Arch. Mech., 52, pp. 179-197, Warszawa 2000

Nanomaterial clusters as macroscopically small size-effect
bodies. Part II
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Polish Academy of Sciences
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An 1soTroPIC ELASTIC SPHERICAL size-cffect solid body is proposed as a phenomeno-
logical model for the description of thermomechanical properties of macroscopically
small nanomaterial spherical clusters subjected to a uniform pressure. Nanomaterial
clusters being mechanically stable as well as those being mechanically stable of lower
order are investigated. It is shown, among others, that the isothermal bulk modulus
reveals the size effect due to the influence of surface tension of the cluster boundary
solid surface.

1. Introduction

INVESTIGATION OF COMPRESSIBILITY of crystalline solid bodies subjected to a uni-
form pressure is, independently of the grain size, of considerable importance for
determining their elastic properties. This is connected with the fact that under
conditions of uniform pressure, it is possible to determine experimentally the
elastic response of the body to the homothetic deformation

(1.1) F=), )>0,

without producing any plastic deformations due to the lattice defects [1]. As
a result, the body elastic response to the homothetic deformation, determined
by measuring the volume variation due to pressure changes, is more closely con-
nected with the elastic character of interatomic interactions in ideal crystals than
the elastic response to the other types of deformations. This statement is con-
firmed, for example, by fairly good experimental verification of a formula for the
macroscopic bulk modulus K of usual metals determined within the framework
of free-electron approximation [2]. This approximation of bulk modulus is formu-
lated for a macroscopic metal sample such that surface atoms have a negligible
contribution to bulk properties of the crystal, and as a result we obtain [2]:

Lre et
(1.2) K = (?‘e/ao) N/cm?,
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180 A. TRZESOVSKI

where r, is the effective radius of an electron gas and ag — Bohr’s radius of a
hydrogen atom.

We see that the macroscopic observation level scale of the free electron ap-
proximation enables a description of the macroscopic bulk modulus in terns of
atomic-sized quantities (cf. [3], Sec. 1). However, for a macroscopically snall
sample, the influence of surface atoms makes impossible an approximation of
bulk properties of a condensed material based on atomic-sized quantities onls. It
is observed e.g. as the dependence of elastic properties of nanostructures on the
observation level scale. It suggests to consider the nanostructures as macros:op-
ically small size-effect bodies [3]. A more detailed introduction to the topc is
provided in [3], where also the general homogeneous deformations are consideaed.
This part of the paper is a modification and extension, stimulated by propeties
of nanocrystalline clusters, of the paper [4] (Secs. 2 and 3). The phenomemno-
logical models introduced in Secs. 4, 5, idealizing the properties of metallic and
fullerene Cgp crystalline nanomaterials (see [3], Sec. 1), are discussed in Sec. 6.

2. Elastic compressibility of a spherical size-effect solid body

Let us consider a homogeneous and isotropic elastic size-effect spherical tody
By subjected to a uniform pressure ([3], Sec. 2). The body deformation has
then the form (1.1). Since this deformation preserves the spherical shape of the
spatial configuration By, we will refer to a spherical size-effect body identfied
with its reference spatial configuration By (cf. remarks at the very end of [3],
Sec. 4). The spherical body By can be treated, under these conditions, s a
thermodynamic system described by thermodynamic configurations of the brm
(A, 0) € R x I, thermodynamic functions ¥ (total free energy), E (total intenal
energy), S (total entropy), and the generalized force N depending on the ralius
Ry of By as a parameter. The thermodynamic functions are related by formilae
(2.3) and (2.10) of [3], and the generalized force has the form:

N(Bo; F,0) = N(Rg; A, 0)1,
(2.1)
N(Rg; A, 0) = —0\¥(Ry; A, 0).
The corresponding generalized Cauchy stress tensor is given by:
T(By; F,0) = —V(B)"'N(Bp: F,0)F" = t(Ry; )\, 0)1,
(2.2) t(Ro; A, 0) = V(Ro) ™' A28\ (Ro; A, 0),

V(B) = V(R) = (4/3)mR® = A3V(Ry), R = ARy,
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NANOMATERIAL CLUSTERS AS MACROSCOPICALLY SMALL... 181

where R denotes the radius of a deformed spatial configuration B of By. Since
the natural spatial configurations By(#), 6 € I, are here spherical of the radius
Ry (), the condition (2.26) of [3] takes, according to Eq. (2.2), the following form:

(2.3) VO € I IR(0) >0, t(Ro(0):1,6) =0,

defining the considered isotropic elastic spherical size-effect body as a solid body
([3], Sec. 2). Let us denote by tg(A) the isothermal generalized stress due to the
deformation A of a natural spatial configuration By(6):

(2.4) ta(A) = t(Ro(0); A,0), to(1) =0.

The behaviour of real solid bodies implies the following postulate of compressibil-
ity (cf. [5]): in the deformation process of Eq. (1.1) of a natural spatial configu-
ration By (@), increasing of its volume Vj(#) requires uniform tensile stresses, and
decreasing of this volume - uniform compressive stresses. This postulate means
that should be:

(2.5) VOel, YO<A#1, tp(A)(h—1)>0.

Let R = ARy be the radius of a deformed spatial configuration B of the body
By of the radius Ry, and let V = V()) and V = V; denote the volume of the
deformed and undeformed configurations, respectively. Let us denote

(2.6) ds = ﬂ, V(1) =W
vV

or, equivalently
(2.7) k=I(V/Vg) =3, e=InA.
Denoting

U(R(];K,G) = t(R‘D;eKﬂ}}HL
(2.8)

do

Kp(Ro; A) = e (Ro; £,0) |k=31n A,
we obtain: %
(2.9) Ko(Ro; A) = 30xt(Bo; A, 0).

The function A € RT — Kyp(Rp; ) defines the isothermal compressibility at a
constant temperature @ of the spatial configuration By of the isotropic elastic
spherical size-effect solid body. If By = By(#) is a natural spatial configuration of
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the body, Ry = Ry(8) — its radius, A is a small relative variation of the volime
Vo = Vu(0) of this configuration:

V(R) - Vo(0)

A= —W—‘: 4] < 1,
(2.10)

R = ARy(0), Vi(0) = V(Ro(9)),
and
(2.11) ag(k) = to(e"/?),

then we obtain, taking into account the postulate of compressibility (Eq. (25)),
that

op(k) = K(0)k + o(k),
(2.12)

k = A+o0(4),

where o(z)/x — 0 for  — 0, and it was denoted:
(2.13) K(0) = dxop(k)|x=0 = Ko(Ro(0),1) > 0.

Thus, the scalar K (6), 6 € I, can be identified with the isothermal bulk modilus
of the natural spatial configuration Bg(#). If the natural configuration is uniaiely
defined at each temperature # € I, then K (@) is a well-defined physical quaitity
and can be considered as the isothermal bulk modulus of the spherical size-efect
solid body. Thereby, the existence of such isothermal bulk modulus impogs a
condition on the total free energy function (see e.g. Sec. 3).

Let By be an arbitrary reference configuration of the spherical size-effect olid
body. The heat capacity function 0 € I — K (Rp; #) at the constant deformstion
A is defined by
(2.14) Ky = 0pFE = 00yS = —0(0*W]96%),.

The condition of thermal stability at the constant deformation A:

(2.15) Vo e I, K)(Rp;0) >0

and the condition of mechanical stability at the constant temperature 6:
(2.16) VA >0, Ky(Rop; A) > 0,

define the thermodynamical stability of an undeformed spatial configuration Iy of
the radius Ry of the spherical size-effect solid body. The state of matter is stible
(in the spatial configuration Bp) iff both the stability conditions are fulfillet [6,
7]. Otherwise, the mater becomes unstable and shows a tendency to breal up
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NANOMATERIAL CLUSTERS AS MACROSCOPICALLY SMALL... 183

into separate phases [6]. Let us assume the existence of a curve (8, A.;(0)), 6 € I,
in R? along which the so-called mechanical stability of lower order [8] occurs, that
is:

(2.17) Vo e I, Kg(Ro; A\er(0)) = 0.

According to this definition, the critical thermodynamic configurations separate
the stable and unstable isothermal states of matter [6]. The critical deformations
Acr(0), 6 € I, can be equivalently defined as stationary points of the isothermal
generalized Cauchy stress function (see Eq. (2.9)):

(2.18) (Ot/ON)g =0 for A= Aer(6).

If t € C? and there exists a temperature 6, € I such that (see Egs. (2.7) — (2.9)
and (2.18)):
(2.19) (0%t/0X%)g =0 for X = Aer(p),

then the conditions (2.18) (with 6 = 6,,) and (2.19) define the so-called critical
point (O, t,(Ry) of a phase transition, where

(2.20) tp(Ro) =t (Ro; Acr (), 0p) -

The existence of critical points has been experimentally confirmed [8]. Further
on (Secs. 3 and 5), we consider critical thermodynamic configurations within
the range I of temperature, but such that the condition (2.19) of existence of a
critical point is not fulfilled.

Let us consider the generalized force N of Eq. (2.1) defining an elastic re-
sponse of the spherical size-effect solid body to homogeneous deformations of the
form (1.1) of a distinguished spatial configuration By (identified with the body
itself). Assuming that

s(X,7) = ps(t)n(X), n(X) -n(X)=1 for X € aBy,
(2.21)
b(X,7) =0 for X € IntBy; X = Ron(X) for X € 9By,

where n is the unit outward normal to the sphere dBy of the radius Ry, and
taking into account Eqgs. (2.5) and (3.1) - (3.3) of [3], we obtain the following
equation of the spherical size-effect body dynamics [4]:

JoA = N(Rg; A, 0) + 3Vops,
(2.22) N(Rg; A, 0) = —0\W(Ro: A, 0), A(0) =1,

Jo = (3/5)mR2, Vo =V(Ro) = (4/3)nRS,
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where A = d?\/dr?, Jy1 is the body By inertia tensor, and p, = py(7) is a uni-
form external pressure (tension or compression) acting on the body boundary at
the instant 7 > o. If the radius Ry is not dependent on the temperature (i.e.
we exclude natural spatial configurations By(#)), then nonisothermal reversible
processes of time-dependent thermodynamic configurations of the body are de-
scribed by the Eq. (2.22) and by the following temperature evolution equation
[4] (cf. Eq. (3.12) of [3]):

K\(Ro;0)0 = —005N(Ro; X, 0)A + Q(Ro; 7),
(2.23) _
Q(Ro;7) = 0(7)S(Ro; M7),0()), S=—-08,2,

where @ is the heat production, and S denotes the time derivative of the total
entropy S along a curve of thermodynamic configurations.

If we deal with irreversible processes, then the generalized force N(Rp: A, 0)
of Eq. (2.22) should be replaced e.g. by (cf. Eqgs. (2.9) - (2.12) of [3], and (2.1)
-(2.3)):

Np(Ro; X, A,0) = —VoAtp(Ro; A, A,0) = N(Rg; A, 0) _
(2.24) ‘ _ +H;J(R();)n./\,9)
Hp(Ro; M\ A, 0) = =Vor2hp(Ro; A, A, 6),

where

Tp(Bo; F,0,L) = tp(Ro; M, A,0)1, L= (AA)1,
(2.25) _ _
l':.’)(JRG; A )‘18) == f'(RU; /\'39) =ir "LD(R(); /\a ’\90):'

is the generalized Cauchy stress tensor, and
(2.26) Vo el, hp(Ro; A, 0,6) =0, hp(Ro: A, A, 0)A > 0.

It should be stressed that the description of a spherical size-effect body intro-
duced in this section is not a particular case of the model introduced in [3]. It is
because we consider here a different thermodynamic system: this one for which
the only admissible thermodynamic configurations are these corresponding to ho-
mothetic deformations, while in [3] the admissible thermodynamic configurations
correspond to general homogeneous deformations. Nevertheless, the notions and
the approach presented in [3] are applicable to this simpler case.

3. Liquid-like response of a spherical size-effect solid body

The definition of liquid-like response introduced in [3], Sec. 4 (Egs. (4.3)
and (4.4)) takes, in the case of a spherical size-effect body By of the radius Ry
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NANOMATERIAL CLUSTERS AS MACROSCOPICALLY SMALL... 185

considered in Sec. 2, the following form:
(3.1) U(Ro; A, 0) = Py(RpA), A>0, 0el
where

D4(R) = a(0)V(R) + b(0)F(R) + c(0)M(R) + d(0),
(3.2)
V(R) = (4/3)7R?, F(R) = 4nR?, M(R) = 4nR.

The generalized Cauchy stress function #(Rg; A,0) of Eq. (2.2) takes then the
form:

(3.3) t(Ro; A, 0) = Tp(RoA),
where
(3.4) Ty(R) = 3 [a(0) + 2b(@)R™" + c(A)R™?].

The isothermal compressibility Kjy(Rg;A) defined by Eq. (2.8) can be written,
according to Eqgs. (2.9), (3.3), and (3.4), in the form:

(3.5) Ko(Ro; A) = Kg(RoA),
where
(3.6) Ky(R) = %% =-2[b(@)R™" +c(0)R7?].

The heat capacity K),(Rp;0) (Eq. (2.14)) takes the form:

d?

K)(Rp;0) = —9355030.&(9),

Cr(0) = P4(R).

It follows from Eqgs. (2.3), (3.3), and (3.4) that the radius Ry(@) of a natural
spatial configuration By(f) of the spherical size-effect body is defined by the
following equation:

(3.8) a(0)R? + 2b(0)R + ¢(0) =0, R>0
that has a solution R = Ry(0) iff
(3.9) voelI,  B(8) =b0)?—a)c®) >0

If the condition (3.9) is fulfilled, then the generalized Cauchy stress function £5(A)
of Eq. (2.4) exists and, according to Egs. (3.3) and (3.4), takes the form:

(3.10) to(A) = T(Ro(8))) = 3 [a(B) + 2b(8)ho(O)A™ + (6 ) G
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where ho(6) and ko(@) denote the mean and Gaussian curvatures of the boundary
surface 9By(0) of the natural spatial configuration By(6):

(3.11) ho(0) = Ro(0)™", ko(8) = Ro(0) 2

...

The postulate of compressibility (2.5), applied to the generalized Cauchy stress
function t5(\) defined by Egs. (3.9) - (3.11), leads to the following condition (cf.
(3], Eq. (4.29)):

(3.12) Voel, a(0)>0, () <0.

Consequently, the radius Ro(f) is uniquely defined at each temperature ¢ € I
and given by

Ro(0) = ﬁ ~b(6) + B(0)?] i a(6) >0, b(6) <0,

(3.13) c(6) <0,
Ro(6) = -% if a(8) >0, b(#) <0, c(8) =0,

or
Ro(0) = ﬁ [—b(9)+3(9)‘/2] it a(8) >0, b(9) >0,

(3.14) c(6) <0,
Ro(0) = —% if a(8) =0, b(8) >0, c(6) < 0.

It follows from Egs. (2.16), (2.17), (3.5), (3.6) and (3.12) — (3.14) that the
spherical size-effect solid body is, at each temperature € I and for each reference
configuration By of the radius Ry, mechanically stable iff

(3.15) voel, a(f)>0, b <0, bO)?+c(0)#0
or mechanically stable of lower order iff
(3.16) Veel, a(0)>0, b)) >0, c(@) <O.

The radius R(6) of the mechanically stable of lower order spatial configuration
B (0) is given by:

(3.17) R) = ——2. Biel.
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It follows from Eqs. (3.4), (3.6) and (3.14) that, for the critical spatial configura-
tion B (6) of the radius R(#), the condition (2.19) of existence of a critical point
of a phase transition, is not fulfilled within the range I of temperature. Since
the unstressed natural spatial configurations By(0), # € I, are preferred reference
configurations of the spherical size-effect solid body, the eritical deformations
Acr(0) of Eq. (2.17) will be referred to these reference configurations:

RO e .
(3.18) Yl T R DR
' o a(0)b(0)
e(f) = — =) >0,
or RO | 3
(3.19) Xee(0) = Ra(0) 2 it @(g)=0.

The corresponding critical generalized Cauchy stress t..(#) is independent of the
choice of a reference configuration and given by (see Egs. (3.4), (3.10), and (3.17)):

B0)
c(@)

where the conditions (3.9) and (3.16) were taken into account. It follows from
Eq. (3.20) that t..(@) is the absolute maximum of the generalized stress function
Tp(R) defined by Eqs. (3.4) and (3.16). Thus, t..(6) defines a finite upper elastic
limat of the mechanically stable of lower order elastic spherical size-effect solid
body with the liquid-like response. The isothermal bulk modulus K(f) of this
size-effect body (Eq. (2.13)) has, according to Eqs. (3.5), (3.6) and (3.11), the
following representation:

(3.20) ter(0) = TG{R(B)) == >0,

(3.21) K(8) = Ky(Ro(0)) = —2[b(8)ho(8) + c(0)ko(0)] > 0,

where Rg(f) of Eq. (3.11) is given by Eq. (3.14). Note that if the considered
spherical size-effect body is mechanically stable, then the isothermal bulk mod-
ulus is given also by Eq. (3.21) but with the radius of Ry(6) Eq. (3.11) defined
by Eq. (3.13).

It follows from Egs. (3.2), (3.4), and (3.6) that the influence of the body
boundary surface causes the dependence on the body size of the isothermal gen-
eralized Cauchy stress Tp(R) as well as the isothermal compressibility Ky(R).
Thereby, it is a phenomenological model of the influence of surface atoms on
thermomechanical properties of spherical nanomaterial clusters (see [3], Secs. 1
and 4). If the elastic spherical size-effect solid body is mechanically stable, then
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its asymptotic uniform expansion defines the finite isothermal generalized Caichy
stress ¢(6):
(3.22) t(0) = lim Tp(R) = 3a(8) >0

R—oo

being a finite asymptotic upper elastic limit of this size-effect body (cf. [3],
Eqgs. (4.28) and (4.29)). Denoting by pg(R) = —T(R) the uniform pressure cym-
pensating the generalized Cauchy stress Ty(R), we obtain the following propeities
of the asymptotic uniform compression:

(3.23) lim pg(R) =00, lim Ky(R) = oc.

It means that, within the range I of temperature, the elastic spherical size-efect
solid body of the very small size can carry a very high uniform pressure (compres-
sion). It agrees with the observation that macroscopically small nanocrystaline
clusters can carry very high compressions ([3], Sec. 1). Moreover, it folbws
from Eqs. (3.20), (3.22), and (3.23) that the considered size-effect solid body has
unsymmetrical elastic properties under the conditions of uniform tension ind
compression. It agrees with elastic properties of crystalline materials.

4. Mechanically stable mesoscale clusters

Let us consider the mechanically stable, isotropic and elastic spherical sze-
effect solid body with the liquid-like response under the conditions of unifirm
pressure. It follows from Eqs. (2.4), (2.9), (2.16), (3.10) and (3.15) that the
isothermal generalized stress function #y monotonically increases and has, ac-
cording to Eqs. (3.22) and (3.23), the following asymptotic properties:

li = — t =)
J\l_l’}l}} tg(A) 0Q, (1) ;

(4.1)
(0) = lim £p(A) = 3a(0) > 0.

Moreover, we can identify the constant a(#) > 0 of the formula (3.2) with the Tee
energy density (@) needed to change the volume unit and conditioned by tulk
interatomic interactions. Thus, taking into account the identification of constants
b(#) and ¢(0) ([3], Sec. 4, remarks following Eqs. (4.10) and (4.11)), we obain
for the considered mechanically stable size-effect solid body the conditions see
Eq. (3.15)):

(4.2) a(f) =e(8) >0, b)) =-—v(0) <0, c(0)=-w(d) <0,
where () and w(f)/2m are the free energy densities necessary to change the

boundary surface field unit and to change the diameter M (B)/2m = 2R uni of
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the spherical body, respectively. The isothermal generalized stress function ty of
Eq. (3.10) can be written then in the following form:

(4.3) to(A) = Tp(Ro(6)A),
where

Ty(R) = t(0) — 3 [27(0)R™" + w(0R™?],
(4.4)
t(0) = 3¢(0) > 0,

and the isothermal bulk modulus K(6) of Eq. (3.21) takes the form:
(4.5) K (0) = 2[v(0)ho(0) + w(@)ko(6)] > 0,

where hg(f) and k¢(#) denote the mean and Gaussian curvatures (given by
Eq. (3.11)) of the boundary surface of the natural spatial configuration By(f)
of radius Ry(#). Thus, in accordance with the observed properties of nanocrys-
taline macroscopically small clusters ([3], Sec. 1), the bulk modulus increases if
the body By(#) size decreases. Note that, according to Eqgs. (3.13) and (4.1), the
radius Rg(6#) decreases if the upper elastic limit #y increases.

Let us observe that the term w(f)R™? appearing in Eq. (4.4) can be inter-
preted as the one corresponding to the long-range interactions between the sur-
face atoms and bulk atoms located in a boundary layer (see 3], remarks following
Eq. (4.11)). Thereby, in the case

(4.6) e(@) > 0, ¥(8) > 0, w(@) =0
these interactions are neglected. Since in this case Eq. (4.4) takes the form
(4.7) Ty(R) = 3 [e(6) - 24(0)R™Y],

the isothermal generalized Cauchy stress depends on interatomic bulk interactions
(e(@) > 0) as well as on interactions of the surface atoms located on the body
boundary (y(8) > 0). These interatomic interactions influence the radius Rg(f)
of a natural spatial configuration in the following manner (cf. Eqgs. (3.13) and

(4.7)): %
2y
(4.8) Ry(0) = 0
Consequently, according to Eqgs. (4.5), (4.6), and (4.8), the isothermal bulk mod-
ulus reduces to:

(4.9) K(6) = 2v(0)Ro(0) " = &(6),
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and it follows from Eqs. (4.3), (4.7), and (4.9) that the isothermal generaized
Cauchy stress tg(A) (Eq. (3.10)), referred to the natural configuration of the
radius Ry(@) of Eq. (4.8), can be written in the form:

(4.10) to(A) =1(0)(1 - A71), A3 .0

where the asymptotic upper elastic limit ¢() is related to the bulk modulus £(9)
according to the following formula:

(4.11) 1(0) = 3K (0).

The graph of this function ¢y is an equilateral hyperbola. Note that Eq. 4.9)
means that the isothermal bulk modulus depends on interatomic bulk interactions
only. It is a point of similarity between this bulk modulus and the macroswpic
bulk modulus (see Sec. 1). On the other hand, the bulk modulus K (8) of Eq. 4.9)
is referred, contrary to the macroscopic bulk modulus, to the preferred spatial
configuration of the body that is conditioned by the influence of surface atoms
(Eq. (4.8)). It suggests that the spherical size-effect solid body defined by the
conditions (4.2) and (4.6) can be considered as the one whose size lies in the
upper range of the mesoscale observation levels (see [3], Sec. 1).
If
(4.12) w(f) > 0

then the radius Ry(#), 6 € I, of a natural spatial configuration (Eqs. (3.13)and
(4.2)) becomes greater than that of the case (4.6) (Eq. (4.8)). The isothemal
bulk modulus K (6) reveals explicitly the size effect in a manner observec for
macroscopically small nanomaterial clusters (see remarks following Eq. (4.5))and
the dependence of this modulus on interatomic bulk interactions is still presewed.
Thus, the size of such natural configuration should lie also in the upper range of
the mesoscale observation levels.

5. Fullerene-like response

Let us consider the mechanically stable of lower order, isotropic and elistic
spherical size-effect solid body with the liquid-like response defined by Eqgs. (i.1),
(3.2) and by the conditions (3.16) written in the form (see [3], Egs. (4.11), (4.19)):

(5.1) a(@) =€(@) >0, bO@)=7(0) >0, c(0)=-w(d) <D0.

The radius Ry(#) of a natural configuration is defined by Eq. (3.14), the ralius
R(0) of a critical spatial configuration can be written in the form (see Eq. (3.7)):
w(0)

(5.2) R(O) = 255,
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and the isothermal generalized Cauchy stress Ty(R) of Eq. (3.4) can be rewritten

Ty(R) = t(0) + 3[2y(0)R™" — w(8)R™7,

The isothermal compressibility of Eq. (3.6) takes then the form:

Ky(R) = 2[-v(6)R™" + w(0)R72),
(5.4)
Ka(R(9)) = 0.

If A\er(0) is the critical deformation of the spatial natural configuration By(6)
defined by Eqs. (3.18) and (3.19), and d.,(#) denotes the critical relative variation
of the radius Ry(@) of this configuration

R(0) — Ro(0)

(5.5) ber(0) = Ro(0)

= Aer(0) =1 >0,

then the isothermal bulk modulus is given by:

: f
(56) K(6) = Ko(Ro(0)) = 22 ()3 (0) 1 > 0.

R(0)
The isothermal generalized Cauchy stress function ty, describing the elastic re-
sponse of the spherical size-effect solid body with respect to its natural configu-
ration and defined by Egs. (3.10), and (5.1) — (5.3), takes the form:

to(A) = Tp(Ro(0)A) = £(0) + so(18)u=2/Ace(0)5

~—
o
=1
—

S(p) = Scr('g)(zuul = }'-’3_2)1

where it was denoted: ) ( 2
N _ y(0) _ 3v(0
(5.8) ser(0) = RO) - w(@)’

and takes its maximum value t..(0) for A = A (), that is in the critical spatial
configuration B..(@) of the radius R(6):

(5.9) tee(0) = Ty(R(0)) = t(0) + scr(6).

It follows from Egs. (5.1) - (5.9) that the case £(f) > 0 means the existence
of interatomic bulk interactions that influence the critical point (A (8),tcr(6)).
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However, the occurrence of size effect (Eqgs. (5.6) and (5.8)) is independent ol the
existence of these interactions. This is why we restrict ourselves to the case

(5.10) e(f) =0,
at which

Aa(0) =2, e &(0)=1, R(B)=2R(9),
(5.11)
{8y =0, ie 1(0)=15:(6).

The isothermal bulk modulus K (f) and the isothermal critical generalized Caichy
stress t..(#) reveal then the size effect of the form:

(5.12) K(0)Ro(0) = 2~(8),
and
(5.13) ter(0)R(0) = 37(0).

Note that the relation (5.12) is equivalent to the following representation of the
bulk modulus: .
4v(6)?

(5.14) K(0) = w(0)

and, according to Egs. (5.11) and (5.13), we obtain:

(5.15) tel6) = JK(6).

It follows from Eqs. (5.14) and (5.15) that the size effect appearing in
Egs. (5.12) and (5.13) depends only on interactions between surface atyms
(v(@) > 0) and on their long-range interactions with bulk atoms located n a
boundary layer (w(f) > 0) (see [3], Sec. 4). Thereby, this size effect has a plysi-
cal meaning that corresponds to the properties of the very nanostructures (see |3,
Sec. 1). Consequently, we can expect that the case (5.1), (5.10) concerns nino-
material spherical clusters smaller than mesoscale clusters discussed in Sec. L.

The isothermal generalized stress function ty (Eq. (5.7)) takes in the :ase
(5.10) the following form:

(5.16) to(A) = (A1 =272, A>0.

The function ty of Eq. (5.16) monotonically increases (taking positive as vell
as negative values) in the interval 0 < A < 2 and for A = A (f) = 2 (beirg a
critical deformation for which the isothermal compressibility vanishes) reaches
the upper elastic limit ¢..(6) (see Sec. 3). For A > 2 the stress function is postive
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and decreases to zero if the uniform extension A tends to infinity. It means that
the elastic resistance to uniform tension decreases for A > A (and vanishes at
infinity). We will call this process the (nonlinear) elastic flow effect. Note that
the similar relation between a uniform pressure (compression or tension) and
the deformation of Eq. (1.1) was found for usual crystals by means of numerical
computations based on the analysis of bound energy changes in cubic crystal
lattices (direct, body-centered, and face-centered) [9]. In these computations the
central binary interactions with Morse-type potential (or with an arbitrary type
potential but for the case of nearest neighbour interactions only) and the natural
reference configuration temperature 0 K, were assumed. Particularly, the elastic
flow effect has been computed. This effect is, in the framework of the considered
liguid-like response of the spherical elastic size-effect solid body, a consequence
of the mechanical stability of lower order.

The liquid-like response manifests itself in the dependence of the total free
energy as well as the generalized Cauchy stress on the actual spatial configura-
tions only (Egs. (3.2) and (5.9)). Therefore, the considered size-effect solid body
reacts in a manner similar to a fluid body regarded as a material body having
no preferred configuration (see (3], Secs. 2 and 4). On the other hand, the condi-
tion (5.1), defining the mechanical stability of lower order, means the existence
of preferred configurations (the natural spatial configurations) and the existence
of critical spatial configurations (being configurations of the mechanical stabil-
ity of lower order). Since the critical spatial configurations are not associated
with the existence of a critical point of a phase transition (see remarks following
Eq. (3.17)) and reveal the elastic flow effect, they can be considered to exhibit
the existence of solid state with the liquid-like elastic behaviour within a finite
range of temperature, It can be interpreted as an elastical analogue of properties
of small spherical fullerene Cgy clusters that exhibit a coexistence of solid and
liquidl states within a finite range of temperature and for some particular sizes of
these clusters only (see [3], Sec. 1). If so, the uniquely defined diameter 2R(6)
of a critical spatial configuration (Eq. (5.2)) can be considered as a counterpart,
at the temperature # € I. of the particular size of a small fullerene Cgo cluster.
The mechanically stable of lower order, isotropic and elastic spherical size-effect
solid body with the liquid-like response will be called, coming into line with the
above analogy, a spherical size-effect body with the fullerene-like response.

Note that if the fullerene-like response is interpreted as an elastical analogue
of the coexistence of solid and liquid states within a finite range of temperature,
then it seems reasonable to admit that a viscosity effect (cf. Eqs. (2.24) - (2.26))
occurs in the eritical spatial configurations. Unfortunately, viscosity properties
of small nanomaterial clusters are not satisfactorily recognized.
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6. Conclusions and remarks

The analysis of a homogeneous isotropic and elastic spherical size-effect solid
body (Sec. 2) with the liquid-like response (Secs. 3-5) subjected, within a certain
range of temperature, to a uniform pressure, shows that if the body is mechan-
ically stable, then it can be considered to be a model of nanocrystalline (e.g.
metallic) clusters with a size which lies in the upper range of the mesoscale
observation levels. It has been shown that a part of the total surface energy, rep-
resenting the long-range interactions between the surface atoms and bulk atoms
located in a boundary layer, is then responsible for the explicit occurrence of the
size effect (Sec. 4). If the body is mechanically stable of lower order, then it re-
veals the fullerene-like response that can be interpreted as an elastic analogue of
the properties of small Cgy clusters of a size corresponding to the very nanome-
ter observation level scale (Sec. 5). In both cases a finite upper elastic limit
appears. If the spherical size-effect body is mechanically stable, then the upper
elastic limit is an asymptotic elastic property. If the spherical size-effect body
is mechanically stable of lower order, then the upper elastic limit corresponds to
a critical spatial configuration of the body and reveals a size effect (Eq. (5.13)).
Moreover, in both cases, the body can carry a high pressure (compression) with
very small elastic deformations (Sec. 3). This asymmetry of elastic properties
under a uniform tension and compression is a characteristic feature of crystalline
solid clusters, of usual as well as nanostructured materials. In fact, the domain of
physically adrmissible elastic homogeneous deformations of a nanomaterial cluster
is bounded by a hypersurface defined by the elastic limit. The hypersurface is
dependent on the body uniform temperature (cf. [10] and [11]) and can depend
on the body itself (c¢f. Egs. (2.17) and (2.18)).

The isothermal bulk modulus K(#) of the spherical size-effect solid body
with the liquid-like response increases if the radius Ry(@0) of its unstressed spatial
configuration By(@) decreases (Eq. (3.21)). For the body being mechanically
stable of lower order, the bulk modulus has the representation given by Eq. (5.6)
from which it follows that if the critical deformation A (6) of By(@) (Eqs. (3.18)
and (3.19)) is constant, then this bulk modulus is inversely proportional to the
radius R(@) of the critical spatial configuration B..(6). Particularly, if the bulk
interatomic interactions can be neglected (cf. [3], Secs. 1 and 4), then Ay (0) = 2
for each 6 € I and this size effect reduces to (Sec. 5):

(6.1) K(0)Ro(0) = 2v(9)
where
(6.2) R(0) = 2Ry(0) = w(6)/v(0).

It follows from Egs. (6.1) and (6.2) that the isothermal bulk modulus depends
only on the interactions of the boundary surface atoms (y(f) > 0) and on the
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long-range interactions between these atoms and the bulk atoms located in a
boundary layer (w(@) > 0 (Sec. 5). Note that if the body is mechanically stable
and the long-range interactions between the surface atoms and bulk atoms of a
boundary layer are neglected (w(@) = 0), then the formula (6.1) is also valid but
in this case the radius Ry(f) is given by

(6.3) Ry(0) = 2+(0)/£(6),

where (@) > 0 is the volumetric free energy density conditioned by the inter-
atomic bulk interactions (Sec. 4). Let us denote by «(f) the coefficient of linear
thermal expansion of an unstressed configuration By(@) of the spherical size-effect
solid body, and by 3(#) - the temperature bulk compressibility coefficient of this
configuration:

1 dRy(0) 1 dVy(0)

o) = 7@ a8~ 30 db
(6.4)
_ 1 dK(®) . .
BO) = k@ —ag > 0O = (4/3)mRo(6)’.

Differentiating the relation (6.1) with respect to the parameter #, and taking into
account that if the temperature increases from 0 K to f € I , then the surface
tension (@) monotonically decreases [1] and a(@) > 0 because almost all material
bodies expand under heating, we obtain that the following conditions would be
fulfilled:

alf) > 0, dy(0)/do <0, B@) <0,

(6.5)
1B(O)] > a(d), 6€l,
and
de(0)/do < 0 if w(f) =0,
(6.6)

dw(0)/d0 < 0 if &(0) = 0.

It is known that the macroscopic bulk moduli of usual crystals decrease if
the temperature increases [1]. We see that the mesoscale as well as the nanoscale
bulk modulus has the same property. It agrees with the observation that the
elevated temperatures have the effect of degrading the mechanical properties of
nanomaterials [11]. The case of bulk modulus suggests that the phenomena of
thermal expansion and decreasing of free energy densities (superficial as well as
volumetric) have a contribution to this effect.

http://rcin.org.pl



196 A. TRZESOWSKI

Note that the problem when a cluster can be treated as the macroscopic
one, has as yet no accurate general solution. For example, a cluster of an inert
gas can be considered as a macroscopic particle if it consists of more than 10*
atoms under the condition that the cluster temperature is not too low [12]|. This
example, the properties of small fullerene clusters ([3], Sec. 1), and the effect of
degrading mechanical properties of nanomaterials at elevated temperatures, lead
to a conclusion that the size effect in macroscopically small nanomaterial clusters
should be related to thermomechanical properties of these clusters rather than
to their purely mechanical properties only.

The classical thermodynamic is applied in this paper to macroscopically small
systems that can contain even less than 200 atoms [13]. Consequently, such sys-
tems may not be satisfactorily described, in a manner consistent with the classical
thermodynamics, by means of the classical statistical physics. However, for ex-
ample, a finite system of mutunally interacting identical particles, the dynamical
behaviour of which is random, can admit the thermodynamical interpretation
of the Markovian-type evolution of the system [14]. Namely, the existence of
thermodynamically permitted Markov processes can be shown that are consis-
tent with the assumption of thermal character of the interaction of the system
with the environment, with the first and second laws of thermodynamics, with
the postulate of existence of the equilibrium state, and with the relaxation pos-
tulate (stating that the process relax, independently of the choice of the initial
condition, towards the state of thermodynamical equilibrium). Moreover, if the
environment of the system is a thermostat, then we can generalize, replacing
the uniform temperature of the system with the (uniform) temperature of the
thermostat, the equilibrium definition of the free energy to the nonequilibrium
situation [14]. This example shows that the classical thermodynamics can be also
consistent with the randomness of microstate dynamics of macroscopically small
systems containing a small number of atoms.
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