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A new approach to the analysis of polycrystal plasticity
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WHEN A POLYCRYSTAL IS SUBJECTED TO INELASTIC deformation, there inevitably exist
residual microstress fields in a polycrystalline material due to its nonhomogeneous
morphology. The energy stored in these microstress fields may partly be released
and influence the material behavior during subsequent inelastic deformation. Corre-
spondingly, a simple mechanical model is introduced to formulate the constitutive
equation for a slip system and the hardening law for single crystal. The corre-
sponding approach for the analysis of polycrystalline materials is obtained based on
KBW's self-consistent theory. The proposed approach employs no yield criterion
and the corresponding numerical analysis is greatly simplified because it involves
no additional process for determination of the activation of slip systems and slip
direction. A mixed averaging approach is used in polycrystalline plasticity analysis.
The response of 316 stainless steel subjected to typical biaxial nonproportional
plastic strain cycling is described and the validity of the proposed approach is
demonstrated by the satisfactory agreement between the calculated result and
experimental observation.

Key words: Crystal plasticity, Hardening law, Nonproportional cyclic plasticity
of Polycrystal

1. Introduction

THE RESEARCH ON CRYSTAL plasticity can be dated back to 1930’s [1]. Since HiLL
(2], HiLL and RicE [3] built up a complete system of the geometry and kinetics

of crystal plasticity, it becomes more and more attractive.

The conventional constitutive relation of a slip system was derived within the
framework of the conventional theory of plasticity, i.e., taking the existence of a
yield shear stress as its basic premise. Suppose a single crystal is subjected to

the stress o, the activation of its ith slip system is determined by [4]

> if o.:a =71 and o.:a) =71,

(11) '}'“} =0 if orc:a“) s 1"(1J or o'c;a(lj :1-(1)

while o, : aV) < 7(1),
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104 X. PENG AND J. FaN

where

(1.2) il = % (n(n®3(l}+s(l)®nu))

denotes the orientation tensor of the slip system, n'¥ and s} are the unit vectors
directed along respectively along the outer normal of the slip plane and in the
slip direction. In general, the hardening law of a single crystal can be expressed
as

N
(13) 'f'(l} :Z}lu"}‘“)
=1

where i;; denotes the hardening coefficient. Some kinds of A;; have been proposed
on the basis of different kinds of hardening mechanisms [5 - 10].

In the existing literature analyzing polycrystalline response, additional itera-
tions were usually introduced to determine the activation of slip systems and slip
direction because of the existence of a critical shear stress and the corresponding
slip criterion (see Eq. (1.1)). This not only increases the complexity, but also af-
fects the efficiency and accuracy in the corresponding computational process. In
the analysis under a plastic strain controlled process, the computation becomes
more complicated.

A constitutive equation for a slip system is derived on the basis of on a simple
mechanical model, which enables to obtain the hardening law for a single crystal
and the corresponding analysis for polyerystalline response based on KBW's self-
consistent theory. Since the proposed model employs no yield criterion so that no
additional iteration is used for the determination of the activation of slip systems
and the direction of slip, great convenience is experienced in the analysis of
polyerystalline plasticity. The response of 316 stainless steel subjected to plastic
strain cycling along typical paths in biaxial plastic strain plane is analyzed and the
validity of the proposed approach is demonstrated by the satisfactory agreement
between the theoretical and the experimental results [11].

2. Constitutive equation for single crystal

In polyerystalline materials, the deformation of any single crystal is inevitably
constrained by the neighboring crystals due to the nonhomogeneous morphology
of the materials, which may lead to residual microstress fields when plastic defor-
mation occurs. On the other hand, when plastic deformation occurs in a single
crystal, there also exist residual microstress fields in the stochastic microstruc-
tures due to the nonhomogeneous nature and the respective pattern of lattice
defects, for instance, residual distortion, dislocation and its substructures, etc.
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[12]. The energy stored in these microstress fields may partly be released under
certain condition, which reduces the external energy needed for further plastic
deformation of the crystals. Correspondingly, a simple mechanical model (see
Fig. 1) is introduced to describe the constitutive behavior of a slip system, the
similar concept of which was also used in other papers [13 - 15].

T,

Fi1G. 1. A simple mechanical model for the constitutive relation of a slip system.

It is seen in Fig. 1 that the dissipated mechanism of the mth slip system is
described by a dashpot-like block a,, (with plastic damping coefficient a,,) and
a spring C (with stiffness C'). The latter is related to the stochastic internal
structure, and the energy stored in the spring C represents the energy stored in
various kinds of the residual microstress fields. The deformation of the spring
C represents the part of plastic deformation (slip) that may recover under some
condition and does not make any contribution to the macroscopic elastic property.
™) the deformation of a,,, is an internal variable that represents the irreversible
part of the deformation on the mth slip system. The behavior of the spring is
described by

(2.1) #m = ¢ (y(”‘* E p("”) m=12 N

where (™) and 7(™ denote the strain and the shear stress on the mth slip
system, N is the number of the independent ones. The change of p'™ and the
corresponding 7(™) should satisfy the dissipation inequality 7(™dp(™ > 0 (m
not summed). By introducing a generalized time (™ defined by

(2.2) d¢lm = ‘d'y{m)|.

7(Mm) can be assumed to satisfy the following phenomenological relation:

(2.3) 7™ = gy ——, (m not summed),
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where a,, > 0 so that the dissipation inequality can be satisfied in any case.
During irreversible deformation, obstacles formed by the pile-ups and tangles of
dislocations increase the resistance to active dislocations and result in macro-
scopic hardening. The hardening of the mth slip system can phenomenologically
be described by the change of a,,. Suppose the hardening can be separated into
instantaneous hardening and cross-hardening related respectively to the slip on a
single slip system and the interaction between the slips on different slip systems
[10], which are represented respectively by f,, and H,,, and assuming

1c(m)
(2.4) (MRS T (A dztm™ = }CH (rm not summed),
m m
Eq. (2.3) can be rewritten as
] {m)
(2.5) 7m = a4 (jp(m) (m not summed),
az

in which ag is the initial plastic damping coefficient and z(™) is the generalized
time scale of the mth slip system. By combining Eqgs. (2.1), (2.3) and (2.4), one
obtains

(2.6) dr'™ = Cdy™ - ar(™dz™)  (m not summed)

- : C : :
in which @ = —. If C = oo, then p"™ = 4(™) (see Fig. 1), and one obtains
ag

immediately the following result from Eqgs. (2.5) and (2.6)
(2.7) 7" = +ag fnHm  (m not summed).

It is just the critical condition in the constitutive relation of the conventional
crystal plasticity, in which ag is the initial critical shear stress. It should be
stressed that the component C' (see Fig. 1) is related to stochastic internal mi-
crostructure and makes no contribution to the macroscopic elastic shear modulus
G (see Sec. 4). Eq. (2.6) is, therefore, a relation to describe the slip (instead of
overall elastoplastic deformation) on the mth slip system. The form of Eq. (2.6)
is similar to a single term in the endochronic model [16], the back stress proposed
by CHABOCHE [17] and some other constitutive equations. The proposed model
does not use a yield criterion, but it can include the conventional relation with
a yield criterion as its special case (see Eq. (2.7)). It can also be proved that
there exists a limit in stress when slip fully develops [18]. The introduction of
the stored energy may, on the one hand, make the slip model more realistic, and
on the other hand, make the analysis for polycrystalline response much more
convenient.

For easier application to crystal plasticity, Eq. (2.6) can further be expressed

(2.8) #m = 7,4 (m not summed),
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where

all, d,.}({m.)
2‘9 - C e F = —
=y e fmHm' T d(™)

By defining the following hardening coefficient

(m not summed),

(2.10) han = Tinbmn  (m not summed),

one obtains the hardening law for a single crystal

N
(2.11) P N B VY =142, 0N
n=1

It is easily found that for non-softening materials, h,,, is positive definite,
which guarantees the existence and uniqueness of the solution. The above rela-
tions will be used in the following analysis for the nonproportional cyclic plasticity
of 316 stainless steel.

It should be mentioned that although the form of the definition of Ay, in
Eq. (2.10) is similar to Koiter's postulate of independent hardening [19], the
interactive hardening can be considered through H,,. Bassani once mentioned
that the least well-characterized aspect of the constitutive framework for either
time-dependent or independent behavior is the set of instantaneous hardening
moduli h,,, that relate the rate of hardening on each slip system to the plastic
slip-rate on all systems [10]. If H,, is assumed in the following form

(2.12) s Z ;mncm)

one obtains the hardening coefficients (see Eq. (2.11)) as follows:

arm)

f T

where d,,, denotes the Kronecker symbol and g, is a set of material-, geometry-,
temperature- and plastic deformation history-dependent parameters. The form
of the obtained relation is similar to that taking into account the latent hard-
ening. It is easily found that for non-softening materials, a conservative result
is that if g, 1s selected so that f,, Hy, is non-decreasing during any plastic de-
formation process, hyn will be positive definite, which guarantees the existence
and uniqueness of the solution. If g, = 0 for m # n then the hp,y in Eq. (2.13)
reduces to that in Eq. (2.10).

(2.13) e = Cémn — ——gmnl,  (m,n not summed),
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3. Physically based hardening functions

In Eq. (2.4) the hardening functions f,, and H,, are introduced to describe
respectively the hardening related to single slip and cross-hardening related to
the interaction between the slips on different slip systems.

Although the hardening mechanisms may be complicated during the plastic
deformation process, dislocation pile-ups and tangles are considered to be the
two dominant ones.

Dislocation pile-ups form obstacles against active dislocations. The associ-
ated long-range microstress fields are directional and thus kinematic, which can
account to some extent for the Bauschinger effect. The hardening of a slip system
induced by dislocation pile-ups should be determined by the superimposition of
the effects of the corresponding residual microstress fields caused by the disloca-
tions pile-ups in all slip systems.

The hardening induced by dislocation tangles is attributed to the interaction
between the active dislocations and dislocation forests. The associated residual
microstress field is short-ranged and less directional. This type of hardening
strongly depends on the slip histories and the current states of dislocations at
all slip systems. The interaction between dislocations on different slip systems
may result in different hardening effects. The corresponding description should,
therefore, be able to express its history-dependence and the different effect caused
by the interaction between different slip systems.

The hardening behavior of materials strongly depends on the current mi-
crostructure of the materials, but macroscopically described by the hardening
functions. Suppose f,, possesses a saturated value corresponding to the satu-
rated state of dislocation when plastic deformation fully develops, the evolution
of fm can be determined by

dfm
dz(m)

where d; and fB; are two material-dependent parameters representing respectively
the saturation value of f,, and the rate for f,, to approach d;.

BASSANI [10] proposed a hardening law that can well describe cross-hardening
based on a detailed analysis. This law is directly adopted to be the cross-
hardening function H,, as follows

(3.2) Hu=1+Y fmsth(28,6"™) (m=1,2,...N),
k#m

(3.1)

== ,ﬁl (dl = fﬂ'l):'

in which ¢®) denotes the accumulated slip at the kth slip system, f3; is a material
parameter representing the rate for Hp, to approach to its saturation value, and
fmk denote coupled hardening coefficients connecting the relative orientation of
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A NEW APPROACH TO THE ANALYSIS OF POLYCRYSTAL PLASTICITY 109

the considered two slip systems m and k, which can take into account the con-
tribution of the accumulated slip of the kth slip system to the hardening of the
mth slip system.

It can be seen that there exist saturated values d; and 1 + Z Fmg for i

k#m,
and H,,. respectively. It is easily shown that there exists a saturated value for

the shear stress on a slip system when plastic deformation fully develops, and the
hardening modulus T, tends to vanish as the shear stress tends to this saturated
value.

4. Application and verification

4.1. Incremental form of the proposed constitutive relation

It has been pointed out by PENG and FAN [20] that when « is very large,
rewriting Eq. (2.6) directly in an incremental form will induce a very large error in
numerical analysis and even affect the convergence of the solution. To avoid this
situation, the integral of Eq. (2.6) is introduced and the following incremental
constitutive equation is derived |20]:

(4.1) Art™ = A Ay™ 4 B, A2(™  (m not summed),
in which

A = B, By = —kmar™(2m),  2m) = 5m) 4 A,(m)
(4.2) (m not summed),

e—n.-_\zf'"? Ac{m}
km = L} Az(ﬂ’l) e A {Tn) = ‘A {Tﬂ}
adzim) mem 4 ¢ i
(m (m)

2™ and 7m) (2,™) denote respectively the generalized time scale and the shear
stress of the mth slip system after nth incremental loading, with which Eq. (2.8)
can be expressed as

F‘.'an A‘Y(m}

FuBn! ™ AL

(m not summed).

(4.3) Ar™ =T, Ay™), T, = A +

The constitutive relation for a single erystal can then be expressed in the
following incremental form

N
(4.4) ) = N i A,

n=1
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4.2. Polycrystalline analysis based on KBW's self-consistent theory

Suppose the considered crystals and polycrystals are plastically incompress-
ible, in the case of isothermal and small deformation, KBW's self-consistent model
gives [5, 21]

(4.5) Ao, — AG = -2G(1 - B)(A€P — AFP),

where Ao, and Ael denote respectively the increments of stress and plastic
strain in a single crystal, AG and A€” the increments of averaging stress and
plastic strain of the polycrystal, G elastic shear modulus of the material, and f
satisfies

2(7 - 5v)
15(1 — w)

in which v denotes Poisson’s ratio. It is easily obtained from Eq. (4.5) that

(4.6) 2G(1 — B) = G

(47)  (ACo)kk = ABr,  Ase— A5 = —2G(A€? — AT — AT),

where As. and AS are, respectively, the incremental deviatoric stresses of single
crystal and polycrystal, respectively. By defining Aq as follows

ol — Ra
(4.8) Aq = As + Mcﬂgﬂ = As, + MGAE’;
15(1 — v) 15(1 — w)
and using
N
(4.9) Ael =" a%ay™, A =l As,,
m=1
one obtains
N
(410) Z A?IIRA‘Y(”” = b?!.! (n = 11 21 L N)s
m=1
in which
2(7 — 5v)

(4.11) Anm = bnm + Ga™ . xm  p = Aq: ™.

15(1 — v)

In the above equations the macroscopic plastic strain increment A€” is related to
the plastic strain increment of each crystal Agf by a certain averaging procedure,
i.e.,

(4.12) Ae? = {Ael}
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and the increment of stress can then be calculated by

(4.13) As = 2G (Ae — AFP), AT = 3K ATy,

in which A€ is the deviatoric strain increment of the material, and K is the
elastic volumetric modulus.

4.3 Averaging procedure

In general, Eq. (4.12) can be specified as follows

N
(4.14) AP = %Z Aeri)y,

=1

in which Aspl Y and V; represent respectively the plastic strain increment and the
volume of the ith single crystal, and V is the volume of the polycrystal. If one
further assumes that the volume of crystals are identical, i.e., V = N'V;, then
Eq. (4.14) can be rewritten as

N
(4.15) AT = ;(—,Z/_\s{:f”.

=1

In analysis, polycrystal is usually considered as an aggregate of numerous

single crystals with randomly distributed orientations. With this assumption,
Eq. (4.15) can be expressed as an integral and then calculated with Gaussian
quadrature approach [22]. This method, in substance, determines approximately
the response of a polycrystal through the single crystals with some specific orien-
tations by weight factors, and can hardly guarantee that the chosen orientations
are spatially uniformly distributed, especially in the directions of 8 and ¢ (see
Fig. 2). To overcome this shortcoming, a mixed averaging approach is used in
polycrystalline analysis, which is based on an icosahedron: the outer normal di-
rections of the 20 faces determine 20 spatially uniformly distributed orientations
and are represented by 20 sets of 6; and ¢; (i = 1,2,...,20), and in each face
it is assumed that there are numerous single crystals with randomly distributed
orientations, i.e., w varies continuously (see Fig. 2). If the arithmetic averaging
procedure is used for 0; and ¢; (i = 1,2,...,,20) and integral averaging for w,
Eq. (4.15) can be rewritten as

20

(4.16) Ef’z—z /As (0, i w)dw
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m .

I

1

Fi1a. 2. Global and local coordinate systems.

It is found that: (1) the 20 faces of an icosahedron can be separated into 10 sets,
in each of which the two faces are parallel to each other; and (2) the integral
range of w can be reduced to [0, 7/2] due to symmetry. The above equation can,
therefore, be rewritten as

10 3
[} ]' 2 /)
(4.17) AT = Tﬁ;;//_\q.(ﬂi,q‘:i.w)dw‘
= Yip

Further applying the Gaussian quadrature to Eq. (4.17), one obtains

10 4

1 .
(4.18) AT = D) A AL (s biwj),

=1 7=1

where the coordinates of the Gaussian integration points w; and the correspond-
ing weighted coefficients A3 are listed in Table 1 (see Appendix), and the values
of the 10 sets of independent 6; and ¢;(i = 1,2, ...,10) are listed in Table 2.

The above averaging procedure involves the response of 40 single crystals
with different orientations even if the improvement by the Gaussian weighed
coefficients is not considered. It should be stressed that the distribution of the
orientations determined by the chosen #; and ¢; are spatially uniform.

Table 1. The coordinates of Gaussian points w; and the corresponding weighted coefficients A7,

i 1 2 3 4

w; (rad) | 0.1090633 | 0.5183777 | 1.052419 1.461733

AY 0.3478548 | 0.6521452 | 0.6521452 | 0.3478548
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Table 2. Values of the independent 10 sets of f; and ¢;.

10

-3
v <]
=]

3 1 2 3 4 5 6

2:(>) 0 72 144 216 288 288 216 144 72 0

¢;(°)| 37.38 | 37.38 | 37.38 | 37.38 | 37.38 | 142.62 | 142.62 | 142.62 | 142.62 | 142.62

4.4. Application and verification

The cyclic plasticity of 316 stainless steel subjected to some typical biax-
ial nonproportional plastic strain paths is analyzed. The material has a face-
centered-cubic (FCC) crystal lattice. In the local coordinate systems the n and
s of the 12 independent slip systems are listed sequentially in Table 3.

Table 3. 12 sets of independent n and s of FCC crystal.

1 2 3 4 5 6 7 8 9 10 11 12

n | (117) | (117) | (1171) | (1T1) | (171) | (1T1) | (1T D) | (ATT)| (AT T) | (111) ] (ann) | (111)

s | [101]| [o11] [ [170) [110] | ([o11] | [ro1) | [r01] | [r1o]| [011]| [r01]| [0T1]| [1T0]

Following BASSANI’S consideration [10], the coupled hardening coefficients fin,
can be expressed in the form of a matrix as follows in terms of the sequence of
the independent slip systems (see Table 3)

0 C] C] C;; Co Cy C C;g CQ C1 C:; CQ

0 C Cy C C C C3 Cp C3 Cp C
0 Ci Cy C3 Co C1 C3 Cy Cy G

0 C C C C C C C; G

0 C Cy Co € G Gy €3

0 C, Cy C3 C; Cy Cy

[fm"]: 0 & C €y CGa O
0 1 €5 C ¢

0 Cy C €y

sym. 0 C ¢

0 C;

0

http://rcin.org.pl



114 X. PENG AND J. Fan

A procedure for the analysis of the stress (or strain) response of polycrys-
talline materials subjected to a strain (or stress) history was suggested by PENG
et al. |23], where no additional iteration is used for the determination of the acti-
vation of slip systems and the direction of slip. It greatly simplifies the numerical
process. The stress response of 316 stainless steel subjected to nonproportional
strain cycling was analyzed and experimentally verified [23].

When deformation is controlled by plastic strain, the numerical process be-
comes more complicated. The macroscopic stress increment As and the stress
increment As, of each crystal can not be known before the shear stress of each
slip system, A7) is obtained, so that As, has to be determined by solving the
following equation:

(4.19) ™ . As, = A7(™) U= 1,2 e )L

There are 12 equations in Eq. (4.18) for FCC crystal and it can be shown that
there are five independent ones among them. It should be emphasized that in the
framework of the employed constitutive model, no yield criterion is used and the
relation between slip and the corresponding shear stress is smooth and continu-
ous. Slip occurs at extremely low rate at the onset of loading and unloading but
increases and speeds up as (™) increases. At any stage of deformation, Ar(™)
can uniquely be determined by the given Ay(™) (see Eq. (4.4)), and inversely.
Ay™ can also be uniquely determined by the given A7(™)_ This feature greatly
simplifies the numerical process, in which one can simply select and fix five inde-
pendent slip systems a priort without considering if slip occurs on each system or
not. Given a set of A7(")| the five components of the corresponding As, can be
obtained by solving Eq. (4.19). The increment of the polycrystalline stress As is
then related to As, of each crystal by some averaging procedure, i.e.,

(4.20) As = {As,}.

The following averaging procedure similar to Eq. (4.17) can be derived from
Egs. (4.7), (4.12) and (4.18)

10 1
|
(4.21) As = —2—OZZA;’ASC(9f,¢1—,wj)-

=1 §=1

In the conventional theory of crystal plasticity, no slip occurs in a slip system
if the shear stress is less than the critical shear stress. In other words, the
relation between stress and slip is not unique before slip occurs. When solving
As, from Eq. (4.19), one can hardly select and fix 5 independent equations from
the 12 ones a priori. For nonproportional loading, searching for this kind of 5
independent, equations is tedious and needs some additional principle such as the
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principle of maximum plastic work proposed by BisHop and HiLL [24] to reduce
the computational difficulty.

A numerical procedure for the analysis of the elastoplastic behavior of a
polycrystalline material subjected to nonproportional plastic strain histories is
proposed as follows: with the result obtained in the kth iteration of the nth

(k) X
increment of loading, such as ASE }} of the material, Aﬁz(n) and ASE-.?::} of each

single crystal and {.ﬂv("‘ (H {._\C(”‘}}Ek?)), {Az(”‘)}m of each slip system, one

can calculate [h.-g}.-]}i] with Eqw (4.2), (4.3) and (2.10). Given an increment of

plastic strain ...le?n), AqEAJr ) can be calculated with Eq. (4.8) and then [A,-_,—]Ei;,

{(’j}E:ﬁ with Eq. (4.11), {Ay(™) }§h+l} by solving Eq. (4.10) and {AT(’“’} (k1)

by Eq. (4.4). ds[Hn of each crystal can be obtained by solving Eq. (4.19)

c(n)
and AEE’:}L” by Eq. (4.21). The iterative process continues until the following

inequality is satisfied

k+) _ pg(h
o |1Agf, ll

(4.22) i_u?dwc| (m) = Aapll
= STFWO)

where N' is the total number of the single crystals used in the calculation, § and
dg are respectively the maximum relative error and the tolerant error. The value
of dy is chosen as 1% in the calculation. Then the obtained incremental results
are added respectively to the corresponding results up to the (n — 1)th increment
of loading and one, therefore, obtains s, of the polycrystalline material, {Eg}(ﬂ;
of each single crystal, {™}¢y, {¢"™}m), {z(m)}(n), {fm}m)s {Hm}n) of each
slip system, and starts the calculation of the next increment of loading.

The response of 316 stainless steel subjected to biaxial nonproportional plas-
tic strain cycling at room temperature is analyzed with the proposed approach.
The material is considered as an aggregate of single crystals with FCC lattice
structure. The material constants are determined as follows from the experimen-
tal result [11]:

G =TGP, =023,

C=292+10° GPa, a=3.2%10% d.=1.0,
C, =004, C>=0.30, C3;=0.50, B,=15.

The constitutive behavior of a slip system during loading-unloading and
reloading determined by the constitutive model is shown in Fig. 3 without taking
into account the cross-hardening. The solid line corresponds to the determined
C, o and d.; while the dashed line corresponds to the same d. but both C and
a are reduced to 10 percent of the determined values. It is seen that when « is
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sufficiently large, the constitutive behavior of a slip system is quite close to that
using the slip model containing a yield criterion, and an appropriate choice of
« can describe to some extent the Bauschinger effect. For biaxial analysis, we
define the following stress and strain vectors:

= = 1
(4.23) G = ony + V3rny, & =¢ePn; + ﬁ’wnz

.

in which ¢ and 7 denote the tensile and shear stress, respectively, € and P the
tensile and shear plastic strain, n; and ny are two unit vectors perpendicular to
each other. We also define the equivalent stress, equivalent plastic strain and the
accumulative plastic strain as follows:

5 ; ch . 1 .
(4.24) 0e=|6]= Vo2 +3r%, =& =/()?+3(+)",
¢P = /|d€”|.

Lh
(=]
T

-150 . . » ;
-15 -1 05 0 05 1 15

v/ %
Fic. 3. The loading-unloading and reloading behavior of a slip system without consi-
dering cross-hardening.
The calculated o—<P curve of the material subjected to symmetrically tensile-
compressive plastic strain cycling with a fixed equivalent plastic strain amplitude

1
eh = 0.2% is shown in Fig. 4. And the relation between V37 and —3-7” of the

material subjected to symmetrically plastic shear strain cycling with the same
equivalent plastic strain amplitude is shown in Fig. 5. Both are in satisfactory
agreement with the experimental result [11]. It is seen by comparing Fig. 4 with
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400

200 +

Tensile stress / MPa
=)

-200 }

-400 : :
03 @15 .0 0I5 03

Tensile strain / %

FiG. 4. Calculated ¢ — &” curve corresponding to symmetrically tensile-compressive
plastic strain cycling with 2 = 0.2%.

Fig. 5 that besides the minor difference between the hysteresis loops, the cal-
culated equivalent stress amplitude corresponding to plastic shear strain cycling
are distinctly less than that corresponding to tensile-compressive plastic strain
cycling (also see Fig. 8) although the equivalent plastic strain amplitudes are
identical. This phenomenon also coincides with the experimental observation
and can mainly be attributed to the difference of the activation of slip systems
under these two kinds of loading conditions, which can not be well described by
simply using the Mises equivalent rule.

400

200

Shear stress / MPa
=

=200 +

-400 - =l
03 015 0 015 03

Shear strain / %

FiG. 5. Calculated v/37 — 4?/V/3 curve corresponding to symmetrically plastic shear
strain cycling with 42/v/3 = 0.2%.
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In the analysis of the response of materials subjected to nonproportional
plastic strain cycling, one usually defines the radius of the minimal super-sphere
surrounding the cyclic plastic strain path as equivalent plastic strain amplitude
. Figure 6(a) and (b) show respectively the calculated and experimental [11]
biaxial stress trajectories corresponding to the square path with e = 0.2% in
eP — 4P /\/3 plane (the coordinates of the four corners are (0.2%.0), (0,0.2%).
(—=0.2%,0) and (0, —0.2%), sequentially), and Fig. 7(a) and (b) the calculated
and experimental [11]| stress trajectories corresponding to the 90° out-of-phase

600

300 +

Shear stress / MPa
o

&
=
S

-600
-600 -300 0 300 600

Tensile stress / MPa

= . Sy : ry Fr . s
I'1G. 6. a) Calculated stress trajectory in ¢ — /37 plane corresponding to the cyclic
square path in e” — 47 //3 plane.

Shear stress / MPa

Tensile stress / MPa

FIG. 6. b) Experimental stress trajectory in o — /37 plane corresponding to the cyclic
square path in e? — 4?/y/3 plane.
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(circular) path with e} = 0.2%, respectively. The comparison between the cal-
culated and experimental results shows reasonable agreement. Compared with
the results corresponding to the proportional paths (see Figs. 4 and 5), the stress
amplitudes in Figs. 6 and 7 increase about 50% (see Fig. 8). This marked differ-
ence can be attributed to the cross-hardening caused by the intersection between
the moving dislocations and the dislocation forests, the dislocation tangle and

600

300

Shear stress / MPa
(=]

-600
-600 -300 0 300 600

Tenslle stress / MPa

FiG. 7. a) Caleulated stress trajectory in o — v/37 plane corresponding to the cyclic
circular path in e? — 47 /+/3 plane.

-600

Shear stress / MPa

-6004-

Tenstile stress / MPa

Fic. 7. b) Experimental stress trajectory in o — v/37 plane corresponding to the cyclic
circular path in e? — 4?//3 plane.
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FIG. 8. a) Calculated relation between equivalent stress amplitudes and accumulated
plastic strain along different plastic strain paths.
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FiG. 8. b) Experimental relation between equivalent stress amplitudes and ac-

cumulated plastic strain along different plastic strain paths.
[120]
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the corresponding substructures induced by which may greatly increase the re-
sistance to dislocation glide. In phenomenological analysis, such kind of increase
is usually attributed to the nonproportionality of the plastic strain path and is
considered by introducing an appropriate measure of nonproportionality and the
corrssponding hardening laws [13, 23, 25]. In the proposed approach, the re-
sporse is satisfactorily described by considering the interaction of dislocations
along different slip systems. The variation of the equivalent stress amplitude
0, against the accumulative plastic strain (7 along the above four typical paths
in £ — 'y?’/\/'_& plane with a constant strain amplitude €5 = 0.2% is shown in
Fig. 8. These plastic strain paths can be classified to proportional ones (cyclic
tenson-compression and cyclic torsion, respectively) and nonproportional ones
(square path and circular path). Calculation shows that, for the proportional
plasiic strain cycling the equivalent stress amplitudes are relatively small, but
for the cycling along nonproportional plastic strain paths, the equivalent stress
amplitudes greatly increase. The qualitative and quantitative agreement between
the calculated and experimental results [11] demonstrates the validity of the pro-
posed approach in the analysis of plastic strain controlled nonproportional cyclic
crys:alline plasticity.

5. Discussion and conclusion

During inelastic deformation process, a part of energy can be stored in the
substructure of materials in the form of residual microstress fields and this part
of exergy can be released under some condition so that the external energy to
activate and motivate dislocations can be reduced. With this viewpoint, a con-
stitutive relation for a slip system is derived based on a simple mechanical model
conssting of a spring and a plastic dashpot-like block. The corresponding harden-
ing hw for single erystal and the approach based on KBW's self-consistent theory
for polverystalline analysis is then obtained. The constitutive model contains no
yielc criterion and the corresponding numerical analysis is greatly simplified.

A mixed averaging approach is used to analyze the response of polycrystalline
materials, It is based on 20 sets of 8; and ¢; representing 20 spatially uniformly
distnbuted orientations, and in each face with a set of #; and ¢; as its normal it is
assuned that there are numerous single crystals with randomly distributed orien-
taticns. An arithmetic averaging procedure is used for 8; and ¢;(: = 1,2,...,20)
and Gaussian quadrature averaging procedure is used for w.

A valuable discussion on the crystal orientation distribution was given in [26],
in wiich the volume of FCC crystal orientation space was shown and the minimal
size of the orientation regions for crystals was suggested. In the present analysis,
it seemns from Eq. (4.17), Tables 1 and 2 that the orientation region for crystals is
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(0<0<27,0< ¢ <7/2,0<w < 7/2). The values of 0 used in the analysis are
(0°,72°,144°,216°,288°). Calculation shows that if the values of # were replaced
by (0°,72°,144°,36°,108°), i.e., the region of # was reduced to [0, 7), identical
results for all the given plastic strain paths would be obtained. But if they were
further replaced by (0°,72°, 54°,36°, 18°), i.e., the region of § was reduced to [0,
m/2), a marked difference was detected. It indicates that the adopted orientation
region for crystals may further reduce to (0 <0 < 7,0 < ¢ < 7/2,0 < w < 7/2)
and a conservative estimation for the volume of the orientation space is

w

2= / dd

0 0

7{.2

X
2

dw / sin ¢pd¢gp = —
0

o] N

2 ?

which is a little larger than the volume of FCC erystal orientation space [26]
and may result in some equivalent orientations when the number of the used
orientations is large.

The cyclic plasticity of 316 stainless steel subjected to four typical biaxial
nonproportional plastic strain paths was analyzed and experimentally verified.
Calculation also showed that the corresponding numerical algorithm is of good
convergence and efficiency.

Appendix
Gaussian quadrature can be expressed as

1

(A.1) /f(.r)d::: =Y Aif(zs).

;1 k=1

Suppose the orientation region for crystals is (@) < 6 < ag,b1 < ¢ < by,
¢1 € w < ¢), the averaging of s is given as

az Ca bz
(A.2) <s>= %[fiﬂ/dwfs(t?,gb,w)six'lgodgo,
) € by
where
az €2 ba
(A.3) 2= /dﬁ/dw/sin dde.
ay €1 by
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1
If the #. w and ¢ are replaced respectively with -2-[(0-3 —ap)zr +(az +ay)],

1 1
3 [(e2 — 1)y + (e2 + ¢1)], and arccos {5 [(cos by — cosby)z + (cos by + cos bz)]}.
Eq. (A.2) can be rewritten as follows by using Eq. (A.3)

1
/d? /di /sdz,

-1

(A4) <s>=

Oclh—-

where

(2 —er)y+ (c2 + )],

| =

§=35§ (% [(ag —ay)z + (az + a1)],

arccos {% [(cos by — cosba)z + (cos by + cos bg]]}) .

Eq. (A.4) can then be numerically calculated by

N; N;i Ny

(A.5) L8 >== ZZZA AY ALs(0;, wjb),

al_}lkl

where N;, Nj, Ni and A A7, A}f denote the number of integration points and
the weight coeflicients.

If the orientation region consists of n subregions 2;(I = 1,...,n), the averag-
ing of s can be calculated with

(A.6) <s>—QZ/ sd2 = ZQQ/ sd9=2m<s>,-

t—ln 2, i=1

in which V; and < s >; denote respectively the volume fraction and the averaging
of s of the ith subregion.

At the given range of orientation region for crystals and the number of Gaus-
sian integration points, one can find the coordinates of the integration points and
the corresponding weight coefficients. For example, for 0 < w < 7/2, and using
four integral points, one can find that the coordinates of the Gaussian integra-
tion points are y; 2 = +0.3399810 and y34 = £0.8611363, which corresponds
to w1234 = 0.5183777, 1.052419, 0.1090633, 1.461733 (rad), the corresponding
weight coefficients are AY = AY = 0.6521452 and A% = A§ = 0.3478548 which
are ‘he values given in Table 1.
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