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ONE OF UNUSUAL FEATURES of macroscopically small three-dimensional nanocrys-
talline clusters is the dependence of their properties on the grain size as well as
on the cluster size. Consequently, such clusters are ensembles of atoms or particles
where the size effect becomes apparent. A phenomenological model of the descrip-
tion of thermomechanical properties of macroscopically small nanomaterial clusters
is proposed. The model is based on the concept of size-effect bodies, the thermo-
mechanical properties, dynamics and thermodynamics of which are referred to one
whole body, not an infinite system of subbodies. It is pointed out that the proposed
model of the size effect leads to an analogy with the theory of capillarity. A class of
size-effect bodies generalizing this analogy is introduced and discussed. Particularly,
it is stated that the heat capacity reveals not only the size effect but, contrary to the
elastic properties, should depend also on the topological invariant of the compact and
connected cluster.

1. Introduction

THE MACROSCOPIC PROPERTIES and effects of usual materials (e.g. moduli of
elasticity and their temperature-sensitivity) are essentially the same on the mi-
crometer (1 pm = 10* A = 1073 mm) and on the millimeter observation level
scale. So, from the macroscopic point of view, both observation level scales are
physically equivalent [1]. It can be continued for various mesoscale observation
levels, say down to the order 100 nm (1 nm = 10 A =107°% mm); the atomic-size
observation level scale is taken equal to 1A - diameter of the hydrogen atom in
the ground state. Grains of usual polycrystalline materials have diameters of the
order of 1 pm to 1 mm, and thus they reach the macroscopic observation level
scale. It is known that in the case of usual well-annealed pure metals, the mean
distance between dislocations is of the order of 1 um [2]. Thus, the crystal with
many dislocations can be considered, on a mesoscale observation level that lies
in the range of 10 — 100 nm, as a part of an ideal crystal [2]. If the macroscopic
properties of a crystalline solid body with many dislocations are considered, then
a continuous limit approximation can be defined by means of the condition that,
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160 A. TRZESOWSKI

at each point of the body. a characteristic mesoscale length, say of the order
of 10 nm, can be approximately replaced with the local infinitesimal length |3,
4]. Consequently, according to such phenomenological approximation, the crystal
with many dislocations can be identified with a locally homogeneous crystalline
solid body. Thereby, the macroscopic physical equivalence of various observation
level scales enables to introduce the local approximation of macroscopic mate-
rial properties of crystalline bodies (homogeneous as well as with defects) that
is independent of the body shape and size. For example, in this approximation,
rotational symmetries of a crystalline structure are preserved (at least locally)
but its translational symmetries are lost [3].

However, there exist nanocrystalline solids, both metallic and ceramic, that
are built up by the same atoms as their commonly occurring counterparts, but
with the grain size of the order of 1 — 10 nm [5, 6]. For example, usual pure
metals are used to produce almost spherical clusters of nanostructured metals,
and size of these clusters varies from 1 nm to 100 nm according to the produc-
tion process and the initial metal that has been used [5]. It is observed that if
the nanostructure size becomes smaller than the critical length associated with
a certain physical property, then this property changes [5, 6]. For example, it is
known that nanocrystalline grains as well as clusters do not contain dislocations
or they are not numerous and unstable [5]. Consequently, nanocrystalline metals
reveal higher strength than their usual counterparts, and the strength increases
if the size of the nanocrystalline ensemble of atoms decreases [5, 6]. Most of the
unique features of three-dimensional nanostructures arise, owing to their macro-
scopically small size, from the very high ratio of the number of surface atoms to
the total number of atoms in the cluster [7]. The fullerene Cgp particles with all
carbon atoms located in vertices of a truncated icosahedron [8, 9] provides an
extreme example of such atomic structures. These particles are approximately
spherical with the diameter slightly greater than 1 nm [9]. Cgo particles crystal-
lize, at room temperature, in solid clusters with close-packed face-centered-cubic
structure [8]. The molecular dynamics simulations indicate that for some par-
ticular sizes of small Cgy clusters these would exhibit a coexistence of solid and
liquid states within a finite range of temperature. It concerns also small clusters
that consist of nanometer-sized small particles built up by some other chemical
elements [8]. This makes small clusters different from the bulk systems whose
solid and liquid phases coexist only at a single point of temperature, the melting
point [8]. Note that generally, in the nanometer regime, we have to deal with
chemical bonds and no longer with bulk properties. Forces are extremely small -
down to 1072 N, yet strains and pressures can be very high, e.g. pressures up to
10'2 Pa [1]. For example, computations have shown that Cgg crystals would re-
veal elasticity in compression, and compressed to 70 percent of the initial volume
would be harder than diamond [9).
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It is observed that the production process of nanocrystalline materials can
lead to clusters of a fractal structure built up by particles of the diameter 35A
[10]. In this case, the total mass m of a three-dimensional cluster of the size Lg
depends on this size according to the following formula [10]:

(1.1) m = my(Lo/lp)°,

where D < 3 is the mass fractal dimension, m,, is the mass of particles constitut-
ing the cluster, and [, is the size of these particles. The mass density pg of the
cluster depends also on Lg according to a power law of the fractal type:

(1.2) po = pp(Lo/lp)P 3,

where p, is the mass density of particles constituting the cluster. In the case
of close-packed particles D = 3. The fractal materials differ from the general
case of nanomaterials because fractals are objects that exhibit similar structures
over the range of length-scales for which one can define a noninteger dimension.
Consequently, if [ is the size of a part of the three-dimensional fractal cluster,
then it follows from the self-similarity that the elastic modulus E(I) of this part
should reveal the following property [10]:

(1.3) E(A) = A~4E(l),

if I and Al belong to the self-similarity interval. The exponent d depends on the
fractal structure of the cluster as well as on the forces acting between elements
of this structure.

If macroscopically small clusters are considered, then their deformation and
temperature can be treated as these approximated to uniform state variables of
the cluster. It means, from the microscopic point of view, that the collective
modes are considered [11]. Thus, owing to this phenomenological approximation,
we are in the framework of classical thermodynamics which refers to one whole
system, not an infinite family of subsystems [12]. Consequently, the dynamics of
a macroscopically small cluster should have also a global character referable to
one whole body only. It suggests us to formulate a description of macroscopically
small nanomaterial clusters in the framework of the phenomenological theory of
size effect that has been originally formulated as a theory which is not associated
with an observation level scale [13, 14, 15]. The paper extends the contents of this
theory, especially from the point of view of nanostructures revealing the existence
of relations between the shape and size of a cluster and the observed properties
of the condensed material of this cluster.

2. Size-effect body

Continuum mechanics is a phenomenological theory dealing with the macro-
scopic properties of material deformable bodies and based on an assumption that
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these properties have essentially a local character independent of the change of
the observation level scale (see Sec. 1). It concerns the notion of material (for-
malized in the framework of the theory of simple materials [16]) as well as the
dynamics (the reduction of dynamics to local balance laws [16]). The same ap-
proach is applied to the description of thermodynamic processes [16] and to the
description of the material structure evolution (e.g. the plasticity theory [17]).
Unfortunately, in the case of nanomaterials the concept of localization can not
be applied to the description of thermomechanical properties of these materials
because of their sensibility to the size of nanostructures (Sec. 1). Moreover, the
concept of local equilibrium states (dynamical or thermodynamical) of a body
neglects the size and shape effects occurring in the case of macroscopically small
bodies (ef. Sec. 1). However, the macroscopically small size of nanostructures
offers a possibility for treating nanomaterial clusters, in the sense of phenomeno-
logical approximation used here (Sec. 1), as macroscopically small “affinely rigid
bodies” with dynamics being a generalization of the rigid body dynamics which
is not associated with an observation level scale [11].

If the equations of dynamics of these homogeneously deformed bodies are
considered as balance laws [11, 15], then they can be extended to the balance
laws of classical thermodynamics [13] dealing with the so-called homogeneous
thermodynamic processes [12, 16] considered as being dependent on the body size
and shape [13].

Therefore, we will deal with a homogeneous nanomaterial body of immovable
center of mass, homogeneously deformed and endowed with an uniform absolute
temperature. Spatial configurations of such a body can be identified with the
subsets B of the three-dimensional Euclidean vector space E* (the physical space
in this case) that have the form B = [(F)(By), where By C E? is a distinguished
spatial configuration and [(F) denotes the following linear mapping in E*:

I(F)(X) = FX, FeGL*(E®), XekE?
(2.1)

GLH(E®) = {F € L(E®) : detF >0}, L(E*)=E*®E"

Il

This distinguished spatial configuration of the body is called its reference
configuration and can be identified with the body itself. The spatial configura-
tions B are called deformed configurations of By. Further on, we will consider
three-dimensional compact and connected bodies By. The uniform state vari-
ables of the body By (Sec. 1) are defined by the finite number of parameters
i = (F,0) € GLT(E3) x I, where I C R* is a certain interval of absolute tem-
perature, and constitute a thermodynamic configuration of the body. The mass
m of the body By is the same for all its deformed spatial configurations B, and
the volumetric mass density p of these configurations is defined by:
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Il

poV (Bo) = pV (B),
V(B) = J(F)V(By),  J(F)=detF,

m

(2.2)

where V(B) denotes the volume of B. Note that if the particles constituting a
cluster By are close-packed, then the mass density pg of the body By is approx-
imated by the mass density p, of these particles. Further on, we restrict the
considered cluster dynamics to the case of close-packed nanomaterial clusters the
total mass of which admits the approximate representation of the size effect by
Eq. (2.2). It can be e.g. the case of fullerene Cgp clusters (Sec. 1) but, according
to Egs. (1.1) and (1.2), it is not the case of fractal clusters.

Let ¥ = ¥ (Bg;u), E = E(By;p), and S = S(Bp,p) denote the total
Helmholtz free energy, the total internal energy, and the total entropy, respec-
tively. The dependence of these functions on the figure By represents the shape
and size effects that reveal macroscopically small nanomaterial clusters. This can
be presented, for instance, by the dependence of these functions on such global
geometrical characteristics as: the volume of By, the surface field and (or) the
total mean curvature of the boundary surface dBg, and also by the dependence
on topological invariants of By as well as dBg (e.g. the Euler characteristic).
Consequently, the way in which these functions depend on homogeneous defor-
mations can be dependent on the considered geometrical characteristics of By
(see Sec. 4). To simplify latter statements, we will call a body By endowed with
the above defined thermodynamic functions, the size-effect body.

The thermodynamic functions are related by the Legendre transformation:

(2.3) W =FE-08

and, as the functions describing physical properties of a nanomaterial body, would
by the so-called objective scalars, that is functions f = f(Bg;-) of class C¥, k > 2,
such that for each (F,#) € GL*(E?) x I, the following condition is fulfilled:

(2.4) vQ € SO(E®),  f(Bo; QF,0) = f(Bo;F,0),

where SO(E3) ¢ GL*(E?) denotes the proper orthogonal group on E3.

Thermomechanical properties of the size-effect body By are represented, at
each instant 7 € R™, by the net working W = W (Bp; ) such that for each
curve 7 = u(t) = (F(7),0(r)) in the space GLT(E3) x I of thermodynamic
configurations, the following relation holds:

(2.5)  VreRT 3AN(By;7) € L(E®), W(By;7) = —N(By; 7) - F(7),

where A - B = tr(AB7”) for AB € L(E®), BT denotes a transpose of B, and
F(7) = dF(7)/dr. N(By;7) is a generalized force representing a thermomechan-
ical response of the size-effect body By at the instant 7 € R*. The balance
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equation of the total internal energy is given by:

(2.6) Vre RY, BBy u(r)) = W(Bo;7) + Q(Bo; ),

where Q(By:7) is the heat production at the instant 7 € R*, and E demtes
the time-derivative of E taken along the curve 7 — pu(7) of thermodynamic
configurations. Moreover, the following Planck’s dissipation inequality should be
fulfilled [16]:

(2.7) Y7 € RY, 8(Bo;7) = 0(7)S(Bo; (7)) — Q(Bo; ) > 0.

Let us assume that for each curve 7 — u(7) of thermodynamic configuratiors:
(2.8) N(By; 7) = N(Bo; pu(7), (7))

where /i(7) = du(7)/d7, and let us denote:

T = V(By) '6¥, T=JF)'TF,
(2.9)
Tp = —V(B)"'NF7, J(F) = detF,

where Eq. (2.2) was taken into account. It can be shown [16] that thermodyram-
ically admissible are e.g. such thermodynamic configurations u € GL* (E3)x I
for which

(2.10) S = -,

and the mapping (p, 1) — Tp(Bo;p. fi), where i € L(E*) x R is a tangent
element to the space of thermodynamic configurations GL™*(E?) x I at the point
i, is a symmetric and objective tensor field of the form:

Tp(Bo; . ft) = Tp(Bo: F,0,L), L=FF!eL(E%,
(2.11)  Tp(By;F,0,L) = T(By:;F,0) + hp(By; F,0,L), Tp="T5,
¥Q € SO(E®), Tp(By; QF,0,QLQ") = QT (Bo: F.6.L)Q",

and the Planck’s dissipation inequality reduces to the following condition:

o
2

Moreover, it follows from the objectivity condition (2.4) and from the notations
of Eq. (2.9) that the mapping F — T(By; F, ) should be, at each temperature

(212)  tr(hpD) 20,  hp(By;F,0,0)=0, D= (L+L").
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6 € I, a symmetric and objective tensor function that can be written in the
following form:

T(Bo; F,0) = Rh(By; U,0)RT,
(2.13)  h(Bo; U,0) = V(B)™'du¥(By; U,0)U,
F = RU, ReSO(E®), U=U", V(B)=V(By)detU.

The symmetric tensor fields T and hp of Eq. (2.11) are isothermal counter-
parts, assigned to one whole body By, of the Cauchy stress tensor for simple
materials: thermoelastic and differential of complexity 1, respectively [16]. Note
that, contrary to thermoelastic simple materials for which the dissipation coming
from heat conduction appears, for a thermoelastic size-effect body the only ther-
modynamically admissible processes are the reversible ones (§ = 0 in Eq.(2.7)).
Therefore, thermoelastic size-effect bodies can be treated as these being elastic
within a certain range of temperature. Let us introduce, imitating the theory of
simple elastic materials, the response insensibility group Gp(Bp) at the tempera-
ture 0 € I of an (thermo)elastic size-effect body By:

Gp(By) = {H (= SL(E:I) :VF € GL+(E3). T(By: FH, ),
(2.14) = T(By: F.0)}
SL{B®) = {F€ GL*(E?): detF = 1},

where SL(E?) is the so-called unimodular group defining, according to Egs. (2.1)
and (2.2), all deformed spatial configurations of By of the same volume equal to
V(By). So, Gg(By) is the group of homogeneous deformations of By preserving,
at the temperature ¢ € I, the volumetric mass density pp and the generalized
Cauchy stress tensor T of the size-effect body By. It follows from Eqgs. (2.9) and
(2.14) that H € Gy(By) iff [16]:

(2.15)  VF e GLY(E*), w(By:F.0) =w¥(By;FH,0) + ¥(By;1,0)
—~¥(Bo; H,0),
where I € GL™(E®) is the unit tensor. Let us consider the set gg(By) € GL* (E?)

of homogeneous deformations of By describing the swze-effect insensibility of the
free energy at the temperature f € I:

go(Bo) = {P € GLT(E*) : VF € GL* (E?),
(2.16) ¥ (Bp; F.0) = ¥(By; F.0)}
Bp = I(P)(Bo).

I
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where the linear mapping [(P) is defined by Eq. (2.1). It easy to see that for
each P € gy(By):

(2.17) T(Bp; F,0) = J(P)™'T(By; F,0)
and thus
(2.18) VP € go(Bo),  Gyp(Bp) = Gy(Bo)-

Moreover, it follows from Eq. (2.17) that for P € gg(Bg) N SL(E®) the elas-
tic response of the size-effect body By (represented by the generalized Cauchy
stress) is preserved. Therefore, let us consider the size-effect insenstbility group
90(By) C SL(E3) at the temperature 8 € 1. If go(By) = SL(E®) for each 0 € I,
then the size effect can be reduced to the dependence of elastic response and
thermodynamic functions on the body volume V(By). If go(By) = SO(E?) for
each 0 € I, then the size effect is independent of the body orientation.

Let us assume the existence of a homogeneous deformation P € GL*(E?)
such that the following formula, analogous to the local one appearing in the
theory of simple materials, is valid (cf. [16]):

(2.19) VF € GLT(E®), T(Bp:F,0) = T(By: FP,0).

Then [16]
(2.20) Gy(Bp) = PGy(By)P~.

For example, if
(2.21) voel,  go(Bo) = Go(By),

then for each P € gg(By) the conditions (2.19) and (2.20) become identities (see
Egs. (2.17) and (2.18)), and the elastic size-effect body will be called guasi-simple
(within the range I of temperature).

In ordinary experience we commonly think of a body as being “solid” if, within
a certain range of temperature, after changing its form (under a nonorthogonal
transformation), we can observe a difference in the way it responds to further
deformation [16]. If the elastic size-effect body By is quasi-simple, then the above
observation can be expressed, according to Eq. (2.19), by the following counter-
part of the definition of simple elastic solid materials (cf. [16]):

(2.22) Vo € 1, Go(Bo) C SO(E3).

The quasi-simple elastic size-effect body will then be called elastic quasi-solid. If
By is an elastic size-effect body fulfilling the condition (2.22), then we will say that
this body reveals the quasi-solid response within the range I of temperature. The
spatial configuration By will then be called undistorted. Since from the objectivity
condition (2.4) it follows that for each # € I:

(2.23) VQ e SO(E®),  ¥(By;Q.0) = ¥(Bo;1,0),
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we obtain from Eq. (2.15) that in the case (2.22) it should be:
(2.24) Go(By) = {Q € SO(E?) : VF € GL*(E?), ¥(B,;[FQ,0)
= W(By;F,0)}.

If
(2.25) Voel, Go(By) = SO(E?),

then the quasi-solid response is called isotropic.

In practical applications concerning solid bodies, the existence of an un-
stressed spatial configuration of the body [16] is usually assumed. In our case
such configurations should exist within the range I of temperature, that is it
should be:

VeI 3IPyeGLY(E®), T(By(9);1,6) =0,
(2.26)
By(0) = I(Pyg)(Bo).

where By is an elastic size-effect body. Let us consider, in order to intrinsically
relate the size-effect body By with its deformed unstressed spatial configurations
By(0) of Eq. (2.26), the following condition (cf. Eq. (2.20) and (2.22)):

(2.27) Y0 €I, Gy(Bo(0) =PyGe(Bo)P;' C SO(E®).

The elastic size-effect body By fulfilling the conditions (2.26) and (2.27) will
be called solid within the range I of temperature. Further on, we will restrict
ourselves to the case of nanomaterial clusters being solid bodies in the above
sense. The undistorted and unstressed spatial configurations By(6), 6 € I, will
be called then natural configurations of the elastic size-effect solid body By. If,
additionally, the spatial configuration By is undistorted, then it follows from
Eqs. (2.22) and (2.27) that should be [16]:

VO eI, GolBy(8)) =R(0)Gy(Bo)R(H)T,
(2.28) P, =R(0)U(0), R(H) € SO(E?), U®) =U®O)T,

VQ € Gy(By), Q'U(0)Q = U(#).

If the quasi-solid response is isotropic, then the size-effect solid body By will be
called an isotropic solid.
The formulae of Eq. (2.28) reduce then to:

VO eI, Gg(Bo(8) = Go(Bo) = SO(E?),
(2.29)
Py =n(0)R(9), n(0) >0, R(6) € SO(E?).
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Thus, in this case, each natural configuration By(0) of By takes its shape.
If
(2.30) Vo e 1, Gy(By) = SL(E?),

then the generalized Cauchy stress tensor T reduces to [16]:

T(Bo; F.0) = —p(Bo; J(F),0)1,
(2.31)
J(F) = detF.

We will say then that the elastic size-effect body By reveals the quasi-fluid re-
sponse within the range I of temperature. The quasi-fluid response has, for an
elastic quasi-simple size-effect body By, the following form:

(2.32) p(Bo: J(F),0) = p(V(Bo); J(F), 0).

Note that a fluid is commonly regarded as a material having “no preferred con-
figuration” [16], what means that should be:

p(V(By; J(F),0) = p(V(B),0),
(2.33)
V(B) = J(F)V(By).

However, since the response function p = p(V.#) can describe not only a fluid
but also a solid or gas, in hydrodynamics it is customary to impose the condition
p=p(V.0) >0for V>0,0 €l |16]

3. Dynamics of size-effect bodies

Let By C E? be the spatial configuration of a size-effect body identified with
the body itself, and let F : Rt — GL*(E>) be a homogencous deformation
process. Let us assume that on the body act, at each instant 7 € RT, external
force fields: the body force field b(X, 7), X € IntBy, and the surface force field
s(X,7).X € 9By, where IntBy and dBy denote the body By interior and its
boundary, respectively. The volumetric kinetic energy K(By; 7) of the body (cf.
the approximate representation of the mass size-effect by Eq. (2.2)) and the power
P(By: 7) of external forces acting on the body are given by

K(By;1) = %/|V(X.T)|2dm(X)‘

By

1) | |
P(By;7) = /b(x,r) -v(X)dV(X) + / s(X,7) - v(X, 7)dF(X),

By 01'50
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where we have denoted
i )
v(X,7) = ZUFDX) =F@OX, vP=v-v,
(3.2)

dm(X) = pedV(X), po=m/V(Bp).

The volumetric net working W (Bp; 7) at the instant 7 € R™ has in an inertial
frame of reference the following form [16]:

(3.3) W (Bo; 7) = P(Bo; T) — K(Bo; 7).
It follows from Egs. (3.1) - (3.3) that for the net working of Eq. (2.5) should be:
(34) [Mext(Bo; )T = B(r)3(Bo) + N(Bo; )] - B(r) =0,
where Moyt (Bg: 7) denotes the dipole moment of external forces:
(3.5) Mext (Bo; 7) = /X ®b(X, 7)dV (X [ X ®s(X, 7)dF(X),
8y
and J(Bp) is the body inertia tensor determined with respect to its mass center
X =0:
(3.6) J(By) = [X @ Xdm(X).

Bo
The equation (3.4) will be fulfilled by a class of homogeneous thermodynamic
processes such that

(3.7) J(Bo)F ()" = N(By; 7)" + Mext (Bo: 7).

The equation (3.7) generalizes the equation of dynamics of affinely rigid
bodies. Particularly, for thermodynamically admissible processes defined by
Egs. (2.8) - (2.12), where p = (F,0) € GLT(E?) x I, we have:

N(Bo; )" = =V (Bo)J(F)()F(7) "' Tp(Bo; F,0,L)(7),
(3.8) ,
L(r) = F(r)F(r)~ L.

Note that introducing the dipole moment M; s (Bo; 7) of internal surface forces
acting on the body boundary 9By:

M, (Bo; 7) = / X ® tp(Bo; X, 7)dF(X)
By

(3.9) tp(Bo; X,7) = —Tp(Bo;7)n(X)

p(Bo;7) = J(F)(1)Tp(Bo; F,6,L)(r)F*(7), F* = F 1T,
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where Tp(By; 7) is the counterpart of the Piola-Kirchhoff stress tensor (cf. [16])
and n is the outward normal versor, we obtain the following interpretation rule
of the generalized force N(Bp; 7) [13]:

(310) N(BD;T)T == Mint(Bﬂ;T)'

The condition of immobility of the mass center means that the total external
force acting on the body By should vanish:

(3.11) Vr € R, /b(X,r)dV(X) " [s(X‘rJdF(X) =0.

Bo 8B,

If the considered size-effect body is thermoelastic, then the generaized
Cauchy stress tensor Tp of Eq. (2.11) reduces to its part T (representel in
the form (2.13)), and the thermodynamic processes become reversible (6§ =0 in
Eq. (2.7)). In this case, Eq. (2.6) can be written in the form of the folloving
temperature evolution equation [13]:

Kgf = V(By)09,T - F + Q,
(3.12) :

T = V(By) 'og¥, O€l,

where Ky = Kg(Bp;0) is the heat capacity at a constant deformation F deined

by:
(3.13) Ky = OpE = 00,S = —0(0*W/06%)p,

and the heating Q) = Q(By;0) is given by:

Q(Bo; 0) = 0(1)S(Bo;0), S = —8,¥,
(3.14)

: d
S(Bo; 0) = r

T

S(Bo; F(),0()).
Note that the following relation holds [13]:

(3.15)  V(Bo)dT -F=V(B)T-D, V(B)=J(F)V(B),

1 "

D=§(L+LT), L=F7

We see that the above formulated dynamics as well as the considered ther-

modynamics refer to only one whole body, not to an infinite system of subbdies

as it occurs in a field theory (local or nonlocal) or in a thermodynamics oflocal
(equilibrium or nonequilibrium) body states.
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4. Liquid-like response

The notions discussed in Sec. 2 concerning materials of size-effect bodies are
inspired by the continuum mechanics approach represented by the theory of sim-
ple materials [16]. Let us consider, in order to introduce a class of (homogeneous
and elastic) size-effect bodies based on a different approach, the theory of cap-
illarity. In this theory, a finite free energy density is attributed not only to the
volume but also to the surface measure, and the body should be defined in such
a way that in the limiting case of a thin film (infinitely thin in the sense of phe-
nomenological approximation used in the theory of capillarity) should be also
considered as a body [18]. Thus, in line with the classical capillarity theory, we
can endow a body By with the total free energy of the form [18]:

W (By; F,0) = £(0)V(B) +~(0)F(B),
(4.1)
B=I(F)(By), FeGLYE?, 6¢l,

where 6 is uniform temperature, V(B) and F(B) denote the volume of the de-
formed body and the surface field of its boundary, respectively. The constants
(at the given temperature 6 € I) £(f) and (@) denote the free energy densi-
ties needed to change the body volume unit and the boundary surface field unit,
respectively. The formula (4.1) means that the capillarity theory enables us to
define a particular case of the size-effect body endowed with the such total free
energy function that can be transformed into a form independent of the choice of
a preferred spatial configuration of the body. Note that Egs. (2.31) - (2.33) can
be considered as these corresponding to a total free energy of the same property
but represented in the form

(4.2) W (Bo; F,0) = o(V(B),0),

where B is defined by Eq. (4.1). We will say, generalizing the formulae (4.1)
and (4.2) and taking into account the analogy with fluids regarded as materials
having no preferred spatial configuration, that an elastic size-effect body By has
the liquid-like response if its total free energy function ¥ fulfills the following
condition:

W (By; F,0) = ®(l(F)(Bo)), 0€l,
(4.3)
VQ € SO(E?), Dy(1(Q)(B)) = ®y(B),

where the objectivity condition (2.4) was taken into account.
It can be shown (basing on the Hadwiger integral theorem — [14, 19]) that
an additive (in the sense @(B; U By) = @(B;) + &(B3) — @(B; N By)), continuous
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and invariant with respect to the action of isometry group in E®, functional
B — @4(B) defined on the set of all compact and convex three-dimensional bodies
in E* endowed with the Hausdorff metric for sets, can be represented in the
following general form:

(4.4) Po(B) = a(0)V(B) + b(0)F(B) + c(0)M(B) + d(0)x(B),

where a(8),b(8), c(0),d(0) are arbitrary constants assumed here to be functions
of class C? of the temperature parameter § € I. V(B), F(B), M(B), and x(B)
denote the volume of the domain B , the surface field of its boundary 0B, the
total mean curvature of 85, and the Euler characteristic of B, respectively. The
formula (4.4) admits the case of convex bodies with a piecewise smooth bound-
aries, i.e. containing some edges and cornes [19, 20|. Note that it can hardly be
supposed that the free energy functional of Eq. (4.4) suffers drastic changes on
the transition from convex bodies to other shapes. It enables us to generalize the
formula (4.4) by the extension of functionals @y, # € I, of this form to all com-
pact and connected spatial sets B C E* with oriented regular boundary surface
of class C* [18]. For compact and connected bodies [21]:

(4.5) x(B) =1 —mn,

where n is the number of holes inside the body B. Particularly, x(B) = 1 for
convex bodies. The geometric functionals of Eq. (4.4) have, for the assumed class
of boundary surfaces, the following representations [20, 22]:

(46) V(B = [dav, FB)=[dF, M(B)= | HdF,
/ ! !

St = 4i / KdF,

.,
aB

where H and K denote the mean and Gaussian curvatures of dB, respectively.
If Ry and Ry are principal radii of curvature of 9B, then

1 1 1 1
7 e 4 P
(4.7) Hes (1?.1 i Rz) ‘ RiRs

It follows from Eq. (4.5) that

VP € GL*(E®), x(Bp) = x(Bo),
(4.8)
Bp = I(P)(Bo).

http://rcin.org.pl



NANOMATERIAL CLUSTER AS MACROSCOPICALLY SMALL...PART I 173

Thus, the last term of the total free energy function ¥ defined by Eqgs. (4.3)
- (4.6) is equal to d(@)x(Bp). Consequently, this term does not influence elas-
tic properties of the size-effect body By but influences, according to Eq. (3.13),
its heat capacity. Moreover, it follows from Eqs. (4.3), (4.4) and (4.8) that the
change of topological connection of the size-effect body By needs a finite discon-
tinuous jump of the total free energy term d(f)x(Bp). It means that this term
is conditioned by the mathematical as well as the physical connectedness of the
body. Therefore, we can recognize the coefficient d(f) as the one conditioned by
forces of connectedness of nanomaterial clusters.

Let us write Eqs. (4.4) and (4.6) in the form:

Py(B) = a(0)V (B) + P,4(B),

(4.9)
b, 9(B) = /wa(H, K)dF,
aB
where it has been denoted
(4.10) wo(H, K) = b(#) + c(0)H + (d(8)/4m) K.

The total surface free energy density wy(H, K) of Eq. (4.10) depends on the
definition of the boundary surface dB8. In the case of solid bodies for which their
size is much greater than the effective size of the boundary layer, the influence
of both curvatures on the total surface free energy @, 9(B) of Eq. (4.9) can be
neglected [2] (that is ¢(f) = 0 and d(#) = 0 in Eq. (4.10)) and Eq. (4.9) reduces
then to Eq. (4.1). Therefore, the constant b(@) of Eq. (4.10) can be identified, up
to its sign, with the so-called surface tension v(#) |2, 23] being the free energy
density needed to change the boundary surface field unit. The density () is
conditioned by the interactions of atoms located on the boundary solid surface
(2, 23] and it is a positive quantity at the considered temperature lower than the
melting temperature [23]. However, we consider macroscopically small bodies and
consequently, taking into account that the term d(8)x(8) of Eq. (4.4) characterizes
the physical connectedness of these bodies, we assume that the constant d(f) of
Eq. (4.10) is a nonvanishing quantity. Thus, we obtain

(411)  &(0) = |a(0)] 20, ~(8) =[b()] >0, w(@)=|c(d)| >0,
8(0) = |d(0)]/ax > 0.

The quantity M(B)/2r, known in rock analysis and in stereographic metallog-
raphy, is interpreted as the mean grain width [18, 20]. Therefore, according to
Eqs. (4.3), (4.4) and (4.11), w(f#) /27 can be interpreted as the free energy density
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needed to change the body mean width M (B)/2x unit. On the other hand, the
mean curvature H of Eqs. (4.9) - (4.11) is a relative geometric quantity depending
on the Euclidean geometry of the ambient physical space in which the boundary
surface is embedded. Consequently, the quantity w(@) should be considered as
the one conditioned by interactions between the boundary surface atoms and the
bulk atoms located in a boundary layer. For the sake of simplicity we will call
¥(0) as well as w(@) the surface free energy densities.

The generalized Cauchy stress T defined by Eqgs. (2.9), (2.13), (4.3) — (4.5),
and (4.8) — (4.11) takes the following form:

T(BD:F, f) = ﬂ{9)1 + T,;(BU;F, 9),
T,(Bo; F,0) = RT,(By; U,0)R”,
Ty(By; U,0) = V(By) 'du®,(Bu)U,

(4.12) ‘
F = RU, R e S0(F%), U=UT,

Il

dj.1..?(BU)

By = I(U)(By), V(Bu) = V(Bo)det U.

b(0)F(Bu) + c(0)M (Bu) + d(0)x(Bu),

Further on we assume that, within the range I of temperature, the surface free en-
ergy density w is either positive or vanishes identically. It follows from Eqs. (2.24),
(4.3) - (4.5) and (4.8) that if the elastic generalized stress response of Eq. (4.12)
is quasi-solid within the range I of temperature (Sec. 2), then its insensibility
groups Gg(Bg), 0 € I, are given by

(4.13) Go(Bo) = go(Bo) N SO(E?)

where, in the considered case, the size-effect insensibility group gg(Bo) (Sec. 2)
has the following representation:

(4.14)  go(Bo) = {P € SL(E®) : VF € GL*(E®), &,4(Brp) = ,0(Br)}.
It follows from Eqs. (4.12) - (4.14) that would be:

Vo€, go(Bo)=g(Bo), Gy(Bo)=G(Bo),
(4.15) G(By) = g(Bo) N SO(E?) = h(By),

h(Bo) = {Q € SO(E®) : 1(Q)(Bo) = Bo},
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where ¢(Bg) is a subgroup of the unimodular group SL(E3), and h(By) denotes
the group of rotational symmetries of By; if the body By has no rotational sym-
metries, then h(By) = {1}. The condition (2.26) defining the unstressed spatial
configurations By(@), 0 € I, takes, according to Eq. (4.12), the following form:

a(@)Vo(0)1 4+ duDsp(Bu(f))|lu=1 =0,
(4.16)

By(0) = l(U)(Bo(0)), Bo(0) = (Py)(Bo), Vo(0) =V (Bo(6)).

The considered elastic size-effect body By with the quasi-solid liquid-like re-
sponse is, within the range I of temperature, an elastic size-effect solid body
(Sec. 2) if the conditions (2.28) and (4.16) are fulfilled. The condition (2.28) is,
according to Eqgs. (2.24) and (4.13) - (4.15), fulfilled and takes the form:

Vo eI, Cg(sﬂ (0)) = G(Boy(6)) = R( ) (Bo)R(G)T,
(4.17) Py =R(0)U(9), R(0) € SO(E?), = (8",
vQ € G(By), QTU( )Q = U(h).

It is an isotropic elastic size-effect solid body iff G(By) = SO(E®). In this case
P € GL*(E?) has the form given by Eq. (2.29) and By is a ball. Conversely,
if By is a ball then h(By) = SO(E®) and, according to Eq. (4.15), the elastic
spherical size-effect solid body with the liquid-like response should be isotropic.
The spatial natural configurations By(f) of Eq. (4.16) are then spherical of the
radius Ry(0), @ € I and (cf. Eq. (2.29)):

(4.18) Ro(0) = n(0)Ro, Vo(8) =n(0)*V(By), V(Bo) = (4/3)nRj.

Let us take as By an oblong ellipsoid of revolution with the axis of revolution
parallel to a versor n, and let Ry and rg, Ry > rg, denote the length of ellipsoid
semiaxes in the n-direction and in the directions perpendicular to this direc-
tion, respectively. The group G(n) of all rotations about the axis of revolution
describes rotational symmetries of the body By and

(4.19) h(Bo) = G(Bo) = G(n).
Then, the condition (4.17) with

G(Bo(#)) = G(ng), nyg=R(O)n,
(4.20)
U(0) = n(@)1+n.(0)n®n, n(d) >0, n.(0) >0,

is fulfilled. Thus, By(#), 6 € I, is then the oblong ellipsoid of revolution with the
axis of revolution parallel to the versor ng of Eq. (4.20), and with the semiaxes
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Ry(0) and r¢(6) in the ng-direction and in the directions perpendicular to ng,
respectively, where:

Ro(0) = m(0)Ro, 70(0) =n(0)ro, Ro(0) > ro(0),
(4.21) Vo(0) = ni(0)n(0)*V(By), m(0) =n(0) + 1.(8),
V(By) = (4/3)mRorg.

So, we have defined, within the range I of temperature, the transversally isotropic
elastic oblong size-effect solid body By with the liquid-like response.

We see that, for the considered size-effect solid body with the liquid-like
response, rotational symmetries of an undistorted spatial configuration By of
the size-effect body define its material symmetries described by the response
insensibility group G(By). Particularly, the spherical shape means that the size-
effect solid body with the liquid-like response should be isotropic, and the ob-
long spheroidal shape means that this size-effect body should reveal transverse
isotropy (cf. Eq. (4.15)). It is consistent with the essential feature of macroscopi-
cally small nanomaterial clusters: properties of these clusters (particularly - their
thermomechanical properties) can not be separated from their size as well as the
shape. The sphericity and oblongness of the cage shape of fullerene particles Cgg
and Cy, respectively [8], provide, on the nanometer observation scale, significant
examples of particles whose total mass as well as shape are their intrinsic and
correlated properties. Therefore, let By be an undistorted spatial configuration,

and P € GL*(E®) such that (cf. Egs. (4.15) and (4.17)):

G(Bp) = PG(Bo)P~! C SO(E?),

(4.22)

Bp = I(P)(Bo), G(Bo) C SO(E®).
Then [16]:

P=RU, ReSO(E®, U=U7,
(4.23)

vQ e G(By), Q'uQ=",
and
(4.24) G(Bp) = RG(By)R”.

It follows from Eqs. (4.15), (4.23), and (4.24) that

(4.25) G(By) = G(By)
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and the right stretch tensors U of Eq. (4.23) constitute a subgroup U(Bp) C
GL*(E3). Note that if G(By) is a Lie group, then G(By) = SO(E®) or G(By) =
G(n), and the property

(4.26) h(Bo) = G(Bo)

means then that the body boundary 9By should be a sphere or a surface of
revolution with the axis of revolution parallel to the versor n. If By is a compact
convex body and G(By) is a finite group of rotations, then Eq. (4.26) means
that 8B should be a piecewise smooth surface (see remarks following Eq. (4.4)).
Therefore, since the group U(Bg) of right stretches of By defines undistorted
spatial configurations of the same shape and of the same response insensibility
group, deformations U € U(By) enable us to separate the shape variation effect
from the size effect, and thus to describe the latter effect in a more clear manner.
Particularly, the homothetic deformation

(4.27) U=2Al, A>0

appears as the universal homogeneous deformation preserving the body shape
and the body material symmetries. In a second part of the paper, an isotropic
elastic spherical size-effect solid body for which homothetic deformations are the
general ones preserving its shape, will be considered. For these deformations:

(4.28) Too(0) = lim T(Bo; AL,0) = a(6)1
—00

and T (0) defines an asymptotic uniform tension if (cf. (4.11)):
(4.29) £(0) = a(0) > 0.

The constant a(@), # € I, can be interpreted then as a quantity depending on
the bulk interatomic interactions.
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