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To REPRESENT MULTIDIMENSIONAL FLOWS of particle-fluid mixtures, Eulerian two-
fluid models are currently used nowadays. Even if there are no pure turbulence effects
in the carrier phase flow, many closure laws are required in order to supplement the
conservation equations. To furnish a systematic method for deriving such closure laws
that are valid at least for spherical solid inclusions, a generalised system of equations
is proposed in this first paper (hereafter referred to as part I) of a sequence. It is based
on the coupling of two sets of equations, one for each phase: the continunous phase
is represented by an extension of a hierarchy of equations proposed by Lundgren
for treating flows in porous media, and the dispersed phase by an adaptation of
the well- known B.B.G.K.Y. hierarchy. The first-order equations of both hierarchies
correspond to the conservation equations of standard two-fluid models; they contain
the nsunal unknown terms. In our approach these terms appear to be provided by
the second-order equations. Unfortunately, as is usual in other similar statistical
theories, the second-order equations contain extra nknown terms which figure in the
third-order equations and so on. Formulating closure equations is replaced by the
broader problem of truncating the generalised system of equations via a perturbation
method based on diluteness.

1. Introduction

IN OrRDER TO OBTAIN multidimensional equations which relate the macroscopic
phase properties of two-phase flows, several averaging processes have been pro-
posed by (among others) DELHAYE and ACHARD [6]. They consist in applying
time or space-averaging operators to a given system composed of local instant
field equations that are valid each phase, supplemented by jump conditions at
the interface. As it has been pointed out (HINCH [9]), ensemble-averaging ope-
rators applied over a set of “macroscopically equivalent” realisations have to be
introduced in preference to other averaging processes. However, all these pro-
cesses lead to formally identical mass, momentum and energy conservation equa-
tions. These provide a rational basis for many models used in engineering and
especially for the most sophisticated ones, i.e., two-fluid and multidimensional
models, which are starting to be used widely for numerical simulation purposes.
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26 J. L. AcHARD AND A. CARTELLIER

A consistent model for any two-phase flow phenomenon must therefore be
based upon the above equations; furthermore it must include appropriate closure
laws (improperly referred to as constitutive equations, or rheological relation-
ships). In fact, these laws constitute the essential part of a given model since
they express, inter alia, how the fluids are coupled. There is still a lack of
knowledge about these closure laws, the derivation of which generally appears
in a separate second step, as intuitive grafts upon well-established conservation
equations. Progress may be made by settling for something less than complete
generality. Indeed, even if we restrict our interest, as in this paper, to dispersed
two-phase flows (i) carrying spherical inclusions (ii) which are small compared to
the length scale of the averaged fields, (iii) are composed of incompressible and
Newtonian fluids, (iv) where no heat transfer and no phase change occur, (v)
under negligible interparticle collision conditions (vi) which remain “laminar” at
all times, with possibly significant inertia effects, averaged equations nevertheless
require many laws, the rational derivation and indeed the validity of which are
not guaranteed.

The most promising way to improve our ability to model dispersed two-phase
flows lies in an approach which mixes kinetic theory concepts and classical con-
tinnum mechanics. VAN and WIINGAARDEN [16] was one of the first authors to
introduce an equation for the bubble number density in order to handle variations
in their radius. Many of these studies proceed intuitively rather than rigorously
(ACHARD [1]), even if the modelling of pure turbulence effects is left aside. Fortu-
nately, exceptions exist (BIESHEUVEL VAN and WIINGAARDEN [2]) and among
these, two series of careful studies attempt to be as systematic as possible as
we shall. They where proposed by ZHANG and PROSPERETTI [17, 19] and by
KocH and his collaborators (KUMARAN and KocH [13]; KocH [12]). In order
to represent the dispersed phases, both authors start from a sort of Liouville
equation (named N-particle Smoluchowski equation by the latter and equation
for the number of realisations by the former). The continuous phase is governed
by creeping flow equations for the latter and by potential flow equations for the
former. Due to their general formalism, several new results were obtained in their
specific applications.

In the forthcoming sequence of papers, a new method pertaining to this school
of thought is presented in detail; emphasis will be put on methodology. In the
first place, our work will concentrate on extending and then connecting in a con-
sistent way two hierarchies of equations existing in the literature: the well-known
B.B.G.K.Y. hierarchy for the dispersed phase (GRAD [8]) and the Lundgren hier-
archy for the continuous phase (LUNDGREN [15]), which was introduced initially
to treat flows in porous media. Its essential feature is to produce, as a rule, all the
standard conservation equations and most of the required constitutive equations
at the same time, and in an unified manner.
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LAMINAR DISPERSED TWO-PHASE FLOWS AT LOW CONCENTRATION I 27

The rest of the paper is organised as follows. The class of two-phase flows to
which our theory applies will be defined in Sec. 2. In Sec. 3, we present the basic
statistical tools and the main averaged variables which will be used. Most of
them are conditional upon the presence of several inclusions and require specific
equations which are given precisely by the revisited B.B.G.K.Y. and Lundgren
hierarchies. Complete derivation of these hierarchies is a long and difficult process
which will be discussed in the following two Secs. 4 and 5. The main limitations of
our theory are recalled in Sec. 6 while further developments are briefly outlined.

2. Deterministic equations

2.1. Inclusion equations

The first step here is to see how far the usual starting particle equations in
Statistical Mechanics (S.M.) differ from the starting inclusion equations in our
method. To begin with, there is a striking difference: both phases will be mode-
lled by equations provided by Continuum Mechanics and any molecular effects
will be neglected. With regard to the continnous phase, the usual field equations
are inevitably used. These consist of conservation equations (mass, linear and
angular momentum and energy) supplemented by constitutive and state laws ap-
propriate to the continuous phase material. All these equations obviously have
no counterpart in S.M. With regard to the dispersed phase, we have to adopt
a lumped formulation for the thermomechanical fields inside a typical inclusion.
Such a lumped model is essential in order to deal with a finite number of over-
all particle characteristics whose values at time t correspond to n generalised
coordinates (g.c.), written for short, z = [31.22,...,3“]. Among these, we may
distinguish an external part giving the location of an inclusion centre x and its
unit orientation vectors, from an internal part & giving its intrinsic condition and
specifying for instance its linear and angular velocities, its size, its temperature
or even certain spherical modes in the case of deformable inclusions. To obtain
such a formulation, if it exists, it is necessary to make certain approximations
that exploit the physical peculiarities of the micro problem under consideration,
and among others the smallness of the inclusion.

Turning now to the simplified case treated in this paper, where the inclusions
are identical, spherical, rigid, with a radius a: they may represent solid particles,
highly viscous droplets or small bubbles with surfactants; the equations of rigid
body motion will be applied. Collisions will also be excluded. For both phases
gravity may act and affect the motion of the mixture. The physical 3-D domain
occupied by the mixture is denoted by V.. The boundaries dV® of V5 may
consist of rigid walls 9V, as well as fluid surfaces 9V} through which inclusions
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28 J. L. AcHARD AND A. CARTELLIER

(and carrying fluid) are injected or removed at a prescribed rate. Note that the
physical 3-D domain allowed for inclusions is not V5 but more precisely, V;r.,
the reduced domain which is obtained by excluding all positions x such that
|x — xonJ < a from Vi (impermeability of solid walls). Its boundaries are

denoted aV°.

Supposing provisionally distinguishable inclusions, let z; = (x;j,u;, W;)(j =
1;2,...;N) the motion of the Jjth inclusion in its generalized own space Hz;(n =
9) where x; or ;r}(z' = 1,2,3) denotes its position, u; or uj its translational
velocity and w; or w_‘? its angular velocity. The density p? within each inclusion
is homogeneous so that the mass of the jth inclusion is m = dnpta® /3 and
its moment of inertia is I = 2ma2/5. Such a motion z;(t) obeys the following
equations:

dx;(t
(2.1) % = u;(t),

duj(t) e
(2.2) W= s F;(t) + Fj(t),
(2.3) Idu:;m = K;(1),

where F;, K; and Ff are, respectively, the force and torque exerted by the fluid
on inclusion j, and the external force acting on this inclusion. No external couple
acts on it. Here the boundary terms are:

Ej= / n TS and K;= /(x—xj(z))/\n;?-*n*fds,
5(x;) S(x5)

where S(x;) is the surface of the inclusion centered at x;(¢) and nf,-i a unit normal
to it, exterior to phase d. For the sake of simplicity the superscript d will usually
be omitted and this unit vector will be defined as n; = (x — x;(t))/a.

Now, consider the whole population of inclusions. Its state, at any time £, is
specified by the location of one point, called a phase point, or a configuration of
the system Zy(t) = [z1(t),22(t),...,zn(t)]. The corresponding Euclidean space
of nN dimensions is the phase space, denoted by I'; it is equal to the Cartesian
product of all u,,. Of course the particle coordinates are arbitrary within each
domain, except for the restrictions |x; — x;| > 2a for any couple of (i, j) having
distinct values (non-overlapping of nondeformable particles).

The continuous fluid is Newtonian and therefore the stress tensor T¢ is defined
by T¢ = —pl + 2uD(v®), where D(v®), the rate of deformation tensor, is the
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LAMINAR DISPERSED TWO-PHASE FLOWS AT LOW CONCENTRATION I 29

v ]
symmetric part of the velocity gradient I}() = a{}] . Of course F§ = mg
as the body force is just gravity. The fluid velocity field satisfies the classical
equation

(2.4) T vf(x,t) for |x—x;(t)] =a

at the surface of the inclusions and vff is the velocity field inside the jth inclusion.
Each inclusion is subject to a rigid motion, thus:

(2.5) v:f(x.f,) = u;(t) + w;(t) A [x — x;(t)] for |x—x;(t)] < a.

It will be assumed that collisions between inclusions are unlikely to occur or
are soft enough not to give rise to significant pressure impulses. Taking into
account collisions would mean supplementing motion Egs. (2.1), (2.2) and (2.3)
with jump conditions relating translational and angular velocities before and after
each interaction.

Several fine-grained functions can be defined describing the complete struc-
ture of the dispersed phase in V;f. These are the dispersed phase indicator (or
structural, or characteristic) function X4 equalling unity inside the inclusion and
zero otherwise, and the velocity field of the dispersed phase. In the case under
consideration, they are:

N
(2.6) X%Zyix) = ) Hla—|x=x;)=1-X5,
i=1
N
(2.7) X4 Znix)vH(2Znix) = 3 Hia — |x —x;])vi(x, 1)
j=1
N
= Z H{a — |x —x;])(u; +w;j A (x —x;)),
1=1

where H is the Heaviside step function defined as zero when its argument is
negative and one otherwise.

2.2. Ambient fluid equations

Formulating local instant field equations in the sense of generalised functions
(g.f.) before averaging them, offers several advantages which are well-known to-
day in two-phase flows as well as in intermittent turbulent flows after the original
LEWI thesis [14] and DoprAzO paper [7], respectively. First, time and space
differential operators in the sense of g.f. commute with averaging operators;
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second, applying averaging operators to equations in their ordinary sense requires
a different set of calculations concerning the interfacial source terms, whereas
equations in the sense of g.f. require a single step operation; finally, these source
terms have a mathematical form which will help in finding the closure models.
The first step in obtaining continuous phase equations in sense of g.f. is to
make these equations valid throughout space-time R? x R, i.e. even outside the
mixture domain V; and inside each inclusion where |x — x;| < a. The velocity
ve(x,t) and the pressure p®(x,t) which enter the Navier-Stokes and continuity
equations are thus extended outside phase ¢; the precise value of these extended
fields is irrelevant with respect to the fields X“v¢(x,#) and X°(x,t), which
vanish inside the inclusions. Thus, X¢v(x,t) and X“p®(x,t) will be treated as
regular g.f. We shall also introduce a singular g.f., the surface Dirac g.f. iy,
which restricts a volume integration to one over the surface X(X = US(x;),5 =

1,...,N.), representing the interface. Collecting all inclusion effects, we indeed
‘I\.'

find 6y = Z d(Pj)|grad P;|. An obvious choice for Pj is the radial coordinate of
=3
a spherical co-ordinate system having its origin at the centre of the jth sphere
i.e. Pj(x,t) =a— |x—x;(t)| = a —r; for which we observe |grad P;| = 1.
The following extended equations are then valid for each member of the en-
semble or realisations:

0 d . .0 :
9. X W] T, Xy ¢ e o
(2.8) { Y } 0 and {7\ il } +{)& el }
d ,
- X6— . T" c—{Xe} =0,

where T° denotes the stress tensor defined above and g the body force density:
{f} is the regular g.f. associated with the usual function f which here is piecewise
continuous. The above equations are coupled by the non-slip condition (2.4) at
the interface S(x;) of each particle.

Several formulas are available (Bouix [3]) for transforming each g.f. associ-
ated with derivatives in the usual sense of functions (i.e. {X®dv®/0t} or equiv-
alently {9(X¢v®)/0t}) into derivatives in the sense of g.f. of the same functions
(i.e. 9X°v/0t). They are basically similar to integration by parts formulas. The
continuity equation in the g.f. sense becomes:

d C d CapCY

Note that a similar continuity equation for the dispersed phase can be obtained
by replacing the superscript ¢ by d. On the other hand, the momentum equation

http://rcin.org.pl



LAMINAR DISPERSED TWO-PHASE FLOWS AT LOW CONCENTRATION 1 31

calls for the following relation to be satisfied:

ca el d rCrme € 5
(2.10) {X ax'T}_a_x {X°T¢} +n® - T

in which the divergence argument can be written in turn:
(2.11) {X°T¢} = —X°p°l + 2u°D(X V) + 2u‘Fbx.

Taking the divergence of (2.11):

d emey _‘?_ .0 c Cf
(212) - {XT} = - (X%°) + uAXV)

(‘a a [ (- o ﬂ'_d-
e [a—x—(x : )] s 2L (Fo),

where A represents the Laplace operator; the singular g.f. F¢y = [vn*dx
is the fine-grained extra deformation tensor, and the singular gf. n®-T%g =
(—n®p® + 2u°n® - ID(v®))dy is the fine grained interfacial stress exerted by the
continuous phase upon the inclusions; n‘(= —n? = —n) is the unit normal
exterior to phase ¢. Another expression of {X°T¢} is proposed by JOSEPH and
LUNDGREN [10], extending v¢ and p°© inside the inclusions: the pressure is made
to vanish and the velocity is assumed to be given by (2.5); they obtain:

(2.13) {XT¢} = = Xp°I + 2u°D(XvE + X %v%).

Comparing (2.11) and (2.13) gives n®- Ty = D(X%v%). The momentum
equations in the g.f. sense, where 1/© = pu®/p® can be easily obtained once (2.11)
and (2.13) are known. The former expression yields:

aX°v¢ 8 1 0
: — (X ooy = = [ CA(Xv®
(2.14) 5 AN e o (e e (Xv)
Ca a CysC (‘6 C 1 ¢, e C
+u__.ax [_ax.(Xv)]+2u e (IF'é;,)ﬁ-—pcn T s + X°g.

Strictly speaking all the above fine-grained equations are incomplete since
they do not involve a singular g.f. relative to the walls, as for instance Fd yyc =
—[v“nb]sriavc1 where n” is the unit normal interior to V5. Presenting all these
g.f’s would be of no interest, since in contrast to the interfacial g.f.’s, which
evolve randomly, they still remain g.f.’s after averaging. Once this process is
completed, it is more convenient to rule out the g.f. approach to the equations.
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32 J. L. AcHARD AND A. CARTELLIER

At the boundary of the V; domain, it should simply be recalled that an equation
similar to (2.4) holds, namely:

(2.15) ve(x,t) =vl(x,t) for x on OV°,

b

where v” is a prescribed velocity on the boundaries.

3. Probability concepts

3.1. Reduced densities and observation or ji.-space

Thus far our considerations have only been dynamic, and probability consid-
erations have not been introduced. Once initial conditions for the above equations
have been specified, the inclusions and the carrying phase behave in a determin-
istic fashion. However, from a practical point of view, these initial conditions are
random. In our case, where the continuous phase flow is assumed to remain lam-
inar each time (it might be laminar at the beginning and then turn turbulent, i.e.
unstable, by the very presence of the inclusions), one is tempted to consider the
hydrodynamic fields as continuous functionals of the dispersed phase initial data
alone; under this assumption, any field (say v¢(s;x,0), s representing a sample
point) would not be an independent random variable but rather it might be intro-
duced as an implicit and regular functional of an initial configuration Zy(s;0),
which would be compatible with the laws of hydrodynamics and would continue
to be so at any point (x,t); this view is incorrect in general since the fluid has its
own degrees of freedom which are independent of those of the inclusions, but it
is correct in the limit of potential flows or of creeping flows; it is also correct for
steady initial conditions of general types of flows. For arbitrary initial conditions,
the above functional may exist only if the admissible initial fields v¢(s;x,0) are
restricted by requiring each of them to be the result of a given configuration;
thus, the probability density function (p.d.f.) fx describing the entire system,
will be allowed to include only Zy in its arguments. Other special randomizing
effects arise when Brownian motion is significant or when collisions have to be
treated. They are also excluded from this study.

Thus, as in S.M., only the initial p.d.f. fx(Zn;0), given over I', will serve as
the initial condition of the so-called Liouville equation whose solution is fx (Zy: 1);
this p.d.f. is symmetric with respect to the N inclusions (which are in fact as-
sumed to be indistinguishable) and normalized to one. As a rule, such a p.d.f.,
which may provide any kind of averaged value, is too detailed a state variable.
The reduced p.d.f. f, of order r(r = 1,2,...), which gives the probability of
observing the r first inclusions at the points zi,...,2, (an r-configuration in a
reduced part of the I'-space) and which are defined by integrating over the coor-
dinates of the N — r remaining inclusions, are more suitable; they are solutions
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of the B.B.G.K.Y. hierarchy defined over the various r-time Cartesian products
of yi,.

Since no two inclusions of the same coordinates are distinguishable, it is more
physically meaningful to see whether r prescribed values (z,2z°,...) are occupied
by any set of r inclusions irrespective of their labels, instead of following an
r-configuration. The 9, 18,..- D spaces (“observation spaces”), where such me-
chanical states are observed, are denoted by iz, p, ®pise, ... and various dispersed
phase state variables and their equations will be defined over them in Sec. 4. Due
to the non-overlapping condition, some regions must in fact be cut out and the
resulting spaces are then denoted fi,,0, fiz20500... Such a notation change will be
extended to “restricted” Cartesian products of ordinary physical spaces. Over
J12z0200... we introduce f\")(z,2°,2°", ...), the mean number of mechanical states
per unit volume, which is equal to A'\f,(zz°,2°°,...), where A}, = N!/(N —
is the number of configurations leaving a mechanical state unchanged.

The basic tool of this approach is the “fine-grained density” defined by:

fi(s:z,t) = 6{z — z;(s,t)} = 6{x — xi(s,t)} 6{u— u;(s,#)}

0{w — wi(s, 1)}

Such an irregular field of events allows a fine-grained number density
n(s;z,t) = Yfi(s;z,t) to be defined, including the contributions of all inclu-
sions. Defining ') as an average number density in the p.-space, we can
write f') = E[n] = NE[f)] = Nfi.. The mean valucq of the products
n(z)[n(z°) — d(z — 2°)], n(z)[n(z°°) — §(z — 2°°) — §(2° — 2°°)]..., can be con-
nected with higher-order distribution functions, f(2), fﬂ)...

3.2. General averaging formulas

Introducing the above fine-gradient density indeed offers one way of defin-
ing f, or f") without using fy. As it is possible to derive equations for var-
ious fine-grained densities, fi, fif5, fifsf3°°... (for brevity I; = fi(2°)...)
then, by averaging the ldtter the first members of the B.B. G. I( Y. hierarchy
can be obtained as far as desired in the observation spaces (IKLIMONTOVICH
[11]): the Liouville equation is by-passed. For the theory developed in this pa-
per, the B.B.G.K.Y. hierarchy will be stopped at the second order equation. In

the averaging process, dispersed phase fields 1(z) appear as Zfi P(z) =

Zfﬂ/) ()i | DD fif] | #¢°(2,2°) = D > fifu(zi)((z5). So, besides

1oy ioi#y
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f1(z), f2(z,2°), ... the first dispersed phase-averaged variables in the p, and p. o
~ spaces are:

(3.1) P (z) = PRI > Blf) = Blfd(z))/fi,

(3.2) Do (2,2° ZZE Fif50(2:)C(2)] 1 DD Elfifs)

1 gy £ ek
= E[f1f31(z1)((z2)]/f2-

In most cases, averaged variables come out as straightforward explicit functions
of z and z°°... and do not depend on time, i.e. u;W; and ujuy become simply
uw and uu®.

The next step in our approach will be to switch from observation spaces to
ordinary 3-space domains or Cartesian products of them. Transforming each
member of the B.B.G.K.Y. hierarchy into moment equations simplifies the dis-
persed phase dynamics formulation since the number of independent variables is
considerably reduced. First moments equations are obtained by averaging the
f; equation over internal coordinates in p,-space, higher order moments are in-
troduced by averaging the fs equation and so on. The most common moments
are qﬁm the (average) number density (leﬁnul in V and ¢(?), the pair number
density defined in the pair physical space Vﬂo (see abo\'e the definition of ..
which is similar)

¢(x,t) = E | ¢i| = NE[p1] = Néu(x, 1),

(3.3)

#?(x,x°,t) = E ZZ%‘.%‘ = N(N - 1)E[p1¢2]
T i

= N(N - 1)¢a(x,x°, ),

where the fine-grained density ¢;(x,t) = §{x—x;(s,t)} has been introduced. Here
and below, conditional averaged values of 9, are denoted by an overscale; italic
superscripts indicate the number of points occupied by inclusions in observation
spaces while standard superscripts indicate the number of observation points in
the physical spaces. Other moments of any order can be considered as inner
products over various observation spaces. Let (f;) be such an ith order moment
(i = 1,2...) obtained by multiplying by f; the quantity appearing to the left of
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the semicolon. For instance, the first-order and second-order moments can be
written:

(34) P (xt)= Z E[%‘fﬁ(xrt)]/ZE[%] = /Eifldudw/c,b] = (@11 /¢,

(385)  PC(xx0) = Y Y Eleio§(xi)(x))] / > 2 Eleiss)

i £ i i#]
= / FC frdudwdu®du® [y = (BC°3 T2 /b,

after having specified dé = dudw. The most common averages are Cross-
correlations between inclusion velocities observed at two positions such as
au’ (x,x°), Wue-(x,x°) or uw2(x,x°). Given two observation locations x
and x°, each being occupied by an inclusion, u%(x,x°) (respectively -:1_"—2(:(, x*))
is the averaged velocity computed at x (respectively at x°). For the first case,
where (° = 1, ©%(x,x°) can be interpreted as the averaged velocity at x, condi-
tional upon the presence of an another inclusion at x°, this leads to the possible
notation T?(x,x°) = u?(x|x®). Similarly we can write o (x,x°) = u(x°[x).
The correlations wu?(x|x°) and wWu’(x,x°) are also averages of the same type.
In contrast to the tensor i?ﬁag(x,x"’)._ the tensor wu?(x|x°) is not symmetrical
with respect to x and x°. In the following, when the arguments are not explicity
stated for the sake of simplicity, the supercript “o” (respectively no superseript)
over a function, such as u°° (respectively @?) will indicate that its first spatial
argument is x° (respectively x), the condition being specified at x (respectively
x°).

On the other hand, continuous phase fine-grained variables, which appear
as X¢ 9 are only defined in the physical domain V7§ occupied by the mixture;
they can also be averaged subject to various constraints. The event “there is the
continuous phase at x”, i.e. X¢ = 1, has a finite probability equal to the average of
X¢, the local continuous phase volume fraction or concentration a¢!(x) = E[X¢].
The simplest conditional average corresponding to this constraint is the standard
conditional phase average of 1)°, which has the notation 7 (x) = E[X%Y°)/a" (x)
so that conditional averaged values of 9¢ are also designated by an overscore. We
will also need the conditioned concentration:

(36) (<, thx) = 3 BIXE(x, 0)])/4V (x, )

= B[X{(x", t)p1(x,1)]/¢1(x.1)

where X¢ is a partial indicator function in which the ith inclusion is excluded
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from X°¢ (see (2.6)); the second-order average is
(3.7) P (%) = BIX Ty (x)p1 (x)]/a 2 (x°[x) 1 ().

The overscore bears an index indicating the number of contraints, e.g. X =1
plus the number of neighbouring points occupied by inclusions. All the above
conditioned variables (3.6) and (3.7) are defined over a region denoted by V5 .
which is V;n@V:, from which some inaccessible region due to the finite inclusions
size (i.e. [x° — x| < 2a) in the carrying flow has been removed. Likewise,
averages such as 'qf_fC3(x°°|x, x°) will be introduced at the third order, i.e. for
two fixed inclusions. Defining them means introducing an additional partial
indicator function Xf; in which the ith and jth inclusions are excluded from X°¢.

5 i . o B
The relevant space (denoted 'V is V¢ @ V9. from which some region is
T 4 gl -

C

2% 200
removed, and so on. Finally, composite averages such as o“?(x°|z) and Ecz(xﬂz)
will be encountered.

It is worth recalling that a dispersed phase description can also be produced
parallelling the description we have just given for continuous phase modelling. It
would be suitable for standard two-phase flow models. In these models, dispersed
phase variables as well as continuous phase ones are defined directly as moments
in ordinary physical 3D-space from equations like those presented in Sec. 2.2 for
the continuous phase. The averages associated with X¢ (the dispersed phase
volume fraction) and v? obtained from a standard averaging process for local
instantaneous dispersed equations are simply:

(38)  EX‘x)=a®(x)=1-0a(x) and EX%x)|X"=1]
i E[Vd_Xd]/a"“ :-‘—',(H (x)

(39) E[X%x°)|x =x] = a®(x°]x) =1 - a*(x°|x) and
BX(x®)xy = %, X% = 1) = ¥%(x°|x).
In our approach, these standard dispersed phase variables will appear inci-
dentally in interaction terms; they will be considered as provisional quantities

which will be transformed into variables such as (3.4) and (3.5); thus the way of
describing both phases will ultimately be unsymmetrical.

4. Averaging process for the dispersed phase

The Klimontovich approach begins by a preparatory step which amounts
to formulating local instant field equations in the sense of generalised functions
(g.f.); it parallels the approach for the continuous phase in Sec. 2.2.

http://rcin.org.pl



LAMINAR DISPERSED TWO-PHASE FLOWS AT LOW CONCENTRATION 1 37

4.1. The Klimontovich equations

To obtain the equation for fi (CERCIGNANI [5]) in 15, we first determine the
derivative with respect to time of this fine-grained function; inserting (2.1), (2.2)
and (2.3), we obtain:

of afh afi

0 0fl
i ] I —_—
(4.1) 7y +u = +[m~'F, +g|- + 17K, ) 0.

It must be stressed that taking into account CO]]ISIOI)S would have introduced
extra terms which would have meant generalising our analysis. F; and K; are
composite quantities since they involve properties associated with both phases.
On the one hand, F; and K; represent the resulting stress and torque ex-
erted by the continuous phase upon the first inclusion with coordinates z;.
On the other hand, their effects are described by two linear functionals of
p[Zn;ix.t] and Vv¢[ZN;%.t], where X is such that (X — x;)/a = n. Let df2
be an element of solid angle on the sphere of unit radius, i.e. a®df2 = dS. The
only points which contribute to the integral are thus x = x; 4+ an for all n on
this sphere:

(4.2) F1(Zy;t) = d® / {n X°THZn; %, t)de2,

5(x1)

(4.3) Ki(Zn:t) =ad® / nA{n- X°T°}(Zn;X%,t)d02,

S(x1)

it / {nn - X°T}(Zy; %, £)d2,
S(x1)

where &€ is the antisymmetric alternating tensor. Equation (4.1) can be rear-
ranged as:

J
@) 2D D () (AF) + e (f18)

d
+I*1%'(f1K1) = {J:

This is the first equation of the Klimontovich hierarchy written in p.-space.
Following the same line of calculations, we can obtain the equation for ffs in
Jbzz0-SpAce:
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Oflfz
ot

@s)  d (i fou) + f L

o
ax°
-!-'m_lai (fifoF2) + (flf?g)

(f1lel|)

28)

I (i fK) + T

B (f1f2K2) = 0.
F5 and Ky have the same structure as F; and K;, S(x;) being changed into
S(x2). The procedure could have been continued to give the next product fyfa2 /3
and so on. Finally, the equations for the fine-grained number densities n(z) and
n(z)[n(z°) — §(z — 2z°)] can be obtained by combining equations for f; and f;f;
which are similar to (4.4) and (4.5).

4.2. The revisited B.B.G.K.Y. hierarchy

The B.B.G.K.Y. hierarchy is obtained by averaging the entire sequence of
Klimontovich equations. As far as g.f. are concerned, it is well known that
E[O(g)] = O(E[g]), O being any differential operator whatever. The equation
for f; is derived first.

a e )2 0 s
4.6 e L % &) il e -l K =0,
(46) Ghtg -hntmT oo (F oo fig T g '

where the averaged force and the averaged torque exerted upon an inclusion
which is known to be centred at x and to have internal coordinates equal to &
are defined by:

F' (z) = E[fiF1]/fi = a? / n- X¢T%(x + an|z)d?,
S(x)

(4.7)

K’ (z) = B[LK,]|/fi = a*¢ : / nn - X¢T°(x + an|z)d$?
S(x)

The local averaged force around the test inclusion is obtained by selecting formula
(2.13) to express the fine-grained stress field:

(48)  n-XTZ(x|z) = E[{fin- X{T*}]/f:(2) = —a®*p**n
+2un - D[F2 + o®(¥# - ).
The same formula will be used throughout the article in any kind of averaging

stress field around test inclusions. The positions of the inclusion centres which
contribute to this integral are such that x = x + an.
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The above averaging procedure can be extended to derive the equation for f5:

a ¢ d
(4.9) iig-{*— fou+ — g -fou® + m~?

. 1_2 ‘_l
5 % e oo LE +m

9
ou®
{") I, ) =9 a —

e ey 1 O oamEE
U= i3g+d° gt B g g e

where the averaged force exerted at time £ upon an inclusion which is known to
be located at z and to have a companion inclusion at z°

(4.10) ?g(zlz") = E[f, foF1]/fz = a? / n- X¢T(x + an|z,2z°)d2
S(x)

where the local averaged stress at the surface of the test inclusion is:
(4.11) n- X°T(x|z,2°) = E[fi fan - X{,T/ f2(2,2°) = —*p*n
+2.U* n - D[ c3 +(¥d?{ =df _-‘;—r:.?)].

The position of the inclusion centres which contribute to this integral are such
that X = x + an.

The point here is to distinguish between averaging f,foF; which leads to
(5.15) and averaging fi faF2 which leads to = E[fi foF)/fs = Fg(z°[z)‘
Both quantities differ because FE(-H is not symmetrical with respect to its two
spatial arguments.

All the results which have just been obtained for the averaged force can be
extented directly to the averaged torque. Furthermore the equations for () and
f2) can be obtained readily by averaging the equations for the afore-mentioned
fine-grained number densities.

4.3. Moment equations

The first two members of the B.B.G.K.Y. hierarchy above are written in p,
and p.,-spaces either in terms of f; and f; or in terms of f1) and 2. The
latter form will be adopted. Transforming them into moment equations over
the physical spaces '\7: and V:mo instead of the p. and p,.c-spaces is a standard
process. The first-order moment equations of interest here are the averaged simple
number density ¢(!), the averaged linear velocity @' and the averaged angular
velocity @'

0
(4.12) (p(” P (¢“1—‘)~o
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N

B funsy . @ =N
(4.13) = (6T ) + =3 Elpiui] = g + m19F,
ot ( ) ox o
9 (g!) s 2% 1 (1)
{414) E (Qf) w ) = 5‘}-{‘ . ZE[Wiwgui] =TI ¢\ K ",
i =1

=l =1 . 2 .
where the resultant force F' and torque K experienced by the first inclusion
located at x, whatever its translational or rotational velocities, were defined using
(3.7) as:

(4.15) F'(x) = (F1)/én

I

a® / n - X°T°(x + an|x)df,

.S'Ex)

(4.16) K (x)= (K ; /1)/¢

I

a’€ [ nn - X¢T — (x + an|x)d2,
S(x)

where the local averaged stress at the test inclusion surface is defined by:
(4.17) n- XcT(%,t|x) = n- E[p; X{T/¢1(x) = —a*pn

+2p°n - {D[v? + a®(¥2 - 7))}

The expression of this stress will be simplified in Sec. 5.3.

We also need the equation governing the second-order moments. Starting
from (4.9), we determine the second-order moment equations for the three vari-
ables, the averaged pair number density ¢ (x, x°, t), the linear velocity e’ and
angular velocity WE, which are conditionally averaged upon the presence of an
inclusion at x

(4.18) %¢fﬁ} 2 E)d} ’ (q,,(z)ﬁz) 5 Ei_ : (¢(2)ga“) =10

(4.19) % (#u°7) + 3% -2 > Elvipjusu;)

i=1 j#i
d el
+8x : Z ZE[%%'H,;UJ-] — qﬁ(z)g +m I¢(2]F 2
i=1 j#i
0 ( vz .. 0
4° fecl (2)7 1402 ) o |
62 5 (077 ¢ g 5 Bl

9 — KT
+a—x‘;§;E[<ﬂitpjuz-wj]—} PEIKCA
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where the resultant force F°2 and torque K°? experienced by the test inclusion
located at x® and conditionally averaged upon the presence of another inclusion
at x, are:

(421)  FZ =F (x°|x) = (F°7; f2) /¢ = a® / n- XeT* (x° + an|x, x°)d2,
S5(x)

2

(4.22) K2Z=K (x°|x) = (K°Z; fo)/¢2

=a%¢: f nn - X<T% (x° + an|x, x°)df2,
S(x)

where the local averaged stress at the test inclusion surface is defined by
(4.23) n- XT(x|x,x°) = n- Elp1pa X[ 2T /o (%, x°)

= —a®p®n + 2u°n - ]D[v? +aB(ve— ?‘3)].

4.4. The dispersed phase pseudo-turbulent tensors

When considering first order Eqs. (4.13) and (4.14), two types of correlation
functions appear, namely Flp;u;u;] and Efp;u;w;]. As usual, these averages
should be transformed into products of their averages plus a component due to
pulsation effects around these averages. To this end, a fluctuation field is defined
via p1(x)u; = @1 (x)' + ¢ (x)u) for the first correlation and, using (3.4), it
may be noted that

N
(4.24) > Elpiuiu}] = NE[pyuju}] = NE[pi (u, - @) (u; - @] = ¢Va'a
i=1
N
—2u'NE(p1u;) + NE[piujuny] = Z Elpiu;u;) — ¢Mata’,
i=1
So the overall correlation function which is the first term in the r.h.s. may
be considered as the sum of two terms: the mean flow convection term ¢(Vu'w!
of the dispersed phase and a second one which measures the linear velocity pul-
sations experienced by any inclusion passing through x. It is the first-order
agitation (or pseudo-turbulent) tensor of the dispersed phase:

N
(4.25) AL, (x) =) Elpujul]
=1
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where the superscript indicates the order of the fluctuating field and where the
subscript ., indicates which phase velocities are considered to be correlited:
here the dispersed phase velocity is correlated with itself. Later (Sec. 5.3) sinilar
functions will be introduced for the continuous phase velocity (,,). Finaly, a
second fluctuation field wj can be introduced and a second first-order pseido-
N

ZE[% wiu;] can be defined.

i=1
Other velocity variance tensors are expected to occur. When consder-

ing second-order Egs. (4.19) and (4.20), four types of correlation function
appear, namely E[p;p;uiu;], Elpip;u;w;] on one side, and E[p;p;uuy],
Elpipju;jw;] on the other side. Extra fluctuation fields have to be de-
fined in order to obtain breakdowns such as (4.24). To begin with, they
are i(x)e; () = ilx)p; (VT + pi(x)is () and i(x)e () =
@i (x)p; (x°)u? + i(x)p;(x x°)u’. Inserting the latter field into the second crder
correlation function E[gotcpjujuj] gives:

(426) D" Elpipjujus) = N(N — 1) Efp) pru?a?)
=1 J#1

turbulent tensor Al

+N(N - 1)E[p1pou3 ud'] = ¢P w2 + A2 . (x, x),

where a second-order unsymmetrical tensor A% .(x° x) which measures th: ro-
tationless agitation experienced by any inclusion fixed at x° provided that there
is a second inclusion at x.
Inserting both fluctnation fields into E[p;pjuu;] leads to a similar beak-
down:
(427) > > Elpipjuiug] = N(N - 1)E[p1ppuu°?]
i=1 j#i

+N(N - 1)E[ppou;ud | = ¢Pu?uc? + A2 . (x, x),

where a second-order symmetrical tensor A2 .(x°,x) which measures the Inear
velocity correlation between any pair of inclusions located at x and x°.

Finally, extra fluctuation fields wy and w;‘”, can be introduced to describe
the rotational contribution to inclusion agitation and to display (unsymmetncal)
second order pseudo-turbulent tensors A2., and A2, ..

It is obvious that the physical origin of these tensors is the same. It has
nothing to do with usual turbulence in a single-phase flow. Interactions betveen
inclusions via a medium evolving with its own dynamics set up a highly nonlnear
process which reveals itself in an apparently random pulsating motion of both
phases super-imposed on their mean motion (unconditioned and conditioned by
different test inclusions). Moreover, as far as the continuous phase is concemed,
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fluctuations result from local distortions in fluid flow streamlines, including pos-
sibly the wakes caused by the submerged inclusions. Note that the latter origin
has already been pointed out by BUYEVICH and SHCHELCHKOVA [4].

4.5. The simplified form of the momentum equations

Breaking down the pseudo-turbulent correlation functions allows the momen-
tum equations of any order to be simplified by means of some straightforward
transformations. Indeed, the simplified forms follow from both dispersed phase
continuity equations of the same order. For the first order:

d 7] d =
(4.28) 50 Tt = Al 4 m~'F +g,
Gy e, L e 151
(4.29) aw‘ +ul- ﬁul = —(¢M) lﬁ AL +ITIK,
and for the second order:
00— — 0 — — 00— 4 8
(4.30) au"g + u°? . ﬁu‘” +u? - &u"’-’ = —(¢@) 18x° B sue
(2) -1_3_ 2 — 13702
(¢'“) i Az +m 'F " +g,
00— —3 0 —  _o 00— e 15
(4.31) prC Rk u’- o W% = — (@) ‘5}-{; A2, .
— (21 E% . Afﬂu + I7'K°2,

Many differences can be pointed out with analogous kinetic equations (in
their original or moment form) which appear in classical S.M. The most striking
one lies in the expression (i.e. 4.15, 4.16, 4.21 and 4.22) of the resultant forces
and torques experienced by the test inclusion located at x or else at x°, and
conditionally averaged depending on whether or not another inclusion is present
at x. They do not rely on inclusion interactions but on the adjacent carrying
phase effects (conditionally averaged).

These momentum equations must be supplemented by the continuity
Eqs. (4.12) and (4.18) which have just been used. The latter is an equation
for the averaged pair density and it should be replaced by:

o A (=]
@) Ky L] = w28 (i) L (@ - w)e]

where the conditional density is defined as

(4.33) X2 = X2(x°[x) = ¢a(x,x") /¢ (x)
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4.6. Boundary conditions

Two typvs of condition on the boundaries of V and on the external boind-
aries of Vx zo have to be distinguished depending on whether these bounduries
are close to an impermeable wall (i.e. dV;,) or are permeable fluid limits (i.e.
BV}). Near a wall, the soft collision assumption introduced in Sec. 2 emails
velocity continuity conditions:

@' (x + an’) — a@! (x + anb) An® = v’(x), x on avs,

(4.34)

a?(x° + an®|x) — a@®(x° + an®|x) An® = v¥(x°), x° on AV,

On the internal boundaries of Vi‘xo a similar velocity continuity condition hlds:
(4.35) % (x + 2an|x) — a@’(x + 2an|x) A n = T (x|x + 2an)

+a@?(x|x + 2an)A n,
where n = x° — x/|x° — x| is the unit normal along the centre line. No condtion
can be prescribed for the density fields such as ¢;(x) and x2(x°|x) on all these

types of boundaries.
When they pass the fluid boundary of V%, which coincides with (‘)Vj— the

linear u/ and angular w/ velocities of the inclusions must be given:

(4.36) u'(x) = u/(x), x on dV; and @ (x°|x) = u/(x°), x° on 7%

(4.37) W'(x) = w/(x), xon dV§ and W*(x°|x) = w/(x°), x° on IV
Densities have also to be specified on this fluid part:
(4.38)  ¢1(x) = ¢/ (x), x on IV} and xo2(x°|x) = ¢/ (x°), x° on oV

so that the rate at which they are injected into the system under study or prked
off can be known by using (4.36). The overall flux imposed on (')V? is assumed

to satisfy [ @' - nf/dS = 0 at any time (where n/ denotes the unit nomal
av,
interior to BV}). Hence the total number of inclusions is conserved as expressed

by the normalization conditions for ¢;(x°) and x»(x°|x) over ‘\720 and “?f:‘a_,o
respectively:

(4.39) / ¢ (x)dx = 1, / x2(x°|x)dx® = 1.
Vd

o

x,2%
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5. Averaging process for the continuous phase

5.1. The extra fine-grained densities equations

The parallel between the fine-grained equations for both phases is achieved
by deriving, for positions in the continuous phase. new equations in the
gf. sense relative to one neighbouring fixed inclusion centre, two fixed
inclusion centres, and so on..; these govern mixed fine-grained variables
such as @;(x,#)X{(x% 1), wi(x,t)Xfp(x°,t) and @i(x°,t)p;(x, 1) X];(x°%, 1),
:,o,-{xc’,t)gaj{x,t}Xf;ijpc(x""?ﬁ) respectively, and they complete the fine-grained
equations of Sec. 2.2. By averaging them, a whole sequence of conditionally
averaged equations can be produced. In our theory this sequence will be pre-
sented up to the third order. LUNDGREN [15] proposed a similar hierarchy of av-
eraged equations directly, without obtaining fine-grained equations beforehand.
Furthermore, as the dispersed phase in his case was the immobile matrix of a
porous medium, he did not observe some extra terms induced by the motion of
test inclusions.

To obtain first the equations to the second order, i.e. with one fixed inclusion,
say the first one, consider the following extended equations:

a .
N(’)Vr rC 0 B 8 a c &
(52) {(p| l"aT} + {(,0];\13? # (V X )} = {W[zYl'—"—axo 'Er }/ﬂ

—{p1X7g} =0.

As in Sec. 2.2, each g.f. associated with derivatives in the usual sense of func-
tions (i.e. {1 Xfov®/Ot}) can be transformed into derivatives in the sense of
g.f. of the same functions (i.e. 9y X{v®/ot). First, the continuity equation
conditioned by the presence of an inclusion centre at point x presents an un-
expected extra volume source term in its r.h.s., due to the motion of the test
inclusion:

& ;
Pl (o1 Xfw).
The momentum equation conditioned by the presence of an inclusion centre
at point x is obtained by treating (5.2) in the same way and by introducing

the partial surface Dirac gf. &5 from which the first inclusion surface is ex-
cluded:

(5.3)

] Ly (g
(Eal lv) ax
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dp Xsve B

I @
) PO G o o e e
T + e (1 XTvve) — (1 X{p°)

p°% Ox°

4 (]Fﬂp;(ii)

c A CosC (2 d d [ d
+ VA% (1 X{vE) + v B [(?x" (o1 XSV )] +2ucaxo

1T 7] , -
'f‘f;nt - T 05 — vy [o1 XTu ve] + 01 X{g,

where F¢p;6L. is the fine-grained extra deformation tensor and n®-Tp, 4}, is the
fine-grained interfacial stress exerted upon the inclusions, when the first inclusion
centre is at point x. Again, our method allows an extra momentum source term
to appear due to the motion of the test inclusion.

To obtain the third-order continuous phase equations, i.e. with two fixed
inclusions, the following extended equations are considered:

(5.5) {souszf,:e% : (V")} =0,

{4

= rC a.v g a ! N
(5.6) {901902)11,9 oy } o {ﬁolvzkl',:tw (v V')}

¢ “ (& ¢ o
o {‘P'(P"}Xl'gr')x“ - T }/ﬂ — {102 X7 28} = 0.
Using transformations like those used above for the second-order equations, one
obtains fine-grained continuity and momentum equations similar to (5.3) and

(5.4) respectively.

5.2. The revisited Lundgren hierarchy

The Lundgren hierarchy is obtained by averaging the entire sequence of fine-
grained equations written for the continuous phase. The property E[O(f)] =
O(E[f]) will be used again repeatedly. Averaging Eqs. (2.9) and (2.14), and
using the various definitions of hydrodynamic variables given in Sec. 3, the first-
order equations, valid over V5, are:

o el
Doy 0 (ac15)

(5.7) g =
daftv® J rC. C.,C 1.9 cl—cl c el el
(5.8) 5t o FXOV] = o (op) + Al
c 9J 0 cl=el 2 9 o i c c cl
o [8}( (a®'v }] + 2v g E[F 5;,]+ch‘[n Ts] + o' g.
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Next, we can derive the second-order equations, valid over V; ,o, by summing
the continuity Eq. (5.3) and the momentum Eq. (5.4) over all fixed inclusions
and averaging them. Repeating the process, the third-order equations, valid over
V;__.,or,noo, are obtained by summing and averaging the corresponding continuity
momentum equations.

Now we turn our attention to the important problem of the non-closedness
of the Lundgren hierarchy. This characteristic is apparent when examining the
interfacial terms in the momentum equations at each order. Considering for
example Eq. (5.8), these terms, i.e. 20°00z - (E[F°6x] and E[n® - T¢x]/p¢, are
respectively the averaged extra-deformation tensor and the averaged interfacial
force density. The presence of the Dirac function inside the average operator
indicates some conditional averaging; as we shall see more precisely in the next
paper, this means that one inclusion has to be fixed. At the second order, clearly,
these corresponding interaction terms involve one more fixed inclusion and so on.

5.3. Boundary conditions

Continuity equations and non-slip conditions hold on boundaries 9V° of V5,
and on the external boundaries of V; .o, Vg 4o 40o. Consequently various condi-
tional averagings of (2.15) give:

(5.9) vl(x) = v¥(x), xondV® ¥%¢(x°x) = v’(x°), x°on dV°
and v (x*°|x°, x) = v?(x°°), x°° on V-,

Conditions of this type have also to be specified on the internal boundaries of
20s Vi 2o goo. They are based on fine grained mass balance equations and non-
slip conditions valid on the test inclusions. The corresponding averaged forms at
x° = x + an and at x"° = x° 4 an, are (see 2.4):

v%(x 4 an|x = @'(x) 4 al' (x) A n,
(5.10)

3 (x° + an|x®,x) = T(x°|x) + aW?(x°|x) A n.

An extra average boundary condition is obtained by interchanging x° and x in
the last equation. In this way all the equations of the Lundgren hierarchy are
connected to the moment equations of the dispersed phase.

Strictly speaking, there are no particular boundary conditions for a!, a‘?,
and a® which might be associated with field equations such as (5.7) and (5.8),
while there are conditions for the densities such as (4.38). Nevertheless, to sim-
plify interfacial momentum conditions % = 1,(j = 1,2,3,...) on the walls 9V},
will be used. This condition is valid if the inclusions keep their spherical shape
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when they collide instantaneously. Similar conditions are valid on the surface of
the test inclusion. All these conditions are dynamic in nature and correspond
to an idealised mechanical response of the inclusion material. For instance, they
allow the local averaged stress tensor at the surface x° = x + an of the test
inclusion centred at x to be simplified, see (4.17), to give:

(5.11) X<T(x + an|x) = Ep; X°T¢)/¢1(x) = —p“1 + 2#“{1@(#?}

&

+ [(vd‘z - vf?)%aﬂ} }

Here we have distinguished an extra viscous term with a non-zero gradient of

a®?, Tt is represented by a symmetrical tensor involving the relative velocity.

The velocity difference depends on momentum exchanges during collisions. In

our case, it should be recalled that collisions are assumed to be soft enough not to

give rise to significant pressure impulses and the conditional averaged continuous

phase velocity merges with the inclusion velocity (5.10) at the point of impact;

as a consequence, this extra term will be neglected. Of course, all the results

which have just been obtained for the resultant averaged stress can be extended
directly to the resultant averaged torque.

Likewise, the local averaged stress tensor (4.23) at the surface x°° = x°+an of

the test inclusion centred at x°, when another inclusion is centred at x, becomes:

(5.12)  X°T%(x" + an|x,x°) = Elp10a X°T)/da(x, x°)

; J F
— =3 c =c3 =d3 _ —=c3 d3
= I+ 2u {!Dl(v ) + [(v v )a—xa ] },

where the last viscous term is neglected as above. An extra averaged boundary
condition is obtained by interchanging x° and x.
5.4. The pseudo-turbulent tensors in the continuous phase

In the three first-order momentum equations, we are faced with correlations
between continuous phase velocities such as E[X“vev®(x)], E[g; X{vev®(x®)] and
E[tp,'gonf‘jvcvc(x“)L These functions can be broken down like the correspond-
ing dispersed phase correlations. The first-order fluctuation field is given via
Xeve(x) = X9 (x) + Xv¢ (x) and yields

(5.13) E[X¢vv°] = BIXV'Y] + E[Xvv®] = a®'¥°'9° (x)

+E[Xv v,
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since the conditional average v/l is zero and (X¢)? = X¢. The first term in
the r.h.s. of (5.13) gives rise to the mean flow convection term of the continuous
phase in the first order momentum equation. The second one, which measures the
agitation in the continuous phase, is the first-order agitation or pseudo-turbulent
tensor relative to this phase:

(5.14) Al (x) = E[XvSv°].
Now, let us consider the second-order fluctuation field defined by
(5.15) 0i(X) XEvE(x°) = i(x) XFV2(x°[x) + @i (%) XFv (x°).

Inserting this equation into the overall second-order correlation function gives

N N
(5.16) > ElpiXfvev] = NE[p X{v°2v2) + 3 E[piXfv v

i=1 bl
= q:)(l)(x)acz (x"[x)?czif"cg(xolx) 7 A‘f-"v‘-' (x°[x),

where the second-order agitation tensor for the continuous phase A2 . (x°|x) has
been introduced.
Likewise at the third-order, we arrive at

N N-1
(5.17) DD Elpiw; X£veve] = N(N — 1) E[p) X ;727
i ]
N N-1
+2° 2 Bl Xive v ] = 47 (7, x)a (x°°[x°, %) vV (x[x°, %)
i=1 i#j

&80 400 (XK. %),

Furthermore, test inclusion motions generate at any order new correla-
tion terms which are revealed by our approach. In mass equations, there are
E[Xfpiu), E[X:jtpfwjllg'] and E[X{ pipju;]. Some simple transformations are
helpful to interpret these terms and these will be proposed in a future paper (part
ITI). These same work will be carried out for E[Xfp;u;ve), E[Xf‘jcp,-rpju,;vc] and
E'[Xf,jnp.,-gojujv“], which appear in the momentum equations. Cross-correlation
agitation tensors between both phases (vu) have to be defined in this way.

5.5. The simplified form of the continuity and momentum equations

With all these definitions at hand, the momentum equations for the three first
orders can now be simplified by means of certain transformations that are similar
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to those used in Sec. 4.5 for the dispersed phase equations and which are standard
in two-phase flow modelling. They are based on using continuity equations.
Moreover, all the pressure and viscous terms in the momentum equations will
be broken down in such a way that all the terms which look like single-phase
flow terms will be placed in the Lh.s. and extra terms which are specific to a
two-phase flow case will be placed in the r.h.s.

Consider the first order. By substituting (5.7), (5.13) and (5.14) in (5.8) it is
easily found that the first-order momentum equation at x becomes:

(5.18) a! (0%1 + ¥ %iﬂ” + (%ﬁ") [p° — VFAT)
22+ -g) = 1 - 2D - a2
‘ [vcl g—crx‘”] + 255 aﬂ - E[F°0x] + E[n® - T%05)/p¢ — E}d_x AL
The second and third-order momentum equations
(5.19) acg{gg-}:—?+v62.ﬁ%vﬂc2+ (aio—re) 10f — VEA°(F2)

«

a 5 E[Ftlpﬂs‘l!:]

_Qufi. [?"2 g dz] + 20°(¢y) !
ox°

A

2
(-)xo ¥ &?:"1"’

+(p°¢1) " E[n® - Tp16%] — (V)"

—_ a [ ) & —— i 8 {
—(¢1) la—x'E[@1X1UIVC]+(¢1) l"?'b}E[tplxlul]

” €3 6 .
620) o { T+ v (50 ) /i - v aTE)

b o s CTYO0 (L 9 LS
o [ .‘—,cs] —g}z(jﬂ ot - 2D (D) - 50

http://rcin.org.pl



LAMINAR DISPERSED TWO-PHASE FLOWS AT LOW CONCENTRATION [ al

(5-20) g d [ @ gl erpged B 1,2

[t:m]t.] 2v x°° 4 9x°° 23 + 2v%(¢2) Ix° E[FW{‘P‘Z(SS]
c —1 ¢ e 1,2 {9)N— J :

+(p°da) " En° - Tp1p26y ] — (') e Ao

—(¢2 )-l [)ii 2P1p2V ] =3 ‘.52)&

15}
+( o)~ 'v —E[Xl sp1pam] + (o)

may also be simplified in a similar way thanks to the averaged continuous phase
continuity equations at the corresponding order, derived from Sec. 5.1, i.e.

aaczﬂbl d €2 ; —c2y _ d c
(5.21) 5t g (@F81VY) = — - Elpi X{u],
Do P2 0 3 1 —c3y _ a ¢
(5.22) 9 + %o (@ P v*) = _8_)( : E[GD1¢2X1,2111]

— - F 1 2XI: Us|.

Ox° [‘P P29 ]
Moreover, the continuous phase continuity equations themselves can also be sim-
plified from the dispersed phase continuity Eqs. (4.12) and (4.18).

6. Conclusions

This part I presents a general statistical method for deriving averaged equa-
tions for non-turbulent dispersed flows. It belongs to a developing class of meth-
ods which mixes the kinetic theory of gases and classical continunm mechanics
approaches. Probability in our case refers merely to repeated trials which are
themselves a practical consequence of apprehending systems with a large number
of degrees of freedom. The only randomising effect comes from the initial condi-
tions of the dispersed phase. Brownian motion and collisions between inclusions
are not taken into account.

In standard two-fluid models, the dispersed phase is poorly defined by two
single moments, the averaged local volume fraction and the averaged velocity.
Here, it is possible to use a natural way of introducing hidden characteristics of
the dispersed phase. For instance, the averaged angular velocity field has been
introduced. Provided inclusions can be defined by a finite number of parameters
with their own equation of evolution, other types of inclusion may be envisaged,
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e.g. oscillating bubbles in an acoustic field, non-spherical particles orientating
themselves in a shear flow, particles having a dipole interacting with an exter-
nal electromagnetic field, etc. As a rule, an infinite number of coordinates are
strictly required in more complex cases, such as spherical fluid inclusions with
some viscosity, immersed in another fluid and inclusions with some deformability
(thus requiring conditions to be prescribed for the component of stress normal
to the inclusion surface); in fact, only a finite number of them prove to be neces-
sary. It must be admitted that in many real cases, particles often have irregular
shapes which may be either permanent (solid particles) or continuously develop-
ing (distorted bubbles). Thus, it may be too complicated to enlarge the set of
geometrical characteristics of a particle to many extra parameters. Because of
these mathematical and physical difficulties, our method is obviously not able to
treat all practical flow problems even if they are dilute and laminar. However,
in many cases, it continues to serve one important purpose. It can be used as a
reliable guide for proposing new closure laws and to assess their validity, either
by indicating their structure or by providing the order of magnitude of certain
coefficients.

The obtained hierarchies now have to be truncated simultaneously using the
same perturbation method involving a small parameter. In many statistical theo-
ries devoted to two-phase flows, the assumption of diluteness has been introduced.
Our approach presented in a future paper is also based on the same parameter,
i.e. the spatially averaged dispersed phase volume fraction. Note that the pre-
cision of our approach is somewhat restricted from the outset since only the
first order equations of these hierarchies (second- and third-order equations for
the dispersed and continuous phases respectively) can be derived in practice, at
least if nonlinear terms are kept. On the other hand, there will be no a prior
assumption about homogeneity of the dispersed phase volume fraction since all
evolution equations controlling this phase are available. However, the equations
defined at the end of this paper are not yet ready to be treated by any asymp-
totic method. In subsequent papers they will be simplified beforehand and all
the terms appearing in them will receive a straightforward interpretation.
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