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Asymptotic analysis of heat propagation models
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THE SUBJECT OF THIS PAPER is the analysis of different models of heat propagation.
As is well known, one of essential disadvantages of the classical model proposed by
Fourier is the infinite velocity at which heat propagates. To avoid that unphysical
phenomenon, Cattaneo has proposed a hyperbolic model. An essential feature of that
model is the introduction of a relaxation time for thermal processes. In recent years
several new models have been proposed which retain the relaxation time phenomenon
but are parabolic in their character. When the relaxation time is small, all these
models lead to singularly perturbed equations. We analyze some of these models
and prove that the solution of the classical heat equation (Fourier model) is a bulk
approximation to exact solutions of these models. We show also that the behaviour
of the Fourier model depends on the way in which it is applied. Finally, we present
numerical comparison of exact solutions with the bulk solution for the test problem
of heat propagation in thin metal films heated by a laser beam.

1. Models of heat propagation

A GENERAL PROBLEM IN MODELING heat propagation is the choice of a correct
model connecting the heat flux with the temperature gradient. This problem has
been thoroughly discussed in two papers by JosePH and PREZI0SI [13, 14] and the
review of recent literature can be found in the paper by CHANDRASEKHARAIAH
[4]. As is well known, the classical assumption of Fourier

g= —k1VT

leads to the parabolic heat equation

oT
(1.1) pCyo = kV’T,

where p is the density, C), the specific heat and k; the thermal conductivity of
the material. One of essential features of this model is the infinite velocity of
propagation of heat disturbances. During experiments involving very low tem-
peratures near the absolute zero, extremely short pulse laser heating or very high
heat fluxes, investigators found that the heat propagation velocity becomes fi-
nite. To account for the phenomena involving the finite propagation velocity, the
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226 K. MoszyNskl AND A. PALCZEWSKI

classical Fourier heat flux model should be modified. CATTANEO [3] has proposed
to model the heat flux as dependent on the history of the temperature gradient.
This leads to the following differential relation between the heat flux and the
temperature gradient:

dq

T*a—t +q= *szT,

and the hyperbolic heat equation

o*T 10T
o2 T e
where ¢ = \/ka/pTC, is the velocity of propagation of thermal waves (7 is the
relaxation time of thermal processes). For this model we obtain a finite velocity
of propagation of heat waves but we loose a clear sense of the heat conductivity
introduced in the Fourier model. In addition we encounter problems with the
second law of thermodynamics (cf. [17]).

A different model has been proposed by JosEPH and PREzIOSI [13] (called
the Jeffreys-type model), which retains relaxation time phenomenon but also uses
the effective Fourier conductivity ky explicitly

(1.2) = ?V2T,

(1.3) q(t) = -k vT—— [ (-—~ YOT(¢)dt' .

For steady flows the thermal conductivity is given by
k =k + ko,

i.e. is the sum of the effective thermal conductivity &y and the elastic conductivity
ka. Equation (1.3) leads to the following equation for the temperature

R 292 )_aT
4 75 v
(1.4) ¥l + - = VT + Ky )
where ¢ = \/k/p7C, is the velocity of propagation of heat impulses and &, =
kl /,OCP.

Let us mention finally the inertial theory obtained as a limiting case of the
Cattaneo model where 7 — oo but k2/7 = k* remains finite. Then, we obtain
the following law of heat conduction

dq
ot

and the pure wave equation for the temperature

= ~k*VT,
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o
(1.5) L= =o' VT,

ot?
where ¢ = \/ko/pTCy.
A nonlinear extension of the last model has been proposed by CIMMELLI and
KosiNski [5, 6]. They have postulated the following law of thermal conductivity

q= _Xve1

where x is a positive function representing the coefficient of thermal conductivity.
© is the semi-empirical temperature representing a thermal history of the material
and obey the evolution equation ©® = F(T,©). A particular linear version of this
model was proposed earlier by IGNACZAK [11]

(0] ar’ .k

ek —— V.

ot ot To
The above model of heat conduction leads to the following equation for temper-
ature

2
Lyl Koy
ot? ot To

The question which of these models is more realistic is difficult to answer. A
number of papers defend the Fourier model (cf. [7, 8]) claiming that although the
theoretical speed of heat impulses in this model is infinite, but the bulk of the
heat energy propagates with a finite speed. The present paper can be considered
as a voice in this discussion. We restrict our considerations to very short heat
pulses at room temperature. This corresponds to a very short relaxation time
7. Hence we exclude from our comparison the analysis of inertial theory and its
nonlinear extensions as they correspond to 7 — o0.

In what follows, we shall analyze the Fourier, Cattaneo and Jeffreys-type
models. It is shown both by asymptotic analysis and numerical calculations
that for the propagation time of macroscopic size there is no difference between
predictions of all the three models. The situation changes for short distances
of propagation and very short time. Here the predictions of the Fourier model
differ form those of the Cattaneo and Jeffreys-type models. Which model is more
realistic should be decided by comparison of numerical results with experimental
data. For experimental results which we have found in the literature [2], the
agreement is better with the Cattaneo and Jeffreys-type models (cf. Sec. 4).

PCp

2. Asymptotic analysis of the models

When the relaxation time is very small in comparison with the macroscopic
time, Eqgs. (1.2) and (1.4) are singularly perturbed. Hence we can apply singular

http://rcin.org.pl
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perturbation methods to find the behaviour of solutions in short time scale (initial
layer) and in long time scale (bulk approximation).

We begin our analysis with the Cattaneo Eq. (1.2). Writing this equation in
the dimensionless form as a first-order system, we obtain

00 + 0z = 0,
(2.1)
T0m + D?*0,0 +1 = 0.

In the above equations # and n denote the dimensionless temperature and the

ato is the dimensionless coefficient of thermal
pCpmg
conductivity, where # is the characteristic time and z( the characteristic length,
and 0, denotes the nabla operator (gradient or divergence, depending on the
context).

Now we apply the standard asymptotic procedure, i.e. we expand # and 7 in
power series of T

heat flux, respectively, D? =

9=90+T91+...,
(2.2)
n=mn+TMm+....

Inserting expansion (2.2) into Eq. (2.1) and comparing terms of the same order
in 7, we obtain equations for consecutive terms of the bulk approximation. For
the zeroth-order it gives

8:90 -+ 8;7]0 =0 )
D?*0.00 +m = 0.

After rearranging the terms we obtain the classical heat Eq. (1.1) for the zeroth-
order approximation to the temperature, and the Fourier formula of the heat
flux

880 = D?*V?g,,
(2.3)
o = —Dzven.

In the first-order we have

3;91 + 6;7;1 - O‘

6;179 i D2ag_-91 +m = 0,
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which after rearrangement leads to the nonhomogeneous heat equation
a0, = D*V?0, — D*V?8,0,.

To account for the short time effects we introduce the new time variable

t
o=—.
=
Then Eq. (2.1) take the form
1 Whee =
;659 + 6:,:7} = 0,

(2.4) :
51 + D?0,0+7 = 0,

where tilde denotes the functions of the new variables (z, o).

The above equations form again a singularly perturbed system with small
parameter 7. We look for a solution of this system by expanding 6 and 7 in
power series of 7. Then in the zeroth-order we obtain

aa-é[) = 0,
(2.5)
gm0 + 70 = 0.

Assuming that the initial layer solutions tend to zero at infinity, we get from (2.5)
éﬂ(as I) =0,
flo(o,z) = Mo(0,z)e™7 .

Let us observe that the initial layer equations are necessary to fulfill the
initial conditions. Let 6(0,z) and n(0,z) be the initial conditions to (2.1). If
these initial functions are independent of 7 then Egs. (2.1), (2.3) and (2.5) give

8(0, 2’:) — BO(Otm))
7(0,z) = n0(0, ) + 7j0(0, z) .

Assuming that all the considered functions are extended down to the initial sur-
face t = 0 and taking into account the equality

7]()(0) = —DQB:L-H(}(U)!
we can fulfill the initial data taking

00(0,z) = 6(0,z),
7io(0,z) = 7(0,z) + D?8,0(0, z).
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An essential step in asymptotic analysis is the comparison of the approximate
solution with the exact one. We shall carry on that procedure in the Hilbert space
setting H = L?(R™). With some abuse of the notation we shall write w € H
even if w is an n-dimensional vector, understanding in such a case that every
component of w is in H and using the obvious extension of the norm in H to
vector functions. Then the following result is standard in asymptotic analysis.

PRrROPOSITION 1. Let us consider the Cauchy problem for Eq. (2.1) with initial
data belonging to Wc'f'l(]R”) N W22(R™). Then both the exact Eq. (2.1) and
the zeroth-order approximation (2.3) possess solutions in C'(R", H) and the
following estimate holds in the norm of H;

16(¢) = Bo(t)|| = O() .
In addition for the heat flux we obtain

In(t) — no(t) — o (t/7)|| = O(*/?).

Proof: We omit the existence part of the proof as a standard one and
concentrate on the error estimate. Let us define

y:9_901
z=1n-="m —"1o-

Inserting y and z into Eq. (2.1) and making use of the fact that 8y and 7 solve
Eq. (2.3), and 79 Eq. (2.5), we obtain

a.ty + 0z = _3.1"";;’{) )
(2.6)
10z + D?0py + 2 = 7D%8,0,6, .

This equation can be written as an evolution equation in the matrix form
gu=8u+Cu+g,

where

and

is the nonhomogeneous term.
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We encounter a problem in this analysis because § is not a dissipative oper-
ator (cf. [1]). To avoid that difficulty we make a change of variables

— \/._ .

8;11=S’1}+Cﬂ+g',

5’__1_)_ 0 —dy e —Dazﬁg
Vol S SUAR ) J7D20,8,0, |

Operator S’ is already dissipative (it is in fact a conservative operator in
H) and generates a semigroup of contractions in H. By standard methods of
asymptotic analysis (cf. [1] Chap. 6) we obtain the estimate

where

uniformly for ¢ € [0,7], for any T < oc.

Returning to the original variables y and z we obtain the assertion of the
proposition.

|

Let us remark that the result of PROPOSITION 1 is well known in the literature
(cf. GOLDSTEIN [9] Chap. 2 Sec. 11) and we present it only for the readers’
convenience.

It is interesting to compare the above estimate with the result of JANSSEN
[12] who analyzed the abstract telegraph equation. The result of Janssen in the
Hilbert space H = L?(R") setting has the form of

PROPOSITION 2. Let #y(t) be a bounded solution of the heat Eq. (2.3) for initial
data belonging to an'l NW?22. Then the telegraph Eq. (1.2) with the same initial
data possesses a solution #(t) and for every ¢y > 0 there exists a constant C such
that

100 - 6u(0 < € (7= + 77z

for every ¢ > ¢, t > 0 and 7 > 0, where c?7 = D2

PROPOSITION 2 gives a long time convergence for solutions of the telegraph
equation to solutions of the heat equation whereas PROPOSITION 1 gives only esti-
mate on z bounded time interval. The term 7/2 in the estimate of PROPOSITION
2 seems to be unexpected (we expect O(7)). Let us observe however, that
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er'/? = D, where D is a constant. Hence the estimate in PROPOSITICN 2 is
in fact of order O(7) which is standard for asymptotic analysis.

We proceed now to the analysis of the Jeffreys-type model of Joseph and
Preziosi. As in the case of Cattaneo’s model, we write this equation in the
dimensionless form as a first-order system

80+ 8, = 0,
(2.7)
TOm + D?*0,0 + 1 — K*70yem = 0,
where D? = ko 3 and x* = M’z’-
PGy pCpy

Carrying asymptotic analysis we obtain in the zeroth-order the resalt anal-
ogous to that obtained for the Cattaneo model, i.e. the classical heat 2quation
and the Fourier formula of the heat flux

8,00 = D*V?,,
(2.8)
T = —D2V6‘g.

Proceeding like previously we obtain for the initial layer in the zerosh-order

9,00 = 0,
(2.9)
aﬂﬁo + ﬁo s 0:

which are the same equations as for Cattaneo’s model.
Then we can formulate our main result for the Jeffreys-type model.

PROPOSITION 3. Let us consider the Cauchy problems for Eqs. (2.7) end (2.8)
with the same initial data belonging to Wg‘l(R")ﬂWQ'Q(R“). Both thesesystems
possess solutions in C'(R*, H) and the following estimate holds in the nam of H

16(t) — 6o(t)|| = O(7).
In addition for the heat flux we obtain

lIn(t) = mo(t) = 7io(t/7)Il = O(/?).

P roof: The idea of the proof is analogous to the proof of PROPOSTION 1.
We concentrate on an error estimate and define as previously

y=0-=6p,
zZ=n—"1 —"o-
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Inserting y and z into Eq. (2.7) and making use of the fact that 8y and 7 solve
Eq. (2.8), and 7y Eq. (2.9), we obtain

Oy + 0zz = =0z,
(2.10)
7Oz + D*0py + 2 — K*T0pez = 7(D* — £*D?)0pgeb + 7K zaho -

With these equations we have similar problems as with (2.6). Changing variables

(2]

we can write it in the matrix form
du=38u+Cu+g,

b D 0 1%) 1190 0
e — T ——
s=2| 5 &5 =20 4

STD® = 8 D)8l + oK Basy

is the nonhomogeneous term.

The operator S generates a contraction semigroup in H (cf. [16] for details).
Then using standard methods of asymptotic analysis we obtain the estimate

lu(®)]] = O(7)

and

uniformly for t € [0,T], for any T' < co.
This estimate in terms of the original variables y and z is exactly the assertion
of the proposition.

3. Jeffreys-type model revisited

Because Jeffreys-type model is not related straightforwardly to experimental
results, it is very difficult to make any judgement on the relation between the
thermal conductivity k and the effective conductivity £;. The only relation which
follows from considerations of Sec. 1 is that ¢ > k;. But recently another
approach to the derivation of the Jeffreys-type model has been proposed (cf. [10,
19]). In this model, called the dual-phase-lag model, the following general relation
between the heat flux and the temperature gradient has been proposed:

(3.1) q(t +1,) = —kVT(t + 7).
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In this relation the delay time 7p is interpreted as caused by phonon-electron
interactions or phonon scattering. The other delay time 7, is the relaxation time
due to the fast transient effects of thermal inertia.

Expanding the left-hand side of (3.1) with respect to 7, and the right-hand
side with respect to 7p and retaining only the first-order terms, we get

g+ qu-?' = —kVT — k?”r%VT,
which leads to the following equation for the temperature:
e - 1.8 | . 7 9 OT
B2 At ——— = VT + 5 — Vi,
(#2) e b g

where ¢ = k/pr,C, and k1 = k/pC,. The relation between terms in the right-
hand side of (3.2) depends on the ratio 7r/7,. For thin gold films for which we
have made comparison with experimental data in both papers [10] and [19], it is
reported that 7p /7, & 120 which is > 1 and makes the analysis performed below
justifiable.

We write Eq. (3.2) in the dimensionless form as a first order system

00+ 09;n =0,
(3.3)
70 + D030 + 1) — Ka0zen = 0,
kty krp

s Sl
pCrj pCp}
Since 7p > 7, coefficient K5 is of order O(1) with respect to 7. Hence the
standard procedure leads to the following zeroth-order approximation for the

dimensionless temperature and the heat flux

where D? = and 7 is the dimensionless value of 74.

0100 = D*0pz00 + 20,0500 ,
(3.4)
T = —D‘zc')‘rz?g = a‘tgaf,a;;f}o.

Let us observe the difference between this system and the system obtained in the
zeroth-order for the original Jeffreys model. Also the initial layer equation has a
different form. In the zeroth-order we obtain

OpTjo = K20zzTo — M0 -
Then we can write the equation for the error term. Using the same notation
as in the preceding section we obtain
Oy + 0z2 = =07,
(3.5)
1Oz + D*0py + 2 — KyOrzz = TD?0,0:00 + Tr20u 000 -
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The above system is analogous to Eq. (2.10) (the difference is only in the non-
homogeneous term). Hence PROPOSITION 3 remains valid also for systems (3.4)
and (3.5).

We can now return to Eq. (3.4). This is an example of Sobolev’s equation
(cf. [18]) and its analysis is relatively simple. First, let us write this equation in
the more convenient form

(3.6) G = DI — ko A) ' Au.

To prove that Eq. (3.6) possesses smooth solutions let us take K(z), the funda-
mental solution of the operator I — koA, Then Eq. (3.6) can be written as

Ou = D’K x Au.
The following result is due to KARCH [15].

LEMMA 4. Let A = D?K x A, then A has a unique extension to a bounded
operator on L?(R") and is the infinitesimal generator of uniformly continuous
group T (t).

Let us consider the heat equation

(3.7) du = D?Au,

and let Tp(t) denote the semigroup generated by operator D2A. Then we have
the following result.

PROPOSITION 5.  Let up(z) € Wg'(R") N W22(R") denote initial data for
Eqs. (3.6) and (3.7). Then in the Hilbert space H = L?(R™) we have the following
time asymptotics for the solutions of these two equations:

4T (#)ug — To(t)uel] = 0 as t— oo.

Proof: Passing to the Fourier transform we can write

_D'Z{'?t

T (t)up = (2m)~™/2 /exp(m

]RI‘I

+ i€ ) o (€)d¢

To(t)uo = (27)~™/2 / exp(-92¢2t+z‘z§)ﬁo(g)d§.
s
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Using the Plancherel formula we get
I (¢)uo = To(t)uol®

= (2m)™" [ |exp (F2E4) - exp (~D%€0)| Tao(O)Pdg

—D2%¢24 i 2 1/2
(2m)~ (@/chp - .tif,?) - exp(—D‘?{“t ‘ dE)
1/2

D? 2
(E/I(zxp 1+:€2)—pr( _p? 21.&‘|u )|4de ;

If ug is sufficiently smooth then the second integral is bounded. In the first
integral we make a change of variables w = t!/2¢ to obtain

/

Rﬂ

1;:%;3) - exp(—Dgizt - a's-:cf) ‘Qdf

et t-—nﬁ /

R!’I

exp(

_’Dz'f.UQ 2 9 2
exp(———l +ngw2t‘1) - exp(—D w )1 dw

It is straightforward that the last integral tends to zero as ¢ — oo.

4. Numerical results

The results of asymptotic analysis on the one hand, and the experimental
results presented in [2] on the other, have been confronted with numerical calcu-
lations done for Fourier, Cattaneo, Jeffreys and dual-phase-lag models. Our aim
was twofold: first, we would like to see how fast is the convergence of solutions of
the Cattaneo, Jeffreys and dual-phase-lag models to solutions of the heat equa-
tion (Fourier model); second, we would like to compare different models with
experimental results. In [2], the heat propagation in thin metal films (namely in
gold films) undergoing very short impulses of laser irradiation were investigated.
In these experiments heat waves of very large but finite velocity have been ob-
served. Since the measurements were only one-dimensional, we restricted our
numerical analysis also to one space dimension.

Since the Fourier model needs no special comments, we present here some
technical details concerning only the Jeffreys-type model (the dual-phase-lag
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model is defined by the same equations as Jeffreys model, while Cattaneo model
can be treated as its special case). To account for short time effects and small
sample thickness of metal films (200 to 3000 A), we introduced the dimensionless
variables in the form

(4.1) t= ri, T = vTi,

where 7 is the relaxation time and v is the sound velocity of electrons in metal.
Such a change of variables is due to the assumption that heat is transported
mostly by the flow of hot electrons. Following [2] we take v = 0.8 x 108 cm/s.
The same paper suggests also that the reference length should be taken as equal
7T4nm (the mean free path for hot electrons). This gives the relaxation time
7 = 92 fs which is almost equal to the duration of laser pulses (96 fs).

In these new variables the original Jeffreys-type model (2.7) is replaced by
the following system of equations

8tT + 3IQ = 0 ]
(4.2 ,
BEQ ot Da.‘cT + Q = ’ctam:Q = 0,

where D = k/(pCp7v?) and K* = k) /(pCp7v?) (hats denoting independent vari-
ables have been omitted). T' and @ are the dimensionless temperature and heat
flux in the new variables, respectively. It is easy to see that if the pair {T', Q} sat-
isfies Eq. (4.2), then in the original independent variables Eq. (2.7) are satisfied.
For the dual-phase-lag model we have the same equations but with x* = k7p/
(pCpr?v?) (the value of k2 in the dimensionless variables (4.1)).

For numerical treatment of the problem, we replace system (4.2) by the fol-
lowing finite difference equations:

n+l _

r 1
(4.3) J u? % é u;'lill i ”?jl + u.?“l'l > u?—l
¥ k 2 2h 2h
+§ [ (ult) =2t 4 ul v} uf_y —2u} +uly,
2 h? h?

C n+1 n
+-§ (uj +uj) = 0.
Here h and k denote the space and time steps, respectively, n is the time level
number and j the space node number of the rectangular space-time grid; u} is
the two-dimensional vector with the first coordinate corresponding to the approx-
imation of T', and the second - to the approximation of Q). Matrices A, B, and
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C are as follows

A= [9 1]‘ B= [0 “‘]. &= [” U].
D0 0 -« 0 1

The heat impulse is introduced by the left-hand side boundary condition
depending on time. On the right-hand side we impose Dirichlet or Neumann
zero conditions for both functions T' and Q. As initial data we take the zero
initial values for 7' and @, however there are also other possibilities. Stability and
convergence problems for finite difference schemes of this kind will be discussed
elsewhere.

Let us now discuss the numerical experiments. We have done computations
with a rectangular impulse of duration 96 fs (as in [2]) and amplitude equal to 1.
The response to the impulse was observed at four distances from the insulation
surface, equal to those used in experimental measurements of [2]. These distances
are 500 A, 1000 A, 2000 A, and 3000 A.

On successive graphs we present the dimensionless temperature as a function
of time in picoseconds counted from the start of the heat impulse. Since all the
experimental curves are normalized up to their maxima (see Fig. 1), we have
performed similar scaling for the numerical results. This, however, enables us to
compare only the positions of extrema on the corresponding curves.

We have observed, that for the Jeffreys-type model the existence of extrema
depends on the value of k*. For large x* and at a large distance from the insula-
tion surface there is no clearly visible extremum. Hence we have chosen x* = 0.01
which is sufficiently small to give extrema for all the considered distances.

The best fitting in the Jeffreys and Cattaneo models has been obtained for
D = 0.35 (Fig. 2 Jeffreys, Fig. 3 Cattaneo). The small oscillations on the curves
for the Cattaneo model are due to the hyperbolic nature of this model and a
very low level of artificial diffusion in the numerical scheme. Thanks to this low
diffusion we have obtained rather sharp jumps. Introducing some extra diffusion
to our scheme we can diminish the oscillations but smear the jumps.

Similar results for the Fourier model are also presented (D = 0.35, Fig. 4).
It is visible that in the Fourier model maxima are traveling with slightly different
speed than in experiments (cf. Fig. 1).

For dual-phase-lag model, which differs from the Jeffreys model only by the
values of coefficients D and k*, computations were done for D = 0.0183 and
k* = 2.06 (Fig. 5). These values have been calculated using the data for gold from
[10]. It is worth mentioning that the relaxation time suggested in this paper 7, =
0.79 ps is almost ten times larger than that used for the Cattaneo and Jeffreys-
type models. On the other hand, it is not clear which value should be taken as
the reference length. Therefore we have investigated how the numerical results
depend on the value of the reference length and found that the position of maxima
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is almost independent of this value. To obtain the above mentioned values of D
and x* we have taken the same reference length as in other calculations (74 nm).
[t is visible from Fig. 5 that in this model the heat waves travel too slowly with
respect to experimental data of [2].

T/ Tmax (arbitrary units)
hot”

500A

1000A

2000A

3000A

I T T

0.0 0.5 1.0 15 t(ps)

Fic. 1. Experimental data (taken from [2]).

Further, we would like to estimate the time of asymptotic confluence of the
Cattaneo and Jeffreys-type models towards the Fourier model. To this end, we
have done computations for the distance z = 500 A and sufficiently long time
(Fig. 8). It can be seen on this figure that the solutions are confluent, however,
for data of the considered models, confluence is rather slow: curves stick after
about 100 ps.
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Fi1G. 2. Jeffreys model with rectangular impulse, D =0.35 & =0.01, r =92 fs.
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FiG. 3. Cattaneo’s model with rectangular impulse, D = 0.35, 7 = 92 fs.
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Comparing the Jeffreys, Cattaneo and dual-phase-lag models with the Fourier
model, it is worth to note the essential differences in the behaviour of the Fourier
model from the point of view of the way in which the heat impulse is introduced:
via the boundary conditions of Dirichlet type or via the initial conditions. Curves
at Figures 7 and 8 present the dimensionless temperature (normalized with re-
spect to the maximum of initial temperature) as a function of the distance z
from the source of heat impulse after time £ = 0.2ps, in both the Jeffreys and
Fourier models. In Fig. 7 the heat impulse in the form of a slim and smooth
peak centered at © = 10 was introduced via the initial condition for £ = 0, while
Figure 8 presents the same curves in the situation when the rectangular heat
impulse enters through the left boundary. It is not important that the shapes of
the impulses are different (rectangular impulse gives only the effect of oscillations
near the left border of the graph in Fig. 8). We can see that the Jeffreys model
behaves in both situations in a similar way: there is a traveling wave running
from the source of the impulse. However, the behaviour of the Fourier model is
completely different in each case. If the heat impulse is introduced through the
initial condition (Fig. T7), there is no trace of a traveling wave for this model.
With # growing, the temperature curve becomes more and more flat, its support
blows up, but its maximal point is always at = = 10. If the heat impulse enters
through the left boundary, the temperature curve in the Fourier model is com-
pletely different (see Fig. 8). It is important that its maximal point moves now
to the right when ¢ grows. When we observe the temperature curves as functions
of time ¢ this gives an effect very similar to the traveling wave of the Jeffreys
model. This is clearly visible in Fig. 4, where the heat waves for the Fourier
model are presented, and the positions of maxima differ only slightly from those
of the Jeffreys model.

5. Conclusions

1. In all the discussed models the phenomenon of heat waves is present, but
in the Fourier and dual-phase-lag models the waves travel at a speed different
than that in the experiments of [2].

2. In the dual-phase-lag model not only the speed of traveling waves is lower
than in experiments but, in addition this speed is decaying with time. This model
gives in fact the worst approximation to the experimental results.

3. For the Fourier model (with the impulse introduced via the boundary
condition), we have also observed that the speed of heat waves is lower than in
experiments but the difference is not very significant. Also in this model the
speed of heat waves is decaying with time (this effect is better visible in Fig. 9
where we have drawn the temperature profiles for different times).
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4. There is no significant difference between the numerical results obtained
by Cattaneo’s and Jeffreys models. The positions of extrema in the Cattaneo
and Jeffreys-type models are similar (visible instability in the Cattaneo model in
the case of a rectangular impulse indicates that, perhaps the Jeffreys-type model
fits better the reality).

5. The results of computations not presented here show that the positions of
extrema in Jeffreys-type models depend only very weakly on the coefficient x*.

6. Long time computations made for the distance from the heat impulse source
x = 500 A show that the confluence of the Jeffreys and Fourier models occurs
practically in about 100ps after the start of the initial impulse. This confirms
the theoretical results we described in the preceding sections and shows that
heat waves play an important role only in situations when very short impulses
(of order of femtoseconds) and very thin films (of order of micrometers) are
considered. The last statement is valid for experiments in room temperature and
is not applicable to very low temperatures (for example in liquid helium).

7. Although the Cattaneo and Jeffreys-type models give the position of max-
ima of temperature profiles very close to the experimental results, the overall
shape of numerical profiles is different than the experimental ones (rapid decay
with time observed in experiment is not present in the numerical results for larger
distances of 2000 A and 3000 A). This effect is maybe due to the nature of ex-
perimental data (we do not know to which temperature corresponds the bottom
axis in Fig. 1!).

8. The experimental material does not allow us to state in a decisive manner
which model fits better the reality. In particular, the knowledge of the relative
intensity of maxima can help in making distinction between the Fourier model,
where the intensity of numerically calculated maxima is rapidly decreasing with
z, and the Cattaneo and Jeffreys-type models, in which the calculated intensity
of maxima is decaying much slower with .
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