Arch. Mech., 52, 6, pp. 1001-1010, Warszawa 2000

Brief Notes

On the order of singularity at V-shaped
notches in anisotropic bodies

A. BLINOWSKI, J. ROGACZEWSKI

Polish Academy of Sciences
Institute of Fundamental Technological Research,
Swigtokrzyska 21, 00-049 Warszawa, Poland

University of Warmia and Mazury in Olsztyn
Okrzer 1A, 10-26 Olsztyn

THE SELF-SIMILAR PROBLEM of stress singularity at the notch in infinite two-
dimensional elastic orthotropic body was considered. The considerations were re-
stricted to the notches symmetrically oriented with respect to the axes of orthotropy.
Both, the extension and shear modes were studied. It was confirmed that in the
limiting case of zero apening angle (semi-infinite crack), the order of singularity is the
same as in the case of isotropic material — r~!/2. This is not true in the case of finite
opening angles. If the orientation of the notch axis is parallel to the axis of maxi-
mal stiffness, the order of singularity is lower than that for the case of perpendicular
orientation. In the last case, if the ratio Er/EL is small enough, then the order of
singularity in tension does not practically decrease with growing opening angle 2a up
to o = /4.

1. Preliminary remarks

THE PROBLEM OF FORMULATION of the fracture criteria at the tips of V-shaped
notches in anisotropic materials needs some knowledge on the order of singularity
involved [1] (see also [2, 3]). One may expect that values of this parameter
essentially depend not only on the opening angle, like in the case of isotropic
material, but on the material anisotropy as well. Another important practical
problem of computational mechanics of strongly anisotropic materials consists in
a proper choice of the parameters of “singular” finite elements for the calculation
of the stress distribution in the vicinity of the notch tip. To this end one also needs
exact knowledge on the order of singularity. In the foregoing sections we shall
briefly sketch the way leading to the family of analytic self-similar solutions in
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polar co-ordinates as well as to the numeric procedure of choice of these solutions
which fulfill the imposed homogenous boundary value conditions at free edges.
In the present paper we shall confine our attention to the cases, when the axis
of symmetry of the infinite notch coincides with the axis of orthotropy. The
solutions for arbitrarily oriented notches can be readily obtained, however their
interpretation is not trivial and it will be postponed to the separate paper.

2. Basic relations

For the description of the plane orthotropic problem we shall follow the way
proposed in [4]. We assume that the co-ordinate axes {z, 22} are chosen along
the axes of symmetry of the orthotropic plane elastic medium. In such a case
two-dimensional constitutive relations of linear elasticity can be expressed as
follows:
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where E; denotes Young’s modulus corresponding to the uniaxial tension in z;
direction!, 71,72, v3 are dimensionless constants, fulfilling the following relations:
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The meaning of Ey, i and vy3 is obvious. Without any loss of generality v1, y2, 73
can be assumed to be positive. Imposing the conditions of the Poisson ratios and
elastic energy positiveness, one can obtain the following constraints which should
be imposed on vy, vz, and ~v3:

(2.2) Y+ <27 < (m+m)?.

This means that two of them, e.g. 7 and 79, can, in principle, assume any
positive values.
Let us introduce Airy stress function ® (z,,z2), such that

'We assume plane stress conditions, where all material constants under consideration are
the same as in the three-dimensional case, corresponding values for the plane strain can be
readily obtained by assuming £33 = 0.
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1 = ‘I>,221
(2-3) g3 = ‘I’,u,
a1z = —P 19,

where comma denotes partial derivative in Cartesian co-ordinates. Combining

relations (2.3) and (2.1) and substituting the result into the strain compatibility
condition

(2.4) €11,22 + 22,11 = 2€12,12,

one can obtain in a standard way the following orthotropic counterpart of the
biharmonic equation describing the isotropic material:

(2.5) ® 2900 + (Vi +73) 1122 + Vi¥E®@ 1111 = 0
(compare (2.9) in [4]). The last equation can be rewritten in the following form:
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where the symbol x (used here for typographic reasons only) denotes superpo-
sition of operators, 7 = v/—1. Thus, any differentiable function of any of the
following complex variables:

(2.7) n=a+inw, =z —inc2, &= +iyT, &= —iY2T2,

satisfies Eq. (2.5).
Looking for singular solution it is reasonable to take into consideration power

functions of these variables. Adopting polar co-ordinates one can express e.g. 7
as follows:

(2.8) n=r(cosp + iy sing).

Note that here variables r and ¢ do not denote the modulus and argument of 7,
instead we have

. F 1
(2.9) |9l =7 (cos*p+1fsin®p)?,  Arg(n) = Arctan (v, tanyp),

thus, one can write:
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(210) p* =2 (cos® ¢ + 77 sin® tp)l‘M2 x {cos [(2 — A) Arctan (y; tan ¢))
+ isin[(2 — A) Arctan (v, tanp)]}.
For practical calculations certain care must be taken to keep the values

(211)  pi(p) = Arctan (v1tang), B2 (p) = Arctan (v, tan )

in the same quarter-plane as ¢: Sgn(cosf;) Sgn (cos ), Sgn(sinf;) =

Sgn (sing) for i = 1,2.
For further considerations we shall restrict our attention to real values of A
parameter?. For this case we can look for the following Airy stress function:

(2.12) F(r,p) =r*[@(p) + ¥ (p)],

where

®(p) = A®; (p) + B2 (),

(2.13)
¥ (p) = C¥(p) + D¥2(¢),
and
(cos? p + ¥ sin? p) '~ cos [(2 — X) 1]
e B (¢) = (cos p +3sin’ ) ™V cos[(2 - 1) o],
v (c05290+'yfsin?ga)l sm[ (2-2A) 6],
cos? ¢ + 4 sin’ s sin[(2 — ) Bo],
2

A, B,C, D are arbitrary constants.

3. Solution of the boundary value problem

In the polar co-ordinate system, the following expressions for the stress field
components in terms of Airy function derivatives hold true [5]:

2The authors hope to return in the future to the discussion on the physical sense of high-
amplitude oscillations of stress at the vicinity of singular point like ™ cos(In(r)), which
would follow from the imaginary part of A if an expression of type (2.10) were taken as a stress
function.

http://rcin.org.pl



ON THE ORDER OF SINGULARITY AT V-SHAPED NOTCHES... 1005
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As it was already mentioned, in the present paper we shall focus our attention on
the restricted class of boundary value problems: V-shaped notches of the opening
angle 2, 0 < @ < 7/2 symmetric with respect to z; axis (compare Fig. 1).

b x,

! éfé//////
\“ \\\

F1G. 1. Orientation of the V-shaped notch with respect to axes of orthotropy.

We assume also the absence of contact forces at the boundaries:
Oy (r, 1*3‘100) =0,
(32)
Ory (T: :JCEOU) = 0:
where ¢y = m — a. Bearing in mind the symmetry properties of the functions

® (¢) and ¥ () and relations (3.1), one can prove that conditions (3.2) split into
two independent problems:

Ay (o) + BP2 (¢g) = 0,
(3.3)

D) (o) + B®) (¢g) = 0,

and
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C¥1 (po) + DY (po) = 0,

(3.4)
CU\ (go) + D¥ (o) = 0,

where “prime” stands for the first derivative with respect to ¢.

Equations (3.3) describe Mode I (tension) while system (3.4) corresponds
to the Mode II (shear). Characteristic equation associated with (3.3) has the
following form:

(35) (9 — 1) cos[(2 = X) Bi (o) cos (2 — ) B2 (po)] tan g
= (14+18) y2cos[(2 = X) B1 (o)) sin [(2 = A) B2 (o)]
+ (1+493) mcos[(2 = A) B2 (wo)] sin [(2 = A) B (w0)] = 0,
while Egs. (3.4) yield the following condition
(36) (3 —1d)sin[(2 - X) B (o)) sin[(2 — A) B2 ()] tan g
+ (14 9%) 725in[(2 = X) B1 (o) cos [(2 — ) B2 (0)]

— (1 +93) msin[(2 — X) B2 (wo)] cos [(2 — A) Bi (v0)] = 0.

0.1

F1G. 2. Order of singularity A versus decreasing opening angle a, Mode I, 7y = 0.4,
2 = 0.3 (E,/E; = 0.0144), notch axis perpendicular to the axis of maximal stiffness.
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Fic. 3. Order of singularity A versus decreasing opening angle o, Mode I, almost
isotropic material v, = 0.99, v = 1.01.
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F1G. 4. Order of singularity A versus decreasing opening angle o, Mode I, vy, =4, 72 =3
(E1/Ey = 144), notch axis parallel to the axis of maximal stiffness.
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Fi1G. 5. Order of singularity A versus decreasing opening angle a, Mode II, v, = 0.4,
v2 = 0.3 (Ey /E> = 0.0144), notch axis perpendicular to the axis of maximal stiffness.

0.1

F1G. 6. Order of singularity A versus decreasing opening angle a, Mode II, almost
isotropic material v, = 0.99, 75 = 1.01.
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In Figs. 2, 3, 4 are shown, for different values of v, and 7,, contour plots
(zero level only) of the function defined by the left-hand side of Eq. 3.5. The
curves join the points at which Eq. (3.5) is satisfied. Similar plots for Eq. (3.6)
are shown in Figs. 5, 6, 7.
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FiG. 7. Order of singularity A versus decreasing opening angle o, Mode II, 7, = 4,
v2 = 3 (Ey/E; = 144), notch axis parallel to the axis of maximal stiffness.

4. Concluding remarks

It can be readily seen that even strong anisotropy does not change qualita-
tively the results which had been found earlier for the isotropic case (cf. [1]). It is
a proper place here to recall that the ratio of Young moduli E;/E; is equal to the
product of the squared gammas y27?, thus, in our examples, longitudinal mod-
ulus differs from the transversal one by two orders of magnitude. The following
quantitative effects can be observed: the order of singularity A for both modes
of loading is lower for the case of notches having their symmetry axes parallel to
the axis of maximal stiffness, and higher for the perpendicular orientation. The
isotropic case takes the intermediate position.

As it has been mentioned earlier, the problems of arbitrarily oriented V-
notches and, possibly, of the stress distribution at the vicinity of the contact
points of three differently oriented wedges made of the same anisotropic material
(modelling polycrystalline solids), will be considered in a separate paper.
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