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A PLANE sTRAIN PROBLEM for an interface crack with poling axis orthogonal to the
crack plane is considered. The contact zone model with an artificial contact zone
is considered for electrically permeable crack. By means of the method of singular
integral equations, the quasi-invariance of the energy release rate with respect to
the contact zone length is demonstrated. The appearance of a singularity of real
power type instead of an oscillating singularity for insulated crack faces for most
combinations of ceramics is shown. In a numerical way, the comparison of stresses
and electrical displacements corresponding to the different interface crack models is
employed.

1. Introduction

FOR COMPOSITE MATERIALS and, in particular, for piezoelectric compounds, inter-
facial fracture is common and determines mainly the materials overall strength
properties. Due to their significance in the areas of mechanics, material science,
and engineering, interfacial cracks have been the focus of great interest in the
last decades.

In the fundamental papers of WiLLIAMS [1], CHEREPANOV [2], ENGLANG [3],
RICE and SiH [4] and ERDOGAN [5], the oscillating model for cracks between two
isotropic materials has been developed. This model was re-examined afterwards
in numerous papers and particularly in the paper of RICE [6]. Interfacial cracks
between anisotropic materials have been studied, for instance, by TING [7].

It is well known that the oscillating crack model leads to oscillations in the
stress field near the crack tip, resulting in the physically unrealistic phenomenon
of interpenetrating crack faces. Therefore, COMNINOU [8] proposed a crack model
making use of zones of frictionless contact. This contact zone model was inves-
tigated numerically by ComNINOU [9], DUNDURS and CoMNINOU [10] and con-
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firmed in an analytical way by ATKINSON [11], StMONOV [12], and GAUTSEN and
DUNDURS [13].

Concerning piezoelectric materials, it is worth to note that there are few
publications in the literature studying interfacial cracks. Such materials are of
high interest in modern smart technology applications. In sensors, they allow
for converting mechanical state changes into electric measuring signals, while
in actuators, they offer the possibility to convert an electric control signal into
mechanical action. In addition to the appearance of a large number of different
constants, this case is connected with the coupling of mechanical and electric
fields.

A further complication concerns the formulation of the electric boundary
conditions at the crack faces in piezoelectric materials. Taking into account the
permittivity of the medium filling the crack, increases the complexity of the prob-
lem significantly (DUNN [14], HAO and SHEN [15], BALKE et al. [16]). Therefore,
it is common use to employ the idealised boundary conditions of permeable or
insulating crack faces, respectively. Out of these two extreme cases, the perme-
able boundary condition which simply ignores the crack electrically, seems to be
the more realistic one, if results are compared to the analyses taking into account
the permittivity of the crack (GRUEBNER and KAMLAH [17]). There are also op-
posite opinions based on the fact that the permittivity of piezoceramics is three
orders of magnitude higher than the one of air or vacuum (Suo et al. [18], PARK
and Sun [19]). For a detailed discussion of this topic see MCMEEKING [20)].

For permeable interfacial crack faces between piezoelectric materials, an exact
oscillating solution for a crack between a conductor and a piezoelectric material
was obtained in the paper of KUDRYAVTSEV et al. [21]. Recently, the character of
the singularity at the interface crack tip of permeable and insulating crack faces
has been investigated in the papers of KUO and BARNET [22] and SuO et al. [18]
for piezoelectric compounds. In particular, the possibility of the existence of real
as well as oscillating singularities at an interface crack tip was predicted in these
papers.

A closed crack tip model for an interface crack in thermopiezoelectric mate-
rials was considered by QIN and MATI [23]. Insulated crack faces were considered
in this paper and stress intensity factors and the size of the contact zone were
found in a numerical way for a particular piezomaterial group.

In the present paper, a plane strain problem for an interface crack between
two piezoelectric materials is considered. By means of the Fourier transform,
the problem is reduced to a system of singular integral equations corresponding
to different electric conditions at the crack faces and different interface crack
models. The numerical solution of these systems gave the possibility to find
the main fracture characteristics for all the considered cases. For the case of
permeable crack faces, artificial contact zones are introduced and the important
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property of the quasi-invariance of the energy release rate with respect to the
contact zone length is proved. On the basis of this property, a numerical method
for investigation of an interface crack problem for a finite-sized body is suggested.
The real contact zone length is found for specific choices of the material constants.
For insulating crack faces, the crack model without contact zone (open crack
model) is considered. The possibility of the existence of a real as well as an
oscillating singularity is revealed. Namely, the new principal result related to the
most important class of piezoceramics concerning the simultaneous existence of
a real non-square root singularity or an oscillating singularity and square root
singularity is found out.

It is worth to note that the main advantage of the suggested approach is
connected with its possibility to investigate completely different interface crack
models and various conditions on the crack faces. Namely, this approach presents
both a way for the determination of the singularities as well as a method for the
solution of the boundary value problem.

2. Determination of the interface relations

A plane strain state of two bonded semi-infinite spaces z < 0 and 2 > 0 is
considered. It is loaded by 0% = 0%, D = D at infinity (the “+” sign refers
to the upper domain, and “—" to the lower one). A plane crack z = 0, |z| < b
with free faces is situated in the interface (Fig. 1).

J\z

+ _+ _+
Cij.€ij,€ij Material 1

Material 2

F1G. 1. An interface crack between two semi-infinite piezoelectric planes.
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We assume that both materials belong to the hexagonal class of symmetry
6 mm. The plane deformation is orthogonal to the y axis and the 2 axis coincides
with the vector of polarisation. We then find from the classical linear piezoelectric
constitutive law the following equations (see e.g. PARTON and KUDRYAVTSEV
[24]):

(2.1) Ozz = C13 7 +Caz
i

d 0z oz’

du  Ow de

Tos =Cl | 2 - 7 +€15%;
B u  Ow dy
Da:—ﬁis('a—z+ax)— g0

(2.2)
du dw d
D, = €315 & €335 = Eas%-

Here, {032,0,2, 04 } represent the stress components, {u, w} are the displacement
components, {D,, D,} are the electric displacement components and ¢ is the
electric potential; {ci,c13,c33,cq4} are the elastic constants, {es;,ess, ej5} are
the piezoelectric constants and {€11,€33} are the dielectric permittivities.

Taking into account (2.1), (2.2), the equations of equilibrium and electrostatic
equations yield the following equations with respect to the displacements and
electric potential:

&u 9*u 0w &% =0
g teugs + (c13 + CM)B—maz + (e31 + ‘”5)axaz =0,
0%u 9w 0w &y 0%
: : =0
(2.3) (c13 + ca4) 929, T Mgz T gz tesgg tensgs ;
0%u O*w 0w %o %o

(e31 + B:s)axaz + e 22 + €33 52 Hgaz —MGE T 0.

Due to the linearity of the Eqgs. (2.1) — (2.3), the solution of the problem can
be represented by a homogeneous electroelastic field and an additional field which
ensures that the boundary conditions on the surface of the crack are fulfilled.
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Applying the Fourier transform to Egs. (2.3),

u(p,z) = | u(z,z)sin(pz)dz
/

(2.4) w(p,z) = [ w(z,z)cos(pr)ds,
/

5s2) = / o(z, 2) cos(pz)dz
0

we arrive at a system of ordinary differential equations with respect %, W, @.
The form of the solution of this system depends on the roots of the characteristic
equation

(2.5) detllrijll =0, (3,5 =1,2,3),
where
Ty = quk2 —cn, T2 = —ra = k(e13 + caq),
13 = —Tr31 = k(ea + ei15),

S 2 Sy 2 N 2
roy = c33K° — C44, T23 =T33 = e33k” —e15, 733 =¢€11 —€E33k".

Analysis of Eq. (2.5) shows that for realistic values of the material constants
of the considered class of materials, this equation has two real roots k; and two
pairs of complex conjugate roots +4 £ iw (see e.g. PARTON and KUDRYAVTSEV
[24]). Therefore the solution of the system (2.3) can be represented in the form

uw2) = = [ Al + (02 B(p) - aaClp)le cos(wpz)
0
+[asB(p) + aaC(p))e~%* sin(wpz)} sin(pz)dp,
2 i —k1pz —dpz
260)  wlzd) =2 [{BAG)NE + [BB) - O cos(wp2)
0

+ [B3B(p) + BC (p))e ™" sin(wpz) } cos(pz)dp
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o0
2.6 2
[(cont).[ plz,2) = ;/ NA(p)e™ 7 + [, Blp) — v3C(p)]e ™% cos(wpz)
0
+ [v3B(p) + '726'(1})]6_6’” sin(wpz)} cos(pz)dp,
where

a(k) = riores — riarae, B(K) = rigrar —rures, y(k) = rure —rigra,

ar =alk), B =pBk), m=k),

ag +iag = a(d +iw), Po+ifs=PB(0 +iw), 2 +iy3 =70+ iw).
Taking into account these relations and the expressions (2.1), (2.2) for stresses

and electric displacements via u,w,, one obtains at the interface z = 0 the
following representations:

ui(:.r:, 0) = %/ [aliAi' (p) + aziBi(p) - cr_é':C:t (p)] sin(pz)dp

w(z,0) = +

ERE

[ B A% (p) + B B (p) — BEC*(p)] cos(pz)dp,
0

p*(z,0) = i%/ [ A%(p) + 75 BE(p) — 73 C*(p)] cos(pz)dp,
0

(2.7)
afz(m,{)) — / [‘n’l.:l:Ai mziBi(p) = m;siCi(P}] p - sin(pz)dp,
o (z,0) = ;2;/ nf ) +nE B*(p) — nECE(p)] p- cos(pz)dp + 022,
0

D¥(z,0) = 2 [ [s£A4% (p) + s£ B*(p) — s£C*(p)] p- cos(pa)dp + DE.
0
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The functions A*(p), B*(p), C*(p) are to be found from the boundary condi-
tions. Expressions for mf, nE ot

=, 87 (i=1,2,3) are given in the Appendix.
The conditions to be satisfied at the interface are:

(2.8) ol (z,0) = 05,(2,0), otf(x,0)=05(2,0), DF(z,0)=D;(z,0).
Substituting the formulas (2.7) into (2.8), we obtain the relations
A (t) = dy AT (t) + d12 BT () + disCH (1),
B™(t) = do AT (2) + deo B™ (1) + dosC™ (1),

@ (t) = d31A+(t) + d3gB+(t} + d33C+ (t),

where the constants d;; (i,j = 1,2,3) are given in the Appendix.
Next, we introduce the unknown functions

gl(m) o G;z(.’ﬂ,o) = G‘;z(’.ﬂ,O),

_ Ow*(z,0) 0w (z,0)
(29} 92(3:) s 9z = pm ;
o dpt(z,0)  Jp~(z,0)

T = Jx or '

and apply the Fourier transform to the expressions obtained after substituting
ox (z,0), w¥(z,0), ¢*(z,0) from (2.7) into (2.9). This leads to a system of
linear algebraic equations with respect to A*(t), B*(t) and C™*(t) which has the
following solutions:

A*(t) = } [ang,(t) + a1295(t) + a13g3(t)] ,

(2.10) BH() = 1 [0y (0) + 0227 (1) + 02035(8),

i) = % (@319, (t) + @32 (t) + a33g3(t)] ,

where

o0
3u(t) = [ au@)sinita)de, k=1,2.3

0
and the constants a;;(i,j = 1,2,3) are given in the Appendix.
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Out(z,0
Substituting the formulas (2.10) into expressions for A(z,0) = il )

dzx
= 3(:0)’ o7, (z,0), DI (z,0) from (2.7) and taking into account that

o0

2 1 1 1
“; /qk(f) (,OS{tI)dt = ‘T—r [ :gk(f)df .{L = 1, 2.3,
0

we arrive at the boundary relations

@11)  Az0) = - ?}u/

t—x b—a
+12),
| T ailt)at T ga(t)d T gs(t)dt
- e Nt o [ AT g8lt)a
(2.12) o].(z,0) = = 'r;m/ 5 +??zz/ T +?.’23/ rgm
—00 —00 — 00
+.Qg,
T a(t)d [ :()d [ galt)d
T ol [ o0, [ oo
(2.13) D7 (z,0) = 1 / ;= + 732 / t—1 + 133 J t—=z
Lhn —00 —00
+823,

where 21 =0, 2, = 033, £23 = D3°, and the formulas for the constants 7;;(¢,j =
1,2,3) are given in the Appendix.

The boundary integral relations (2.11) — (2.13) play an important role in the
following analysis because by means of these relations the singular integral equa-
tions for various mixed boundary conditions at the interface can be formulated.

3. Interface crack with permeable crack faces

We now turn to the permeable crack faces. Fracture mechanical parameters
calculated by taking into account the permittivity of the crack medium, indicate
that permeable crack faces are more realistic extreme case (DUNN [14], BALKE
et al. [16], GRUEBNER and KAMLAH [17], MCMEEKING [20]).

So we now assume that the complete interface z = 0 is electrically permeable.
In this case, the boundary conditions are the following
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oib(2,0) = 0, ez, 00 =0, |z <b;
(3.1) ut(z,0) —u (z,0) =0, w'(z,0)—w (z,0)=0, |z|>b;
¢*(2,0) — ¢~ (z,0) = 0, |z]| < o0.

Taking into account that according to (3.1), gi(z) =0 for |z| < b, g2(z) =0
for |z| > b, g3(z) = 0, and by satisfying the equation A(z,0) = 0 as well as
the second of the conditions (3.1), we arrive at the following system of singular
integral equations (SIE):

d,

dz
1 1 1
(32) m [ |25+ g | a0+ ne [ oottt = -ms

[} c2

Here, z € (¢i,d;i), c1 = —cp=dp =b,dj = 0,1 =1,2.

In this case we obtain singularities which imply oscillations in the stress field
near the tips of the crack, resulting in the unrealistic phenomenon of interpene-
trating of crack faces, and leading to difficulties in the numerical analysis for the
determination of the fracture mechanical parameters. For this reason, similar to
CoMNINOU [8] we introduce artificial frictionless contact zones a < |z| < b to
avoid the oscillating singularity, where the position of the point a is arbitrary
for the time being. For an arbitrary position of the point a, an artificial contact
zone model (ACZM) is not physically justified, but from this model the specific
value of a for the real contact zone length (Comninou’s model) can be found.
Moreover, the quasi-invariance of the energy release rate (ERR) with respect to
a, demonstrated later on for an ACZM can be used for a numerical (FEM or
BEM) investigation of finite sized piezoelectrics with interface cracks.

The boundary conditions for considered model are the following:

oaz,0) =0, aflz0]=0, |z|<a

o5 (2,0) =0, w'(z,0)-w (z,0)=0, a<|z|<b|z|>h;
(3.3)

ut(z,0) —u(z,0) =0, w'(z,0)-w (z,0)=0, b<|z|<h

o (2,0) - 9™ (,0) =0, |a| < co.

By these conditions, further zones of frictionless contact have been introduced
for |z| > h. This assumption is not a principal one, since according to St.Venant’s
principle, it will not influence the state of stress near the crack, provided h > b.
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However, in this case gi(z) = 0 for |z| < b and |z| > h, g2(z) = 0 for |z| > a,
g3(z) =0 and from equation A(z,0) = 0 and the second of the conditions (16),
we arrive at the very same system of SIE (3.2), in which now z € (¢;,d;), ¢; = b,
dy = h, cg = —a, dy = a, i = 1,2. Note that we have finite upper limits in the
integrals due to the further frictionless contact zones.

Additional conditions which must be satisfied to ensure that the displace-
ments are single valued are (see e.g. COMNINOU and DUNDURS [25])

b a
= Owt(z,0) Ow(z,0) -
/A(:ﬂ, 0)dz =0, f ( B 1 dz =10,
—b —a

which, after substitution of relation (2.7) can be written in the form

t+b r t+h
m’gl(t)dt‘Fm’J/I-H T go(t)dt = 0,

h
(34) 2?}11 /lll
b

—a

[0}

/gg(t)dt = 0.

—a

Due to the absence of an oscillation in the singularity we can represent in
this case the unknown functions g;(¢)(i = 1,2) in the form

: g; () .
(3.5) 9it) = ——=—o—x=,  g{(t) € H,
‘ @-Ot-c)
where H is the class of Holder functions (see e.g. MUSKHELISHVILI [26]) in [c;, d;],

ge=111-2
Next, we introduce the stress intensity factors for the right-hand crack tip by

(3.6) Ky = lim /2(z —a)o},(z,0), Ko= lim +/2(z —b)ol,(z,0).

z—+a+0 x—b+0

Due to (2.12), (3.5) and the results of MUSKHELISHVILI [26] for Cauchy type
integrals behaviour, we can write

(3.7) R I R O}

The energy release rate G for the right crack tip can be represented by the
virtual work integral
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a+Al
(38)  G=lim ';E / 51 (z)i(z + Al)dz
1 b+ Al
— + T
+5 o, (z)a(z + Ai)d:f:} :
b

The integrals in the last formula can be computed from the asymptotic behaviour
of displacements and stresses near the singular points a and b.
Exploiting the asymptotic behaviour
93(a)
2(T i
92(2)lz-va0 2a(a — )

following from (3.5), the second of Eq. (2.9) gives

{‘EH+($,0) . ‘B 0 }Lr—m g 2(00‘,_ x) 5( )

Employing Cauchy-type integral properties [26] in Eq. (2.12) gives
95(a)

sz($,0)|z_$a+0 i _ﬂ22m-
Using the first of the relation (3.7) leads to the following formulas:
2(a — )
22
K,
V2z-a)

i(z) = {w*(2,0) ~ 0™ (2,0)}],,_0 = K1,

o5 (2) = 0h(2,0)], 000 =
In a similar way it can be shown that
)= {u (z,0) —u™ (z,0) }[x—+b—(} = —-mV2(b— z)Ka,

Ko
2z —b)

Substituting the last formulas into (3.8) and taking into account that

f/_'li

we obtain the following formula:

™ - ==
(39)  G=7[aKi+PK3], @=1/m, B=-mi, (m2>0, m <0).

5’:2(2':) == G:z(z‘o)lx—»b+ﬂ b
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4. Interface crack with insulated crack faces

We now consider the second extreme case of electric boundary conditions,
namely electrically insulating crack faces. Sometimes, they are thought to be
more realistic since the permittivity of piezoceramics is three orders of magnitude
higher than the one of air or vacuum (Suo et al. [18], PARK and Sun [19]).
Thus we assume next that the crack faces are perfectly insulated. The boundary
conditions for this case are the following:

ol (z,0) =0, ol.(zD0)=0, |z|<8&
ut(z,0) —u (2,00 =0, w(z,0)—w (z,0)=0, b<|z|<h;
ot (z,00=0, w™(z,0)—w (z,0)=0, |z|>hk

D:(’B,U} =0, I:II| < b, ‘p—i— (z, 0) - 99_(:3! 0) =0, ixi > b.

Taking into account that in this case g;(z) =0, (|z| < b, |z| > h), g2(z) =0
(Jz| > b), and g3(z) = 0 (|z| > b), we satisfy by means of relations (2.11) - (2.13)
the relation A(z,0) = 0 (b < |z| < k), the second, and the last but one of the
boundary conditions (4.1), and we arrive at the following system of three SIE:

1 1 T
(4.2) i1 / [t =y H‘—ﬂ”} g1(t)dt + ;?Hk / mgk(i)df = —n{2;,
b =2 5

where z € (b,h) for i =1 and z € (—b,b) for i = 2, 3.
Additional conditions which ensure that the displacements and the electrical
potential are single valued, are taken to be in the form
. b+
Lt
p(0dt+Y me [ n| i
k=2 =5

h

t+b

(43) 27}1[ /ln m
b

gk (t)dt = 0,

b
[ G®)dt=0, (k=2,3).
=

We represent the unknown functions as

9i(t) s 95 (t)
(t-bevh—t g"m_(b—t)‘*(bﬂ)“’

where g7 (t) € H (1 = 1,2,3) and 0 < Re(a) < 1.

(4.4) g1(t) =
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Introducing the piecewise holomorphic functions

h b
nw =1 [ 2 o@ =1 [ 20, k=23,
b —b
one can rewrite Eq. (4.2) as
(4.5) i [@1(z) + By (—z)] + zm@k

Using the approach described in the paper of MUSKHELISHVILI [26] for estimating
Cauchy type integrals at the boundary points of the integration interval, one
obtains forz - b+0andz —b—-0

¢ *(b y
x4 g1 (b) ;
P1(@)lzp-0 = sin(ma)(b — z)2vVh — b + (el
(4.6)
o 95(b) !
Pelz-6+0 = = Gilma) (= — by (20)2 + 24(=),
__ ctg(ma)gp(b)
@k(&‘:”z.}b“n " (25)“( } +¢k($)
Here |9} (z)| < ﬁ with Re(y) < Re(w) and Cj(i = 1,2,3) are real con-
stants.

Substituting (4.6) into (4.5), we arrive to the following equations:

micos(ma)gi(b)  mags(®)  mags(®) _ o pvage
Jiss Ghr @ e

2197 (b)  me2cos(ma)gs(b) macos(ma)gi(d) _ ., agpe
e @) T

13197 (b) _ mazcos(ma)gi(b) magcos(ma)g3(®) _ o age,
Vb @ o

This system has nonzero solutions for if

det”b,;j“ =0, g5 =1,23);
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where

bir = nu cos(ma)/Vh —b, bia = —m2/(2b)%, b1z = —ma/(2b)%,
b1 = ma1/Vh —b, by = —m2 cos(mar)/(2b)%,
bag = —1p3 cos(ma)/(2b)%, b3 =n31/Vh—Db,

bsz = —m3z cos(ma)/(2b)*, b3z = —ma3 cos(ma)/(2b)".

This determinant can be rewritten in the form

(4.7) cos(ma) [p cos®(ma) + p2] =0,

where

1 = T17227M33 — 1732723,

K2 = TM217M32M13 + 1277237731 — N317)22713 — 7)217127)33-

Equation (4.7) can be used for the determination of the power of singularity
at the tip of interface crack for insulated crack surfaces.

5. Numerical results and discussion

First of all we pay our attention to the ACZM for the permeable crack faces.
The values of the material constants of the piezoceramics PZT-4, PZT-19, PZT-
5H, PZT-5 were adopted from the papers [19, 24, 27, 33], respectively.

A numerical solution of the system (3.2), (3.4) has been obtained by the
method based on the Gauss-Chebyshev quadrature rule [28] which was described
in detail in the paper of LOBODA [29] for equations similar to (3.2), (3.4).

The variation of the normal stress in the contact region corresponding to

different A =
material constants were taken as

1.22 - 10'°(N/m?), ¢ = 7.78 - 10'°(N/m?),

a : A 5 . e
are shown in Fig. 2. For the upper piezomaterial, fictitious

€11
ci3 = 0.11-10"°(N/m?), ¢33 = 1.23-10'°(N/m?),
caq = 1.0-10'"°(N/m?), es = —6.50(C/m?),

ez = 23.3(C/m?), e;5 = 17.0(C/m?),

€11 = 15.1-107°(C/Vm), €33 = 13.0-107?(C/Vm),
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and PZT-4 was chosen as the lower piezomaterial. One can see that for sufficiently
large A, the values of o,,(z,0) in the main part of [a,b] are positive. Only at
point b they are negative indicating a compressive stress. Decreasing A leads to
an increased relative length of the compressed zone with respect to the length of
[a,b]. Finally, for A = A\g = 2.6 x 107 the values of 0,.(z, 0) becomes compressive
in the complete contact region [a,b]. This means that the crack faces are in
contact in all of [a,b] and the boundary condition w™(z,0) — w™(z,0) = 0 for
z € [a,b] is physically correct for A = Ag. In this sense, Ay is the real contact
zone length.

Next, the values of Ky, K5 and G for the same piezomaterials as before and
various A are shown in Table 1. The last line corresponds to the real contact zone
length A\g and the maximum value of |K3| and K; = 0, i.e g3(a) = 0, are found
for A = Ap. This value for Ag is rather small (even for the considered fictitious
upper piezomaterial) and it can not be found easily for a finite-sized body. But
fortunately this is not necessary because the ERR G()\) is almost invariable for
M <A< A (A ~5x107?), and similarly to LoBoDA [30] one may consider
it as quasi-invariant with respect to A. This fact permits to solve a problem
in question for A = A\, > Ap and use the obtained value of G as Gy = G(Ag).
This approach simplifies the numerical solution of an interface crack problem for
piezoelectric composites significantly.

Table 1. Dependence of the SIF-s K; and the ERR & on the relative
contact zone length X\ for electrically permeable crack.

2\ Ka(Pay/m) | Ki(Pay/m) G(N/m)

5x 1072 —0.861 1.016 0.165 x 107
107 —1.214 0.698 0.167 x 10~
5x 1073 —1.319 0.531 0.167 x 10~°
1073 —1.441 0.134 0.167 x 10™°
2X0 = 5.2 x 1074 —1.445 =0 0.166 x 10~°

The quasi-invariance of G with respect to A is confirmed in Table 2 which
has been obtained for the ceramics PZT-5H/PZT-4. Due to the decreasing K
and increasing Ky, it is reasonable to assume for this combination of materials
the existence of A = Ay for which Ky = 0, too.

Table 2. Dependence of the SIFs K; and the ERR G on the relative contact zone length
A for electrically permeable crack for the piezoceramics PZT-5H/PZT-4.

2\ K3(Pay/m) | Ki(Pay/m) G(N/m)

1072 —0.106 0.986 0.331 x 10~1°
107 —-0.153 0.985 0.332 x 10~
g —0.178 0.982 0.332 x 10~ 10
1075 —0.182 0.981 0.332 x 1070
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Next, we consider the numerical solution of the system (4.2), (4.3) for insu-
lated crack faces.

For this purpose the roots of the Eq. (4.7) were found numerically. Some of
the most interesting results are shown in Fig. 3 and Fig. 4 where the depen-
dence of the roots of Eq. (4.7) on the parameter p is displayed. Parameter p
is introduced in order to investigate the influence of a varying degree of piezo-
electric coupling in both piezomaterials: e’fl = pefl, éi@ — peffa, éfg = pe:ﬁ.,.
As p is increased from 0 to 1, the piezocoefficients in both the upper and the

lower piezomaterials are increased from zero to their real value: éf; = 0.0...6;‘;

for p = 0.0...1.0. The coefficients of cf:, cita, cgg, cfﬁ, eg:l, eé%, eﬁ, Eﬁ, 5313 were

chosen according to piezomaterials PZT-19/PZT-5 (Fig. 3) and PZT-4/PZT-5
(Fig. 4), respectively. The rigid lines are related to the real parts of the roots
while the dashed lines represent the corresponding imaginary parts (0.5 is a real
root for any p). Circles on these lines indicate the transition from complex to
real roots.

These results confirm the conclusion obtained earlier in another way in the
papers [18, 22| concerning the possibility of a non-oscillating singularity for an
interface crack in a piezomaterial compound. Here, we demonstrate additionally
the rather complicated dependence of the power of singularity on the piezoelectric
parameters and the appearance of both the real singularity for the ceramics PZT-
19/PZT-5 (Fig. 3, p = 1) and the oscillating singularity for the ceramics PZT-4/
PZT-5 (Fig. 4, p=1).

The numerical solution of the system (4.2), (4.3) for the case of a real non-
square root singularity was found by the numerical method based upon the Gauss-
Jacobi quadrature rule suggested by ERDOGAN et al. [31] and described with
some modifications by GOVORUKHA and LoBODA [32].

In Fig. 5 and Fig. 6, the variations of o,,(z,0) and D,(z,0) respectively in
the neighbourhood next to the right-hand crack tip are shown. The material
parameters were taken for the combination PZT-19/PZT-4 and the crack faces
were chosen to be perfectly insulated. The lines I are related to the remote tensile
load 3% = 1.0 (MPa) while the lines II are related to the remote electric flux
with D® = 1.0 (C/m?) (Fig. 5) and D® = 1.0(x10~® C/m?) (Fig. 6). The
complicated behaviour of the fields at the crack tip can be seen, which can be
explained by the influence of singularity occurring in this point. But it should be
noted that for increasing z, the values of o,,(z,0) and D, (z,0) rather stable tend
to their values at infinity. This fact confirms the high accuracy of the applied
analytical approach and the numerical method.

Finally, in Fig. 7 the values of D,(z,0) for the special case of a homoge-
neous material PZT-4 are shown. The solid line corresponds to permeable crack
faces, the dashed line to — insulated crack faces. For comparison, the values of
D.(z,0) calculated according to the analytical solution (see e.g. PARTON and
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266 V. B. GovoRUKHA, D. Munz AND M. KAMLAH

KUDRYAVTSEV [24]) are shown as well (such analytical solutions are only found
for homogeneous materials). It is obvious that these values completely coincide
with the numerical results obtained by the method developed in this paper. Note
that in contrast to the mentioned analytical solution, the validity of our selution
is not restricted to the neighbourhood of the crack tip.

3.0E-05 i
|
|

2.0E-05 +

|
1.0E-05 +
A
'S
S. 0.0E+00 ;\ i : £
i‘ﬁ 10 16 22 28 34 4)0
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]
-1.0E-05 +
——onlyc},
—o—only D}’
-2.0E-05 +
-3.0E-05
x/b
FiG. 5. Variations of the normal stresses for mechanical (line I) and electric (line II)
loading.
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6. Conclusion

An interface crack between two piezoelectric semi-infinite planes is considered.
The poling axis is assumed to be orthogonal to the crack plane and remote
homogeneous tensile stresses and electric displacements act in infinite distance.

The methods of Fourier transforms and singular integral equations are utilised
and both permeable and insulated crack faces are considered. For the first case,
in addition to the open crack model, the contact zone model with an artificial
contact zone is considered. Comninou’s model with real contact zone is obtained
as a particular case of this model and the quasi-invariance of the energy release
rate with respect to the contact zone length is shown. The last property is
rather useful from the point of view of the application of numerical methods
for the investigation of finite-sized piezoelectric compounds with interface cracks
because it permits to find the energy release rate for an artificial contact zone,
and use approximately this value as the needed energy release rate.

The dependence of the power of singularity at a crack tip on the materials
properties for perfectly insulated crack faces is investigated. The complete disap-
pearance of an oscillating singularity in exchange for a real power singularity for
most real ceramics of the considered class was revealed. The behaviour of stresses
at the crack tip for both types of crack face conditions is obtained numerically
and compared to an exact analytical solution for the special case of homogeneous
materials.
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Appendix
T T LR N T
my = —ejsm — clay ki + A7),
T B0 S S e e W T
my; = —ejgYs — culay 0™ —agw™ + fy),
R O U g S NI, e Mg
my = —€i57; — culapw™ + 050~ + fy),
R g e T T
ny = c30q — by kT — ey kY

+ & + 1ot ot + + + ¢ ot + 4+
ny = 305 — (B3 07 — Byw™) —ex(1 0T — 1 w),
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n-,i = c:lbs(.rg: - c3‘t3( Etwt + ﬁ:féi) - en(rrwt + 7316),

si = eno — ek +enniki

sy = e50y — e(fy 8 — fw®) +ex(ny 6 — vy w®),

537 = e5,0F — e (Bw® + B 6%) + e (v wt + 43 6%),

Ay = my(n;s3 —n3sy) +mg(ngs; —nys;)+mg(ny sy —nysy)
pi = (song —s3ng)/Ay, pr2 = (my sy —mgsy)/A,

Pz = (nomg —ngmg)/Ay, pa = (nys; —ngsy)/A,

P22 = (symz —s3my)/A1, pws=(nygm] —nymy)/A4,

P31 = (sgny —syny )/ A1, pae = (mysy —mysy)/ A,

p3sz = (myngy —myni)/A4A,

di = pum{ —piani — puasi, dia = pums + piang — puas;,

= + “+ - = — - .+
diz = —pumg + pieng + piasy . day =p21my — p2atiy — Pasy .

I

dyy = P;zl?'n; = }U'zzﬂ;' — p23sy, doz = —pnmg +pnng + f"lii-'-",:;e
d3z; = P:;'lm_f o Pszﬂf' - P333Ta dyy = 10:;1”15r = P:i'zﬂf{g!' - Paa-‘?;,
dyy = —pglmg' +p32n§f s 1}333;",

P = of —ajdy —aydy + azds,

p2 = ag —ajdyy — oy dy + a5 dy,

ps = oy + oy dig + a5 dog — g daa,

& = =B — By dy — By doy + B3 day,

& = —B3 — By di2 — B3 daz + B3 daa,

& = —B5 + By dis + B; da — By dss,

@1 = = =y du — 73 d21 + ;5 dai,
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g = —v4 —v{ diz — 75 doz + v5 d32,
g3 = —v4 + 1 diz + 75 dos — 75 da3,
Ay = q(éamT — &mT) + qa(&mi — &mT) + g3(&md — Emy),
an = (&2 — &2q3)/ D2, a1z = (gsm3 — qom3 )/ Aa,
a13 = (§amy — &3my) /A2, a2 = (€13 — E3q1)/ Ao,
ax = (m3d — qamT) /A2, azs = (&m] — &m3) /A,
ag1 = (€192 — &2q1)/ A2, azz = (mi — gam])/ A,
agy = (ggm?' - flm.}")/Ag,
M = pran +paagr — p3a31, M2 = P1a12 + paas2 — p3ase,
M3 = pP1a13 + p2ae3z — P3as3, 121 = 'nf’a“ + ﬂ;a‘ﬂ = N_;rﬂ:f.l,
M2 = niaip +niax —nfaze, n2 =niarz+nan — niass,
n3 = sjay +syax — s§yaz, m = STﬂl'z + 33322 — s3 azy,

_ ot -+ A+
133 = 81 @13 + Sy g3 — Sz A33.
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