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In orDER TO AcCcounT for low temperature heat propagation phenomena in crystals
of sodium fluoride and bismuth, we employ a thermodynamic model for rigid mate-
rials involving a vector-field internal state variable. The model is either wavelike or
diffusive. depending on the temperature regime considered.

1. Introduction

IN THIS PAPER we continue an investigation ([12, 21]) of the effects of nonlinear-
ity and memory on the propagation of heat waves through crystalline materials
at low temperatures. The work is intended to extend the interpretation of the
experimental results of [5, 6, 15] and [18] in the context of thermodynamics with
internal state parameters. These experimental results gave evidence, as had been
seen previously in *He ([1]), that there existed second sound in crystals of sodium
fluoride and bismuth at temperatures below where the materials reached their
peak thermal conductivity (approximately 18.5 K and 4.5 K respectively). There
was an absence of any such wavelike thermal phenomena at higher temperatures,
where only diffusive heat propagation was observed. The speed, Ug, of small-
amplitude waves tended to zero as the temperature approached the temperature
of peak conductivity from below, while appearing, at least in the case of bismuth,
to tend to a finite limit as the temperature fell towards 0 K (no useful measure-
men:s could be made below 10 K in sodium fluoride because of interference from
transverse and longitudinal mechanical waves). This material-dependent temper-
ature of peak thermal conductivity, or critical temperature, is denoted by 9.
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128 K. SAxXTON AND R. SA{TON

Our present approach is different from our earlier results, which were buit on
the ideas in [11, 13]. The internal variable' responsible for the effective memory
in heat propagation will here be a vector field, p, rather than the semi-emprical
temperature, 3, a scalar field. The advantage of this setting is that mathenati-
cally, the system of equations derived for a rigid conductor becomes a first erder
hyperbolic system, a balance law in p and ¢, which reduces to a nonlin:arly
damped two by two (rather than three by three) system in the one-dimensonal
case. Physically, it also becomes more straightforward to apply experimental data
(the observed speed of second sound waves and heat conductivity as funcions
of temperature) to constitutive equations, avoiding the necessity of integrition
and making invertibility assumptions, which further resolves a difficulty at zero
kelvin where the use of simple algebraic constitutive functions could lead to an
unphysical singularity, and lets us extend our analysis to bismuth.

The method of describing thermal wave phenomena in inelastic bodies us-
ing vector-valued internal state variables was introduced by KoSiNsk1 [9], and
one of the authors, [22]. Related ideas were also introduced in [4] and [16] (see
[14]). Here we employ this approach in order to propose physically motiated
constitutive equations for bismuth and sodium fluoride which depend on 4, and
investigate the relation between 9y and a further temperature 9, where thesys-
tem loses genuine nonlinearity. Corresponding results have been obtained in[12,
21] for sodium fluoride, using the scalar-valued internal state variable, /3. Loss
of genuine nonlinearity has also been found in the setting of extended themo-
dynamics ([19, 20]). In that context, it was speculated that the temperatue at
which this occurs plays a role in solids analogous to the lambda point in lijuid
helium at which the speed of second sound vanishes. The analysis based or our
constitutive equations shows that these temperatures are however different.

We now attempt to motivate the ideas contained in the derivation, which will
be presented fully in Sec. 2. Consider the classical constitutive equation for 1eat
flux, g = — kgV¥, where q denotes heat flux, ky the conductivity and ¢ the
absolute temperature. One approach for allowing q to become dependent the on
effect of memory is to consider if as a functional of the history of the temperdure
gradient,

k
(1.1) q=--2 c_%“_*)Vﬂ{x,s]ris,
T
—0

where 7 denotes a relaxation time. An extensive discussion of this and nore
modern ideas can be found in [7] and [8]. It follows easily from (1.1) thatone

!y Internal parameters were introduced to constitutive models for thermodynamics of olids
by CoLEMAN and GURTIN, [2].
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obtains the well-known Maxwell-Cattaneo equation
(]2} TqQ+q= —A:gVﬁ.

In order to extend the idea behind (1.1), define

(1.3) p=

=

t
[ e_%“_’;)V??(x, §)ds,
o0

so that (1.1) is equivalent to
(1.4) qg = —kop,

1 1
r' ——— — — —
(1.5) p = Tp-l— TV:‘;’

which in the steady-state case, p; = 0, implies the classical relation

(1.6) q = —koV9.

Next consider the more general relations

2
I

t
—a(1) [ e Mt=9)7 £, (9)(x, s)ds,

(1.7) E

b= [ &MY f (9) (x, 5)ds,

—c0
with b > 0, which are equivalent to
(1.8) q = —a(d)p,
(1.9) p: = —bp + g1(J) V4,
where f{(?) = ¢;(J) and, for p; = 0,

(1.10) q= -Ww = —K(9)V4.

It will be seen in the next section that there is a thermodynamic relationship,

(2.18), showing that
(1.11) a(9) = 20991 (9),
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where 99 is a constant coming from the Helmholtz free energy function 1),

(1.12) b= (0) + shalpl

Using (1.10) and (1.11), the steady-state thermal conductivity coefficient K(9) is
given by

[
(1.13) K(0) = Y2 (991 (9))?,
and, as will be seen in the next section, the speed of second sound satisfies
2
(1.14) U = gy L)
et

where ¢g is a constant, cf. (2.26), (2.27). Recalling the critical temperature. 9y,
(1.15) UZ - 0as 9= 9,—,

(1.14) implies that g;(9) — 0 as ¥ — ¥4—, from which (1.13) gives

(1.16) K(9) = 0 as 9 — 9y —.

Unfortunately, (1.16) is incompatible with experimental evidence ([5]) vhich
shows a large peak in thermal conductivity at 9, and a further generalizatim of
either (1.7), or of (1.8) and (1.9) is needed in order to account for this fact We
replace (1.8) and (1.9) with

(1.17) q = —a(d)p,
(1.18) Pt = g1(9)VI + g2(9)p.

If, in addition, we wish to take into account the “effective”, Fourier condictiv-
ity k(1), [7], which is considered as part of the heat flux law in Jeffrey’s type
materials, where

t
(1.19) q=—k(9)VI — ap / e tt=5) 79 (x, s)ds, o = constant,

—0D0

we can replace the second term on the right in (1.19) by the right side @ the
expression for q in (1.7), and the constitutive equation for q becomes

(1.20) q=—k(9)VI — a(d)p.

http://rcin.org.pl



NONLINEARITY AND MEMORY EFFECTS IN LOW TEMPERATURE... 131

Equations (1.18) and (1.20) make it possible to account for small diffusive effects
such as the broadening which can be seen in travelling pulses of second sound as
the temperature increases towards 17y.

The approach introduced here, based on (1.20) and (1.18), is equivalent to
that in [12] and [21] only if p is a gradient field, p = V3 for the scalar field 3
representing a semi-empirical temperature. This is however possible only if the
evolution equation for p is of the form (1.9), when (1.20) and (1.18) reduce to

(1.21) q = —k(¥)VY — a(d) VB,

(1.22) Br = f1(9) — bB.

In our case however, and in general, the models are distinct.

We present the general framework of the model in the next section and provide
examples of constitutive functions which we relate to experimental data in Sec. 3.
In the final Section, we will use these functions in examining three-dimensional
weakly discontinuous plane waves propagating through crystals.

2. The governing system of equations

In the following section there are parallels to the derivation of [21] concerning
the thermodynamics of materials which allow the propagation of low temperature
heat pulses. For clarity, we will give a derivation of the present model and note
differences where they occur, and refer the reader to that paper for more detailed
information.

As in [21], we let ¥y be the critical temperature below which second sound
is observed. The vector field, p, as defined in the Introduction, is related to the
absolute temperature, o, and its gradient through the initial value problem (1.18)
together with appropriate initial data. That is (see [22]),

(2.1) Pt = q1(9)VYI + g2(9)p,

(2.2) p(x,0) = po(x).

The free energy per unit volume, 1, entropy density, n, and heat flux, q, are
related by

(23) 9(0,8) = 41 (9) + Sha(D)lpl
(2.4) q = —k(9)VJI — a(J)p,
and

(25) n=—25(,p).
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The free energy is connected to the internal energy per unit volume, £, by
(2.6) Y=¢ec—nd.

Balance of energy and the second law of thermodynamics imply

(2_7) E;-Jr-V'q:T's
and q
(2:8) m+V-(3)2 3,

where r is the body heat supply per unit volume.
Using (2.1), (2.3) - (2.6) and (2.8) as in [21], we find

a()

29) b O)n@lpl + (sa0)ar(0) - ) 9. p - Gr)ITIE <0

This inequality is satisfied for arbitrary choices of V1) and p if and only if

(2.10) P2(9)g2(9) <0, k() >0

and

(2.11) (Vﬁe(lg)s‘}l(ﬂ) - @)2 < 4™, 9)ga().
By setting

(2.12) (V) = 92 (9)g (9),

(2.11) is satisfied for arbitrary choices of admissible k(#) including k(2J) = 0
As in [21], we adopt a particular form, (1.12), for (2.3),

(2.13) P2(9) = 1ha0?, a0 > 0.
For this choice of 1), the internal energy € is related to 1, by
(2.14) e(9) = 1 (9) — ¥ (9)9.

and the specific heat ¢, > 0 in terms of 9 by

(2.15) co(¥) = (D).

Finally, in the absence of a body heat supply, Eqgs. (2.7), (2.4), (2.15), and 2.1)
give

(2.16) cy (NI = V - (k(I)VI + a(d)p) =

(2.17) pe = g1(7) VI + g2(9)p,
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where by (2.10), (2.11) and (2.13),
(2.18) (i) = 1200?91 (9),
(2.19) k() > 0 and go(?) < 0.
By letting py = 0 in (2.17),
(2.20) 91(9)VI = —ga(d)p,
and taking p and V¥ to point in the same direction in this case, implies
(2.21) 91(9) 20

from (2.19). The steady-state conductivity coefficient, X(¥) (in contrast with
(1.10), (1.13)) for (2.4) becomes

 PaodPgi (V)

(2.22) q(d) = — (k(ﬂ) "

) Vi = -K(9) V.

In order for the equations derived above to hold over the critical temperature
9, as well as under, it is sufficient to make the following assumption concerning
the constitutive functions, g;,g2 € C(R),

()
(2.23) lim 222 >0 and g¢(9) =0, i=1,2, 9> 9,.
ﬁ—!ﬂ)\— 921

This ensures both the required Fourier conductivity above ¥, (see (2.4), with
a(¥) = 0 by (2.8)), and from (2.22), a conductivity peak as 9 — 9y—.2 For
9 > 9y, Egs. (2.16) and (2.17) reduce to

(2.24) cy (9 — V - (k(9)VI) =0,
and
(2.25) pr = 0.

Thus the vector field p no longer possesses any time dependence and decouples
from the field equation for temperature. In the absence of viscosity, k(«J), and
the transition temperature, 1y, the system (2.16), (2.17) in 9 and p is equivalent
to that obtained in terms of ¥ and q by MORRO and RUGGERI ([17]).

For 9 < 4, neglecting the influence of k(«) in (2.4) (the inviscid limit), the
system (2.16), (2.17) is a hyperbolic balance law. The expression for the second

2y It may be useful in certain situations to modify (2.23) with a transition layer (da, 95 + <)
gi(?)
92(9)

over which decays to zero smoothly.
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sound speed Ug is the nonzero characteristic speed A in (4.20), which provides
the speed of weakly discontinuous waves propagating into a state for which q = 0,

a(?)g () _ Pa00% g1 (9)*
ey (1) co(1)

where we have used relation (2.18).

Specific constitutive functions may be derived from experimental data ([5, 6,
15] and [18]). Data for Ug give the function g; (1), while data for the steady-state
conductivity K(J9) give go(1?), (cf. (2.22) with k(9) = 0). For the heat capacity
we will use Debye’s law,
(2.27) c(V) = ¢, ¢ > 0.

(2.26) Uz =

We note, in particular, that (2.22) and (2.26) provide very simple connections
between the constitutive functions gy, g2, and the steady-state conductivity and
second sound speed (cf. [12, 21]).

3. Constitutive functions

In order to derive a specific example for g (1), we will use an empirical relation
employed to interpolate experimental data for NaF and Bi ([3]),

(3.1) Ug(¥)~™% = A+ B9",

where, for ¥ measured in degrees kelvin, and Ug in ¢m/sec,

(32) n=310, A=9.09%x10"" B=222x10"" 10K <¥<I8K,
for NaF, and

(3.8) w=37%5, A=007>10, B=YE8x107", 1 K<d <4K,

for Bi.

Equation (3.1) fits the available experimental data ([5, 6, 15] and [18]) for
the range of temperatures where second sound is detected, that is, for a set of
temperatures below . For high purity crystals of Bi and NaF, we take the
values of 9, to be 4.5K and 18.5K, respectively. We will take, for 9 < 4y,

(3.4) g1(9) = g10 (9)(Ix —9), g10(¥) >0, gio (V) #0,
and
(3.5) 92(9) = gao (9)(Ix — 9)2, g20 (9) <0, gao (9x) #0,

subject to (2.23), where 2§ = 2"H(z) and H(z) denotes the Heaviside step
function.
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In this case we obtain the following formulae for Up (see (2.26)) and the
conductivity K(9) with k() = 0 (see (2.22)) using (2.27),

(3.6) Ug(9)® = (/})(]Jm( gy (0 — 0)%
and
k1) K(9) = 'J?ﬂﬂ gio (V)" (9 —9)3 "2,

20 (V)
Here the case 2r; = ry admits a ﬁmte peak in conductivity at 9 = ), while

for 2r; < 7o the peak is infinite. Observation of second sound in bismuth as

9 — 0 ([18]) indicates that Up reaches a finite, nonzero limit there. We reflect

this by choosing

(3.8) gi0(¥) = ad?, a >0,

for both Bi and NaF, even though the data appear unavailable at temperatures

below about 10K for NaF because of interference by mechanical waves. Then
(3.6) reduces to

(3.9) Ug(d)? =

o0 a®

(9 — 9)2.
(o)

We can now use the experimental data contained in (3.1) to obtain values for
the parameters in (3.9). For NaF, we choose r; = 1/5 and

(3.10) Up = 0.186((18.5 — 9) "

where here Ug is measured in cm/psec and 9y = 18.5K. A comparison of (3.10)
with (3.1) and (3.2) is given in Fig. 1.

U fomv )
0'25“‘*-“_1.::-‘:::2“-;-:»-“\
| . SeeY,
0.15 \\
0.1
0.05
12 14 16 i

Fi1G. 1. NaF, second sound speed (solid curve), Up = 0.186(18.5 — 1?}”5 together with
data (dotted curve), Up = (9.09 + 0.002220%1)~1/2, (CoLEMAN and NEWMAN, [3]).
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For Bi, we take r; = 1/4,9), = 4.5 and
(3.11) Ug = 0.078(4.5 — 9)}/*.

Equation (3.11) with (3.1) and (3.3) illustrates Fig. 2.

Ug (o psec)
PIRY e SR e
0.08 -.-\“b““h_
0.06 E AN
N\
0.02
R TR S 35 s B

FiG. 2. Bi, second sound speed (solid curve), Ug = 0.078(4.5 — ﬂ}l’m. together with
data (dotted curve), Ug = (90.7 + 0.7589%73)~1/2  (CoLEMAN and NEWMAN, [3]).

These simple power law constitutive functions lead to reasonable approximations
to the data for second sound. The drops close to the critical temperatures reflect
the vanishing of the speed of second sound at these temperatures, while the
empirical data-interpolation functions become invalid above 9.

Next we obtain gog(1?) in the case of NaF. Having g19(7) by (3.8), and r; =
1/5 for NaF, one can obtain goo(?) with ro = 2/5 by using experimental data
for heat conductivity together with (3.7). Since crystalline materials are known
to have cubic temperature dependence close to zero kelvin (see [6] for NaF), we
take

K(0)
= [~
208 /é‘
156 Z
/
OIS 34 S| v A v

FiG. 3. NaF, conductivity K(v) = 0.1279%(1 + 0.000029*) ' watt K~ 'em~!, and expe-
rimental data after [6].
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(3.12) g20(9) = =b(1 +ed?), b>0, | << 1,
and (3.7) gives

h a0 a?9®
3.13 N = — .
(3.13) A48) b(1 + ed?)

Figure 3 illustrates Eq. (3.13) together with data of thermal conductivity against
temperature for NaF, for 4 a?/b = 0.127 and € = 2.107°.
4. Weakly discontinuous plane waves

In this section, we will consider the system of four Eqgs. (2.16), (2.17), with
k() =0 and 9 < 9y,

o' (1) a() -
(—11) ’ﬁf'— m’j'p Vil — (_:I,(ﬁ) Vp—-(),
(4.2) Pt — 91(9) VY = ga(J)p,

where p = (p'.p?%,p?), and ¥ are continuous in (x,t).
We represent a three-dimensional characteristic surface S(¢) in implicit form
by

(4.3) S(t) = {x € R®: G(x,t) = 0},
where the unit normal n and normal speed A are given by
G G
(4.4) Ao L e,
44 Vgl

Across S(t), p and ¥ are continuous,

(4.5) p] =0, [#]=0,

but their derivatives experience a jump discontinuity. Evaluating (4.1) and (4.2)
across S(t) gives

a'{dr) . afdT) .
(4.6) [9.] - P«u(19+)p [VI] - o (07 [V-p] =0,
(4.7) [p:] — g1 (9)[V¥] = 0,

where 97 and p* are the values of ¥ and p ahead of the wave.
Next we define the directional derivative of a vector field U by

a4

) dt

[U] = [U] + An*[U ],
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where Uy = ——, k=1,2,3, with n and X from (4.4). For U continuous across

S(t), we therefore have
(4.9) [U] = = F[U].

Let a denote the jump of derivatives U,; across S(t) via
(4.10) [U,c] = ang.
Taking U = (9, p',p?,p?) and a = (rp,r',72,7%), (4.10) can be expressed as
(4.11) [VYI] = ron,
(4.12) [VPl=r®n, r=(r',7%¢%).

By combining the compatibility condition (4.9) with (4.7) for ¥ and p, we can
relate rg to r,

(413) r=-rp

This allows us to represent the jumps of the first derivatives of ¥ and p in terms
of 0 ,

(4.14) [8:] = —Aro,
(‘115) HV??]] = ron,
(4.16) [p:] = rogim,
o
(4.17) [Vp] = -ron@n,

where we abbreviate g (91) with gr, and will continue similarly for any functions
of 9 evaluated across S(t). Substituting (4.14) — (4.17) into (4.6) and (4.7) gives
the following equation for A when r¢ # 0,

o't giligd

4.18 L B = (.
(4.18) cjp n o

From (2.18), (2.19) and (2.21) we therefore have real characteristic speeds, de-
pending on the state (97, p*) ahead of the wave, and the normal n to the wave-
front. If 9 < 9, is constant, the evolution Eq. (4.2) implies that p* satisfies

(4.19) pt = pneﬁ";E
with g5 < 0. We take pg = 0, which leads to A = A(91),
_atgf

4.20 A\ =
(4.20) o
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For the remainder of this section we consider plane waves propagating into an
equilibrium state,

(4.21) 9 = constant, p* =0, n = constant.

To derive an equation for the amplitude, ro, we differentiate (4.1), (4.2) with
respect to ¢ and then compute the jump across S(t). Using the relation

(422} ﬂ'ﬂuﬂ = —/\% —An- [V‘!ﬁg]]
and

i d’ro
(4.23) pu] = 9, nm —An- [Vp/]

which come from (4.8) and (4.14) - (4.17), we obtain

dr, ; ’
(4.24) _/\f-‘:_r:%] +15(ch A% = 2dg1) — Aeyn - [VI] — o[V - p] = 0,

5 dr
(4.25) mn—d-f — An- [Vp] + Agiran — g1 [V9:] = gigoron.

For simplicity of notation, we have omitted the symbol “+” in the coefficients

above. Taking the scalar product of (4.25) with —n, we calculate
N

dr A o'
(4.26) n- [Vl =3 - ~nen-[Vp]+ -{i—‘rﬁ — garo.

Using (4.26) in (4.24) gives

B !
(427) —2/\61;@ +T'(2) (CL/\Q = 20{’_(}'] . A?Cvg_l)
dt g1
5. 1
+Acugaro + /\‘Ecu;—n ®@n-[Vp] - a[V - p] = 0.
1
The final two terms in (4.27) reduce to

(4.28) an®@n - [Vp] — o[V - p],

after applying relation (4.20) for A?. Arguing as in [10] (Chapter 2.6), one finds
that

w2 non ol =n- (4 [2] - [F22]) =1o-oa
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As a result, (4.27) can be written in terms of [¢,], using (4.14) and (4.20),
d :
(4.30) é[wt]] + A[9]2 + B[9] =0
where the coefficients A and B are given (see (2.18), (2.19) and (2.21)) by
“_4 39
6g. OF " g

(4.32) B= —%gg > 0.

(4.31) =

Finally we examine (4.31) for the special case (2.27), (3.4) with g1 = at'/2.
This gives

1 3?‘1 5
4.33 == = .
( ) A 2 (19,\ -9+ 29+ )
As in [21], we obtain a temperature 9+ = 9,, at which A = 0, here
519,\
4.34 P — g
i8] oM b+ 5

Since B > 0, the solutions [9;] of (4.30) tend to infinity in finite time whenever
A[9¢]o + B < 0, with initial condition [¢;]o = ¥; (0). We now have an analo-
gous result on the finite time blowup of three-dimensional plane temperature-rate
waves to the one-dimensional case in [21], with a hot temperature-rate wave hav-
ing ¥; (0) > 0, and a cold temperature-rate wave having 9; (0) < 0.

THEOREM Let 97 < oy be the temperature in front of the temperature-rate
wave, and let [9]o = ¥, (0). Then,

1. Ford,, < 9% < 9, (i.e. A > 0), the amplitude [9;] blows up in finite
time if 97 (0) < =8 <0 (cold temperature-rate wave);

2. For 0 < 9% <9, (ie. A<O0), the amplitude [9,] blows up in finite time
if 97 (0) > —% > 0 (hot temperature-rate wave);

3. For 9t =9, (i.e. A=0), the amplitude [9,] is a decreasing function of
time, and blow-up does not occur.

We remark that at 9,,, the system (4.1), (4.2) loses genuine nonlinearity.
Such a temperature has also been found by RUGGERI et al. ([19, 20]), whose
derivation is based on (3.1) for Up and so does not reflect the fact that second
sound is not observed above certain temperatures. As a result, they do not obtain
a relationship of the type (4.34) since there is no analogue of the temperature
playing the part, in solids, of the lambda point for liquid helium.

As in [21], one may also show that no one-dimensional shocks can propagate
into equilibrium states for which 9" = ¥9,,. From (3.10) and (3.11) respectively,
1, is found to be 14.9 K for sodium fluoride and 3.46 K for bismuth.
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