¢(8)
is a convex function and the entries of the symmetric matrix f;; are supposed to
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6 M. RoMEO

be C? functions of #. The model (2.4) - (2.5) applies, in general, to composite
materials in which different substructures relax at different rates. Specifically,
as illustrated in the next section, it can be applied to rigid dielectrics at low
temperatures where phonon normal processes and umklapp processes occur with
different frequencies.

In order to obtain thermodynamic restrictions on x;(#) and f3;;(6), we exploit
the balance equation for the energy density e(x,t),

(2.6) poe=-V-q+r,
together with the second law in the form of the following inequality for the entropy

density 7,

(2.7) pon > =V - e E,

0 0

where p is the (constant) mass density and r is the heat supply of external sources.
Accounting for the thermodynamic relation ¢ = e—0n, Egs. (2.6) and (2.7) yield
the Clausius-Duhem inequality in the following form:

1
(2.8) —pOyp — g(e — )90 > 748
Posing

o0
D;(x,t) = / %exp(ﬂs/n—) g(x,t — s)ds, A
0

we have |
(29‘) Bg(pi' - :;—(g e q’,_), g = 12
Exploiting this result and substituting (2.5) and (2.4) into (2.8) we obtain

2
500 (e~ o +00' — 3 (By — 9BL;)0: - &

ij=1

e o o Lo o L T g,
P 14 - ) 7; 1 g - 7] 1 J

3,J=1
2 =

2
Z .‘\‘,,;Qﬁ;' B
=1

where prime denotes differentiation with respect to 6. Since f;; and &; do not
depend on 9,8, we obtain

| =

2
(2.10) e=p—0¢'+ > (Bij — 0Bi;)% - P,

1,7=1
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2 2
2,11 00 Y By || =%+ =) g~ ( =+~ )9 9| <) midi-g
(2.11) P ﬁj[('ﬁ' J+'rjd)') e (Ti"."'j)qs ‘pj]_iﬂK@ 5

ij=1

Adapting to our purposes a lemma shown in [8] and accounting for the indepen-
dence of 3;; and k; on g, inequality (2.11) ultimately gives

(2.12) ki = 2p0 Z ﬁ,j
=1
Z Bij ( ) G, D; > 0.
i,j=1

In view of the symmetry of fj;, we conclude that the matrix B;; = f;;/7i is
positive semidefinite and the same holds for the matrix 8;;. These facts imply

(2.13) K= KL +Ko2>0,
(2.14) otk e S
Tl T2

From (2.10) and (2.5) we also have

n=—0 (,a+92[313¢ - P
2=l

We remark that models which are characterized by only one relaxation time yield
a Cattaneo’s constitutive equation for the heat flux. This fact is apparent from
Eqgs. (2.4) and (2.9). The usual Fourier law q = —xg follows from (2.4) in the
stationary case where k, given by (2.13), is the heat conductivity of the medium.

3. Hyperbolic heat equation

Owing to Egs. (2.10), (2.12) and (2.4), the balance of energy density (2.6)
takes the form

2
» '} ' ]‘ 1 1
ig=1 : J
+46. ﬁl 820 ﬁ; v &; — — =0,
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Looking at a result which bear evidence of the essential features of the model
with two relaxation times, we search for a linearized form of Eq. (3.1). Since
thermal equilibrium is characterized by 6(x,t) = 6y and ®;(x,t) =0 (i = 1,2),
we retain only linear terms in the derivatives of # and @;. In absence of external
heat supplies we obtain

(3.2) Y9 0(x,1) =2 Z B v @;,

1i=1

where x = —¢"(60) and B; = Bi;(60). We note that, in view of the previous
hypotheses we have x > 0. Eq. (3.2) allows us to arrive at a linearized heat
equation in a differential form. To this aim we observe that in view of Eq. (2.9),
successive differentiation of Eq. (3.2) with respect to ¢ gives

2 2
11 Il :
0 P 0 9
ZZ 1j:’—v 961 . ZZﬁ{jEEV'g—X@(},
LIV 1.
(3.3)
0 1 I g 3 0 s 1 3
2Zﬁu 20 = 225:‘_;5___ —V.g-8,V- g|+x00.
i TiTj L7

Since 71 # 7o and assuming k; # 0 (1 = 1,2), system (3.3) can be solved for
V- ®;, (i = 1,2). Substituting these results into (3.2) we arrive at the following
heat equation

(34) —88 = (1 + )00 + Ti28}6 — = [(ﬁ 22 + 8%, ( a 4 _1_)) Al
X T1 T2

T2
c (g?l 2, ﬁ” A + 2612) a,aa] .

This is an hyperbolic differential equation which, according to (2.14) admits wave
propagation with the speed

1/2
. ¥ 2 ol 1
plox X t.‘jz:l 1T
The quantities ﬁ?j are phenomenological coefficients whose values can be assigned
by experimental data. In particular, if the heat conductivity « and the wave speed
v are given, Egs. (2.13),(2.14) and (3.5) allow us to obtain 8Y, and %, to within
the choice of £%,. Since ﬁ?j is required to be positive semidefinite, we can fix 8,
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PROPAGATION AND REFLECTIVITY OF TRANSIENT HEAT WAVES 9

under the only restriction |30 < \/ﬁ?I {ifgijz The most simple choice is £Y, = 0.
In this case we obtain

2 2
7 ] K 0 T3 2 K

viTg — ——| oy = T — ——

To — T1 [ : 2;)90] ' Paz T — T2 [ ] 2p90]

The present phenomenological model is then reduced to the knowledge of the
relaxation times 7 and 7.

A relevant application of the result (3.4) can be found in the problem of heat
conduction in a rigid dielectric at low temperatures (see[l, 10]). In this con-
text, a theory of the phonon gas has been developed which considers relaxation
phenomena as the result of phonon’s interactions. In particular, in a dielectric
heat conductor two characteristic times can be introduced in connection with
phonon’s resistive processes which do not conserve momentum, and normal pro-
cesses which conserve momentum (see [11]).We remark that in our model 7; and
T2 are phenomenological quantities which are not necessarily ascribed respectivly
to resistive and normal processes. However, a comparison with the 9-fields the-
ory shows that the heat equation (3.4) has the same form of that obtained from
system (3.56) in [10] where two relaxation times 7p and 7y account for resistive
processes and normal processes, respectively. In fact Eqs. (3.56) in [10], can be
rewritten as

(3.6) B =

de+c*V.-p =0,

1 1
(3.7) dp+-Ve+V-N = ——p,
3 TR
E)£N+gc2 Vp—l(v-p) 1) = -iN,
5 3 T

where e is the energy density of phonons, p is the phonon momentum, N is
the deviatoric part of the momentum flux of phonons, ¢ is the Debye speed and
1/t = 1/7p + 1/7n. Eliminating p and N from (3.7), we obtain the following
equation for e,

1 2
(3.8) ——die= (i + — ) d,, e+ 33 2 ( Ae + gatae)
TRT T} Y

In [10] the energy density is supposed to obey the Debye law for phonons even
in non-equilibrium. This fact means that e = e(#) where # is the absolute tem-
perature of the conductor. In particular, the linearized form used in [10]

(3.9) e =eg + a(f — b),
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10 M. ROMEO

with ep and @ constant, turns out to be equivalent to the linearized version of
(2.10). Substitution of (3.9) into (3.8) gives

2
(3.10) -0 = (tp + 7)639 + TRrTds0 — %— (TRAQ i o gTRng.ﬂG)

Equation (3.10) has the same form of (3.4) provided that 1/m and 1/m are
identified respectively with the relaxation frequencies 1/7p and 1/7. We finally
observe that, actually and independently on their physical interpretation, the
phenomenological times 7; and 75 have to be evalued by a measure of some
relaxation properties of the conductor. In the last section we turn the evaluation
of 1/7; and 1/7; into an inverse problem for the reflection of transient heat waves.

4. Wave splitting for transient heat waves

Having introduced Cartesian coordinates (z,y,z), we suppose that the re-
gion occupied by the rigid heat conductor corresponds to the half-space V =
{(z,y,2z) € R*| £ > 0} and denote by S the boundary plane surface z = 0. We
assume that a uniform heat pulse is generated at z = 0, for £ > 0 and that
temperature perturbations are absent throughout V for ¢ < 0. We restrict the
analysis to the one-dimensional problem considering only the component ¢, =: ¢
of q. Looking for definite results, in the following we shall discard external heat
supplies. From (2.4) and (2.6) we obtain a linear integro-differential system for
0 and ¢ in the form

(4.1) q(z,t) / (—exp (—s/m1) + —cxp S/T2)) 0z0(z,t — s)ds,
, T2

(4.2) plox 00 (x,t) = —0zq(,1),

together with the conditions
(4.3) 0(0,t) =0(t), or  q(0,t)=4(t), Vt>0,

(4.4) (z,t) =0y, Vx>0, Vt<O0.

In Eq. (4.1) it is understood that the quantities x; and sy are evaluated at
0 = 6y. After differentiating (4.1) with respect to time and taking into account
(4.4), we get
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PROPAGATION AND REFLECTIVITY OF TRANSIENT HEAT WAVES 11

where the linear integral operator K is defined as

(4.6) (Kf)(t) =—=f(t) + 2 [ (E exp(—s/m) + wjl‘;'—2{-n(p(——.'s‘/?';g)) f(t—s)ds,
i 71 (e

0

for any bounded f(t), (t € R*). By the use of the Laplace transforms it is easy
to show that K admits the following inverse
t

A, 2
(@7 (KTHO=-f0 - / ll - (l s l)
0

v Nty T

exp (g = ‘:)] f(t—s)ds.
nTYy

Then, Eqs. (4.5) and (4.2) can be rewritten as

& 0 ylK-l ) ,. ( 9)
4.8 B, = 9 :
i6) : ( q ) ( —pbox 0 ‘\ g

Equation (4.8) is analogous to the system (2.2) of WALL and OLSSON [6], where a
Maxwell-Cattaneo equation is analyzed. Adopting a wave splitting technique, we
parallel the analysis of [6] in the homogeneous case. Accordingly, we introduce
the quantity (8%,67)T in the following way:

(£)-2(%5")

where

1 i
(4.10) D= ( P P )

and we look for the linear operator P which diagonalizes the matrix in the right-
hand side of (4.8). Substituting (4.9) and (4.10) into (4.8) we obtain

0+ lp-t_g-1p iP‘1+K-‘P
(4.11) ) 2 e ¥
. ’ 0~ 2 I =1 —1 L o= -1
——P'—K'P ——P'+K™'P
v v
9+
a.! 1
s

where the definition (3.5) has been used. Imposing the diagonalization condition
we have

(4.12) S(PT)(0) = ~[(K~ P,
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12 M. ROMEO

for any bounded f(t), t € R*. In view of Eq. (4.7) and making use of the Laplace
transforms, Eq. (4.12) yields

{ T
(413)  (PTUA)() = +uf(t) £ v [ ’F;(THFZ(T) / Fy(€) Fa(r — €) d

0 0
f(t —7)dr,

where

1 i t K
4.14 Bl = — (1= 2 ) |-—s 2
e 2(t) 27y ( Tl‘}’) pxp[ 21y (1 Bt Tw)]

S TS PR N

and where Iy and I; are modified Bessel functions. The sign in (4.13) can be cho-
sen according to the meaning of @ and 0~ as forward and backward propagating
modes. Then, Eq. (4.11) reduces to

aty a0

_E —1 = Fy % —Fy % —F| x Fox 0
T 0 14+ Fy % +F « +F) % Fox

w |t
(1)

where the asterisk denotes time convolution, i.e.,

t
[a(-) = b(-)](2) /a(‘r)b(t —7)drT.
0

Since forward and backward modes propagate independently in opposite direc-
tions, for definiteness let us consider only one mode, say 8. We can write

(4.16) 0.0 (z,t) = —-{[5 + Fi(-) + Fo(:) + Fy + Fa(-)] * 907 () }(t).
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Equation (4.16) can be transformed into an integro-differential equation for a
wave propagator P (z,t), defined as

6" (z,t) = [P*(z,-) * 61(0,)](t).
Substituting into (4.16) we obtain
(4.17) Oz[PT (z,) * 671(0,-)(1)] = —%6;[(1 + Fy + Fo + Fy + F)
*PT(z,-) x07(0,-)(t)).

In deriving Eq. (4.17) we have exploited the result % (z,0) = 0,Vz > 0, which
follows from (4.4), (4.9) and (4.13). The application of Laplace transforms to Eq.
(4.17) allows us to obtain

(4.18) LP*(z,8) = exp —%s(l + LF(s) + LFy(s) + £F]{S)£F2(S)]} -

where we have taken into account the condition PT(0,¢) = d(t). Making use of
(4.14) we get

T | s(s+ 1/1'])(3_ +1/19)

(4.19) LP*(z,s) = exp =
s

T1T2Y

We note that in a phenomenological model with a single relaxation time, the
Laplace transform in Eq. (4.19) can be easily inverted to give the wave propagator
for a Cattaneo type heat equation (see [6]). This can be performed by letting
7 — oc in (4.19). We obtain

(4.20) PiF(z,t) = exp(—t/(271))
= I [ : 2 — (z/v)?

where H(t) is the Heaviside unit step function. An analytical inversion of the
Laplace transform in (4.19) will be accomplished under suitable approximations
in the last section. To this end we give here an alternative form of the previous
result. Without loss of generality we can choose 71 > 7, such that, owing to
(2.12) and (2.13), the quantity

1 K 5-1/2
s+1/m 7o 1 _m
gl I T8+ 1/m

TLT2Y
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14 M. RoMEO

can be expanded into a binomial series. We obtain

R
o0 e e
: (2k—1)! T1Y
4.21 LPY(z,5) =¢ ——\/ P §; ‘
(421)  LP*(z,5)=exp e 2!»)" mwa

5. Reflectivity of heat waves

Let us consider two half-spaces V, = {x € R*| 2 <0} and V; = {x e R*| = >
0} occupied respectively by two different homogeneous rigid heat conductors,
modelled as in Sec. 2. They are taken to be in a thermodynamic equilibrium state
at the temperature #y. The constitutive parameters p, K, k2, T1, T2 are supposed
to be constant in V, and V, and discontinuous at the common plane boundary
S, (z = 0) of the two conductors. In the following we shall use the suffixes a and
b to denote quantities pertaining respectively to V, and Vj. The continuity of ¢
and q at the surface § implies

(5.1) ( ¢ ) (0%, 1) = ( z ) (0~ %), vteRY,

q

where 0" and 0~ refer respectively to the limiting values from the right and from
the left of = 0. Since g is the common temperature of both conductors, from
(4.9) we have

(5.2) [D,, ( gj )] (0F,¢) = [Da ( g+ H 0-,8). VteR"

where
1 1 1 it
D, = " D, = ;
’ ( _‘Y-*)Pb 'prb ) i ( _'Tapn ')’nPtz )

Multiplicating Eq. (5.2) from the left by D‘,J_I we arrive at

9+
(5.3) (07,2)
8_.
4+ Bptyp 1—tpt.op o+
T Vo Yo (0~ 1)
21 1-2epr,p yyapt p g
Yo Yo
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Now we introduce a reflectivity function R(#) by the following definition,
6=(0~,%) = [R(-) 6% (0, ))(2),

and substitute into (5.3) to obtain
6+ (0%,8) = 2[6() + 2P Py() + R()
A Y% ° .

—f{—“P;l « Py x B(-)] +0(0, ),
b

0= (0%,t) = %[a(-) i %Pb" « Py() + R(")

+1;£P,;‘ ¥ Py % R(-)] % 0(07,2).
b

Owing to the causality principle we pose 6= (0",t) =0,V £ € RT. Then, in view
of the arbitrariness of 8%(07,t), Eq. (5.4) yields

(5.5) 5(t) + R(t) — %Pb‘l « Po(t) + 1“ PV« P+ R(t) = 0.

Applying the Laplace transforms to Eq. (5.5) and accounting for the expression
of P derived in the previous section, we arrive at

(5.6) LBy = MEE) @ ) e

H( )+o

(H- 1) (s+i) (3+ 5 )
Ty 7 8787,
i 73 VT3

and o = \/ppXoT/\/PaXaYa- An inversion of the Laplace transform in Eq. (5.6)
can be performed by writing

(5.7) H(s) =

Ay Ay Az

H(s)=1+ + A
() S+&'1+S+Sg 54 83

where s = 1/1f, so = 1/78, s3 = sp/(273), and
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16 M. RoMEO

1 1 H.n
= 3 2
A; = {—.‘51- -+ (_h+ T + W) S5
T2 T2

( 1 hﬂ hﬂ

= = 5 =i ).‘»‘z'
i

H | T | i

& =
ﬁ} ((si41 = 8i)(sig2 — s:)]
Tl "."2 Tl T.z"}’a
for + = 1,2,3. The final result is
(5.8) /N G1(E,) * Ga(E, ) * Ga(&, )] (1) e,

where

(5.9) N (&) = exp(—£) [‘202 <-3x1.)(02£)m'['('.(a\/g) - j_:—é + l] .

and

[A; .
(5.10) Gi(&,t) = exp(—ts;) {J(t) - TéJi(ZN/Afft)] SR TR g
with J; Bessel function of order 1. In view of Egs. (5.8) — (5.10) we can write

R(t) = uzo 8(t) + R(t),

where

o0
[ N(g)d¢ = —2
+o

0
is the (instantaneous) attenuation factor and where R(t) yields the part of the
reflected field due to convolution. Both » and R(t) are characterized by the
relaxation times 71 and 79 and by the partial heat conductivities k; and k9 in a
and b. As shown in the next section, if the quantities pertaining to the conductor
a are known, the reflection data can be used to gain informations about the
characteristic parameters in b.

6. Application to the second sound and the inverse problem

The analysis of experimental results on heat pulses in dielectric crystals has
shown that second sound propagates only if @, falls into a narrow range of
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PROPAGATION AND REFLECTIVITY OF TRANSIENT HEAT WAVES 17

absolute temperatures [12]‘ This property, called window condition, has been
interpreted on the basis of phonons’ model by saying that, in sufficiently pure
crystals, second sound appears when the temperature is low enough to prevent
resistive processes and high enough to allow for normal processes. Applying our
phenomenological model to this problem we assume 1/7; and 1/7 to represent
two characteristic frequencies accounting for resistive processes and normal pro-
cesses. This hypothesis is justified by the identifications due to the comparison
of the heat Eq. (3.4) with Eq. (3.10), obtained in phonon’s model [10] (see the
end of Sec. 3). Then the window condition holds when we have 1/7 < 1/79. We
exploit this condition to derive an explicit solution to the propagation and the
reflection problems.

We firstly consider the wave propagator P*(z.t) in the form (4.21). Accord-
ing to Eqs. (3.5) we can write

(6.1) LPY(z,s) =exp |- \/ (s+1/m) Z (Zk)”
k=0

IR g
4 2,09(] T1 1}2

14+ sm

A first approximation of Eq. (6.1) can be worked out under the window conditon
assuming 7 < 71. Retaining only the terms for £ = 0 and k = 1 in the binomial
series, we get

(6.2) LP*(z,5) = exp [—%\/s(.‘; - lf'rl)} exp [—Lé] g

20Ty 8 + 1/7’2

The Laplace transform in (6.2) can be easily inverted to give

2UTQ

(6.3) Pt (z,t) = exp (~ ) [?314“(.7:, ) * Q(z, )(t)] -

where P; (z,t) is given by (4.20) and where

2vt To

Q(x,t) = exp(—t/72)d(t) + exp(— t/?‘z) e —1I (1 gmt) _

To point out the role of normal processes in determining the wave propagator we
rewrite Eq. (6.3) in terms of the nondimensional quantities a = z/vmy, ¢ = T2/
211, A= f-/'l"g. We obtain

http://rcin.org.pl
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(6.4) Pt(a, ) = eX1/2-0=A5() — q)

' 1 a
pa(1/2—q)=A Salh —
o' Pt il (V2alx=a))
A i
2 -— 2 ¥ o
+ uq__]__e—%‘—.kq;](qvf\ (43 ) +e_%_A/e€(q_|}i2 Z(A f‘)
2 A% —a? 78 /8% —a®

I [ovE@=a| 1 [V2a(h-9)] de.

The first term at the right-hand side of (6.4) is the hyperbolic part of the prop-
agator which leaves the boundary pulse undistorted but attenuated in amplitude,
owing to the few resistive processes. The second term takes into account the effect
of normal processes. It is the leading term and it rapidly decreases with A, The
third term is a slow decreasing function of A, essentially due to the resistive pro-
cesses. The fourth term is a mixed, quantitatively minor contribution. The effect
of such propagator on a half-gaussian pulse at z = 0, 87(0.1) = =0 (¢ > 0),
is shown in Fig. 1 for different values of 9. It is evident how a second sound
pulse arises if 19 is notably smaller than ;. Figure 1 is in agreement with the
experimental evidence of second sound in low-temperature very pure crystals (sce
[3]), and with the numerical results according to the 9-fields theory by [10] where
a second sound pulse develops for small values of the relaxation time associated
with normal processes.

Now we consider the problem of the reflectivity at the interface S between the
half-spaces V, and V}, occupied by two different rigid conductors. On the basis of
the results obtained in Sec. 5 we suppose that the medium in V, is a highly pure
crystal which complies with the window condition at the temperature f. This
assumption implies that the function H(s), given in (5.7), can be approximated to

His) = 1+i_l(1“%) (1_%)

T 1]
T8 T PR

T172

(6.5)

where 71 and 75 are the relaxation times pertinent to the conductor placed in Vj,
and

h = .
Tf'}’a ] Yo
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Substitution of Eq. (6.5) into (5.6) and application of the inverse Laplace trans-
form yields

(6.6) R(t) = vexp (h;—Tgt) 8(t) + R(t)

where

(6.7) R(t) = /[_Ll(ést) = La(&,t) + Li (&, ) * La(€, ) ()] N (€) de,
0

Li€.t) = \/%Jl (2 %) ,
Ly(&,t) = exp(—Lt)Jl (1 . 1) (1 ] L)%
T1T2 T Ti T
1 T T
i (- 2) (- 2)er).

In (6.6) and (6.7) v and N (&) are given by Eqs. (5.11) and (5.9) where o =

A HLM (hereafter we shall assume ¢ < 1). From the result (6.6), which is a
PaXaa

special case of that obtained in Sec. 5, we obtain the reflected field at z = 0 in
the form

with

i
(6.9) 8=(0~,8) = w8t (0, 8) + /ﬁ(.s)m(o—,r, — 8)ds.
0

In Fig. 2 we have shown an incoming half-Gaussian pulse and its reflected profile
at z = 0, given by Eq. (6.9) when o = 0,(r = 1) for two different values of 75.
The reflected pulse turns out to be notably sharpened by reflection and it shows
a negative tail (8 < ) at = = 0. The effect of sharpening is more relevant for
smaller values of 7.

Now we assume that a boundary pulse 8%(07,%) be given at S. Then, by

the reflection data, we can estimate the quantities 8; := 67(07,0), (87)y =

d
-(EQ"(O_,O}h:g, (@ 5= 52?9_(0_,0)|¢={) at the interface S. We show how

the parameter o and the relaxation times 73 and 75 in V4 can be derived by
B .(07)g. (07)g- To this end we observe that by successive differentiation of
(6.9) with respect to ¢ and evaluating the results at ¢ = 0, we obtain
o-
(6.10) = g—n_lj,
0
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0 (0,1)

(o] 1 2 3 4

t (105 s)

FiG. 2. Incident (dashed) and reflected (solid) temperature pniscs fm o=10 (u = 1)

A half-Gaussian pmhl(‘ 0+(0,t) = e~ is ’l‘i‘wumui with b = 102, 7 = 10~5s, 7, =
.10~ and (a)rs = 5-10%, (b)ry = 10~ s.

R(0) = ——[65(07)5 — 65 (6™)g),

((9*
(6.11)

R(0) =

G 103 0708 05 (O8] + 00l (0% = 6507y

From Eqgs. (6.10) and (5.11) we obtain the value of the parameter o. Con-
cerning the quantities R(0), R'(0), they can be written in terms of the relaxation
times 7 and 7. In fact, evaluating Ly, Ly and their derivatives for t = 0, by
Eqgs. (6.8) we have

L(§,0) = % Ly(£,0) = % (1 - Tll) (1 = %) £
2
5 52 T T
[F%;*zrﬂ(“a:)(“a)]'

http://rcin.org.pl
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Substitution of (6.12) into (6.7) yields

i T1 T2 T1T2
(6.13)
2
MUz_”[FTGHJ“_LH_Q(i+i_iqq
1172 71 T2 T1T2 2 71 T2 T1T2
where
o+ o+
= | N@)éede =———,
w = [Noga= 720
0
(o o]

403 + 1162 + 90 + 4
2(c +1)3

w=/N@¥%=

0

Solving the system (6.13) for 7; and 7o we explicitly obtain

1 1 -
(6.14) — =g — a? - 4b, — =a+ Va? —4b,

T T2
with
" - - 5
o= B - S o da L RS B S D)
V] =} ﬁ([])fr 2 " 4 21 1 !
(6.15)
% - -
b= — | Hioy+ 22 B2
vy + R(0)7 2 vy T

Owing to (6.14), (6.15) and (6.11), the relaxation times turn out to be uniquely
determined by the reflection data.

7. Conclusion

In the first part of this paper we have shown that. within the linear the-
ory of heat conduction, a phenomenological model accounting for two relaxation
times yields a hyperbolic heat equation which can be effective in describing the
observed phenomena on the propagation of heat pulses. In the second part of
the paper we have applied the wave splitting analysis to our phenomenological
model. The solution of the propagation problem has been written in terms of the
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Laplace transform of a propagator kernel. An inverse transform is explicitly ob-
tained in the case of a low temperature conductor under the “window condition”
which allows for second sound propagation. The hyperbolicity of the governing
system leads to the natural question on the reflectivity of heat pulses. Beside its
intrinsic intersest, we have considered the solution to this problem as a means
to determine the characteristic relaxation times of a given rigid conductor when
the reflection data on its boundary are available. In particular we have assumed
that the incoming wave propagates in a highly pure crystal and impinges on
the boundary of a unknown conducting specimen. However, the same procedure
can be performed for any case in which the relaxation times of one of the two
conductors are known.
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