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IN THE PRESENT PAPER, a macroscopic free energy potential for shape memory al-
loys in the pseudoelastic range of their behavior is derived. It is assumed that the
macro-element made of Shape Memory Alloy (SMA) is composed of austenitic and
martensitic phase. It is stipulated that on the mezo-scale level, the micro-constituents
obey pgeneralized thermoelastic Hooke's law, in which eigenstrains connected with
martensitic phase transformation are present. The primary target of the paper is not
determination of the specific form of the macro free energy but revealing its structure
resulting from the micro-macro transition. This structure is of a fundamental sig-
nificance for subsequent development of macroscopic constitutive relations for Shape
Memory Alloys. Micro-macro transition procedure allows for identifying the corre-
spondence between the actual micro-phenomena and individual terms appearing in
the free energy macro-potential. The performed calculations throw a new light on
the so-called accommodation energy, a part of which is the interaction (coherence)
energy appearing in contemporary literature. On the application side, it was possible
to explain a certain paradox appearing in the attempts made to describe the behavior
of some TiNiX ternary alloys (TiNi alloy) undergoing R-phase transformation.

RECENTLY MUCH ATTENTION in research and industry has been focused on ma-
terials, which exhibit properties unusual in comparison to “standard” materials.
These materials can further be used for construction of smart structures (see
e.g. [22]). Shape memory alloys such as NiTi, TiNiCo, TiNiAl, CuZnAl, CuAINi
are prime candidates here. They are already used in construction of connectors,
release mechanisms, control devices, medical tools and many other engineering
mechanisms (see [14]). What makes the shape memory alloys special is that they
. can fully recover from relatively large strains (on the level of 4% — 8% in practical
applications) upon appropriate stress and/or temperature histories. Metallurgi-
cal studies showed that this special effect of SMA materials originates from the
thermoelastic martensitic transformation (see e.g. [12]). During this transforma-
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tion, a high temperature and high symmetry austenitic phase of SMA transforms
into a low temperature and lower symmetry martensitic phase. The transfor-
mation may be induced either by lowering temperature or applying stress. The
microstructures appearing as a result of this transformation were extensively in-
vestigated in metallurgical literature during the last forty years and are at present
quite well known. For an extensive review of the thermoelastic martensitic trans-
formation and microstructure properties arising from the metallurgical point of
view we shall send the reader to the book by CHRISTIAN [3] and his very recent
paper [2]. The theoretical works aiming at the description of shape memory alloys
behavior lagged behind the experimental ones until late 80-ties and beginning of
the 90-ties when a number of models of SMA materials mechanical behavior ap-
peared. Apparently, FALK [4] has proposed the first macroscopic thermodynamic
constitutive model of SMA materials. He postulated the free energy potential in
the form of a 6" degree polynomial. He managed to obtain a good qualitative
description of SMA materials in pseudoelstic range of their behavior, without
introducing any internal variables in his model. The coherence energy M pro-
portional to the product of martensitic phase and austenitic phase fraction made
a big step in modeling of Shape Memory Alloys. This term introduced heuristi-
cally into the free energy potential allowed for a good quantitative description of
the hysteresis loop formation on the grounds of non-equilibrium thermodynamics.
Many researchers have adopted this approach, e.g. Miiller and his collabora-
tors managed to model successfully the macroscopic behavior of shape memory
alloys subjected to one-dimensional mechanical loading ([10], [6]). RANIECKI,
LEXCELLENT and TANAKA [18], [17] developed the so-called Rj incremental
macroscopic model. The model is three-dimensional and allows for arbitrary
thermo-mechanical loading. The typical behavior of CuZnAl mono-crystalline
sample during isothermal uniaxial tension is sketched in Fig. 1. The of'™ de-
notes the critical stress of forward transformation, rr{” A denotes the critical stress
of reverse transformation, v is the amplitude of pseudoelastioc flow at simple ten-
sion. This behavior may be easily reproduced with the aid of the Ry model. The
dashed line shows the states of full thermodynamic equilibrium predicted by this
model. It may be shown that the equilibrium is unstable when #4M™ > 0 and
this explains, on a theoretical ground, the formation of the hysteresis loop as
discussed in [18]. It was also shown in [18] that #4M > 0 when o{*M > gM4.
The R; model has been adopted in [7] for description of the R-phase trans-
formation. However, in this case of'® < o4, what is shown schematically in
Fig. 2. Identification of the macroscopic constitutive model material parameters
leads to negative values of the term @*™. The negative value of interaction en-
ergy @M constitutes a paradox and deserves further investigation. The dashed
line in Fig. 2 shows the states of full thermodynamic equilibrinum predicted by the
model. Deviation of the real paths from the paths of full thermodynamic equi-
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Fi1G. 1. Typical behavior of CuZnAl alloy.

librium can not be explained anymore by its instability. LiM and MCDOWELL
performed experimental works on NiTi samples and presented the discussion de-
voted to the interaction energy M in [8]. At the end of their paper they
propose that the interaction energy should be a function of temperature, internal
variables and phase fractions, but not necessarily proportional to their product.
They do not lead to any specific explicit expression for the interaction energy.

A
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F1G. 2. Typical behavior of TiNi alloy undergoing R-phase transformation.

The present paper is an attempt to analyze the fundamental problem of the
general structure of macroscopic free energy potential enabling the description of
SMA materials. We are not trying at the same time to construct here a new or
revised micro-mechanical or macroscopic constitutive model of SMA materials.
The procedure applied to construct such a model when the free energy potential
is already known is clearly indicated in papers [17] and [18]. We will start our
investigation from the so-called mezo-scale of observation. All our starting mezo-
scale assumptions will be supported by metallurgical observations on this scale.
We will postulate elastic behavior of both phases on this scale of observation. It
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is worth noticing that even when the particular micro-constituents of the macro-
element behave elastically, the overall response of the material may be non-elastic
and possibly dissipative. The reason for that is the evolving microstructure in the
RVE (phase transformation or reorientation of martensitic variants) and usually
the accompanying it phenomenon of energy dissipation.

We will not investigate these issues in the present paper, sending interested
readers to the papers by ABEYARATNE and KNOWLES [1] or RANIECKI and
TANAKA [19]. We are studying an arbitrary but fixed instant of the phase trans-
formation progress. The macro-element is assumed to be in the thermodynamic
equilibrium with respect to the external thermodynamic variables (macroscopic
strain £(2) and temperature T'). Constrained thermodynamic equilibrium is pos-
tulated with respect to the parameters describing the microstructure of macro-
element H. One of the simplest parameters of this kind is the mass fraction of
martensitic phase z. Hence, all the theorems of the theory of elasticity will be
valid in our considerations.

Later, taking into account the changing microstructure of the RVE or phase
fraction z will result in changing the eigenstrains of the phase transformation, but
will not result in a change of the general structure of free energy macro-potential.
As a result of our mezo-macro transition procedure, we will obtain free energy
expressed in terms of macro-state variables understood as relevant averaged val-
ues of the corresponding mezo-variables. We will not solve the mezo-mechanical
problem explicitly, as this would require prescribing a fixed RVE microstructure.
The microstructures observed in real samples are pretty complex and finding an-
alytical solutions for them might be extremely difficult. Nevertheless, we will
obtain the sought structure of the free energy macro-potential. The particular
terms appearing there may be interpreted in terms of the underlying mezo-scale
phenomena and mezo-scale variables. The wealth of alloys exhibiting shape mem-
ory effects indicate that some terms appearing in the free energy macro-potential
derived from mezo-mechanical assumptions may be neglected for some alloys but
not for the others. Also the observation of macroscopic behavior of certain SMA
materials allows drawing the conclusion that some microscopic phenomena do
not take place there. For example, ideal pseudoelastic flow will indicate the for-
mation of martensitic plates without complex internal microstructure (composed
e.g. of one martensitic variant). Strong work-hardening observed during the
R-phase transformation indicates the formation of many martensitic plates with
internal substructure. Several authors tried to derive constitutive relations for
the SMA materials starting from micro-mechanical considerations; see, e.g. pa-
pers by PATOOR et. al. [13] or SUN et. al. [20]. The authors mentioned above
concentrated on deriving the “working” constitutive models of SMA materials.
They were not concentrating to a large extent on the macroscopic free energy
macro-potential itself.
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2. Thermoelastic martensitic transformation experimental evidence in
mezo-scale of observation

The most important information from metallurgical literature concerning
thermoelastic martensitic transformation is shortly recalled in the present sec-
tion. The information specified below is necessary for a proper choice of mezo-
scale variables (and their properties) appearing in the mezo-scale mechanical
problem posed in the subsequent sections. Various patterns of martensitic struc-
ture appearing on subsequent levels of observation are illustrated schematically
in Figs. 3 to 6. In the materials science literature devoted to martensitic transfor-
mations, e.g. CHRISTIAN [3], OLSON and OWEN [12] or WARLIMONT, DELAEY
[21], the following properties characteristic for martensitic transformations could

ve found: w//////////%//%/\\\\\\\“
1
Il! N
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=

F1G. 3. Schematic view of polycrystalline martensitic microstructure in Cu-Al. Observe
different orientation of martensitic plates in different grains (after WARLIMONT and
DELAEY [21]).

AN

a) Martensitic phase transformation is athermal, i.e. it does not depend on
the time and the rate of change of parameters inducing it.

b) Martensitic transformation is coherent and is also called generalized plane
strain transformation since during this transformation the planes are formed,
which remain invariant (not deformed and not rotated). They are called habit
planes, and constitute a border between the parent and product phases. The
atoms, which actually take part in transformation, move in the same direction
by a distance proportional to the distance from the habit plane.

¢) Martensitic transformation is diffusionless, i.e. chemical composition of
the parent and martensitic phase is the same.

d) Thermoelastic martensitic transformation is shear strain dominant dis-
placive transformation progressing by nucleation and growth, where shear strains
can reach about a dozen percent while the bulk strain is very limited (max. up
to 0.5%) [12].
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e) Typical generic element of thermoelastic martensite structure is a thin
plate or a thin lens (see Fig. 4). The martensitic plate has usually an internal
microstructure itself composed of twin martensitic variants (see Fig. 5)).

F1G. 4. Schematic view of formation of groups of martensitic plates (after WARLIMONT
and DELAEY [21]).

Fic. 5. Schematic view of internal microstructure of martensitic plates (after
WARLIMONT and DELAEY [21]).

f) Thermoelastic martensite may be induced thermally or mechanically.

g) The martensitic phase usually has an internal hierarchical microstructure.
On the higher level it consists of many martensitic plates. They in turn may
consist of several martensitic variants. For example, the martensite induced
thermally has usually the microstructure with groups of four self-accommodating
martensitic variants. On the other hand, the martensite induced by or at the
presence of stress has the microstructure with martensitic variants of preferred
orientation with respect to the applied stress direction (see, e.g. PUTAUX and
CHEVALIER [16]). This last feature allows proposing a macroscopic constitutive
relation between the external stress tensor ¢'?) and the phase transformation
eigenstrain tensors.

http://rcin.org.pl



ON THE MACROSCOPIC FREE ENERGY POTENTIAL... 891

The above experimental evidence known from the metallurgical literature
will be analyzed in the next section from the point of view of continuum thermo-
mechanics. The issue of phase transformation kinetics is not touched in the
present paper. The reason for that is that the macro-element of the Shape Mem-
ory Alloy is investigated in the present paper at a fixed point of the phase trans-
formation progress. This means that the investigations in the present work are
limited to a generalized problem of elasticity. The approach is quite similar to
that applied in the problems of homogenization of composites, when the primary
task is the determination of the effective moduli.

3. Continuum mechanics approach to thermo-elastic martensitic
transformation

In the present section we are studying thermo-elastic martensitic transforma-
tion properties from the point of view of continuum thermo-mechanics. This will
enable us to adopt suitable mezo-scale variables with properties adequate for the
description of the shape memory alloys behavior. The properties of mezo-scale
variables identified hereby on the basis of experimental evidence will translate to
macro-variables through the averaging procedure. In our investigation we will use
the postulate of local state, saying that the behavior of the material in a material
point is predetermined by its closest neighborhood, the so-called Representative
Volume Element - RVE (see Fig. 6). On the level of RVE, the mezo-scale vari-
ables depend on spatial coordinate z. The averaging procedure carried out over
the volume of RVE will result in the value of macroscopic variable in the material
point.

The property a) of the previous section on the mezo- and macro- scale of
observation must result in the rate-independence of the constructed constitu-
tive model of shape memory alloy. This is the assumption made in the present
paper, which finds its reflection in the independence of the phase mezo-scopic
potentials adopted in the next section from the rates of state parameters. They
depend only on the state parameters themselves. 1t also suggests construction of
rate-independent phase transformation kinetic equations, which are not discussed
here.

In the property b) it is said that the martensitic transformation is coherent.
This means that the field of displacements appearing in the continuum mechanics
problem must be continuous, but not the strains field, which may be discontinu-
ous on the phase boundaries. The second part of property b) allows us to draw a
conclusion that the gradient of deformation F» in a single martensitic plate can
be expressed as Fy = 1 + A ® n. Where the austenitic phase has been adopted
as the reference state (Fy = 1), A is a vector of martensitic phase distorsion,

http://rcin.org.pl



892 A. ZIOLKOWSKI AND B. RANIECKI]

F1G. 6. Representative volume element of SMA.

while n is a vector normal to the austenite-martensite interface. The volume
strain in thermoelastic martensitic transformation does not exceed 0.5%. Hence,
it is justified to adopt the approximation that volume and weight fractions of
the austenite and thermo-elastic martensite are identical p; = ps. The relation
det(F2)/det(F,) = p1/p2 = 1 + A - n shows how the volumetric strain can be
estimated from the measurement of microscopic parameters A and n.

Also from d) we know that the shear strains observed in SMA materials are
limited to a dozen percent or so. In practical applications they usually do not
exceed 8%. Hence, it is justified to conduct the present investigations within
the framework of the small strains theory. The form of deformation gradient
F, specified above is valid, with good reliability, for a single martensitic plate.
Metallographic micrographs of martensitic structures indicate (see e.g. [21]) that
this simple form of deformation gradient cannot be adopted even on the mezo-
scale of observation, unless the evolution of a single martensitic plate or even of
a single martensitic variant is studied.

In the present paper it is assumed that the phase transformation eigenstrain
tensors are functions of the position in the RVE volume and are not constant.
This last assumption is natural in view of the complicated martensitic microstruc-
tures resulting from thermoelastic martensitic transformation (see, e.g. Fig. 6).
When only single martensitic plate will appear composed of single martenstic
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variant, then the transformation eigenstrain is constant. In the case, when
one martensitc plate composed of twin alternating martensitic variants then the
eigenstrain may be assumed to be constant but with the vector A different from
the previous case. In general, on the meso-scale of observation supposition on
non-homogeneous phase transformation eigenstrain is well justified. The non-
homogeneity results from formation of many martensitic plates with internal
substructure as observations e) and g) indicate.

In the present investigation another important simplifying assumption is
made, stating that the tensors of elastic stiffness and elastic compliance of
austenitic and martensitic phase L, and My = (La)™' (o = 1,2) are mate-
rial constants independent of the thermodynamic state. The thermal expansion
coefficients ev, and specific heats ¢, are material constants and are assumed to be
the same for both phases.

The property f) calls for development of the SMA materials theory within
the thermodynamical framework. This is actually done in the present paper. It
should also find its reflection in the forward and reverse phase transformation
criteria as well as in the phase transformation kinetic relations.

4. Formulation of mezo-mechanical boundary value problem of two
phase continuum for RVE

In this section we explicitly formulate the problem of mezo-mechanics for
representative volume element of shape memory alloy. The problem is posed in
meso-scale state variables. When a solution of the problem is known, the explicit
form of stress macro-potential may be obtained by “simple” averaging of meso-
scale variables over the RVE volume. We already remarked that the martensitic
structures appearing in RVE are usually very complex. This practically excludes
the possibility to find an analytical solution of the posed problem. The solution
derived in the present paper is to a large extent formal one. Nevertheless, it gives
useful information on the form of the free energy potential allowable from the
point of view of micro-mechanics. It also allows to predict, which macroscopic
terms may be neglected in this potential for some microstructures and not for
the others.

We will assume that thermoelastic properties of individual phases are de-
scribed on meso-scale by free energy micro-potentials identical with those adopted
in the linear theory of thermo-elasticity. This means that the phases on meso-
scale obey generalized Hook’s laws,

1)  pday(Ea(x,T),T) = 0.5(a(x,T) — Ta(x,T)) - La(€a(x, T)
_f-‘a (}{, T)) o p‘:ﬁ((}a)(T)e
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a4 0 =T -Tp- “(@) _ rox(a)
[cont.] p¢(°)(T) = [T - To — T In(T/To)] + (Uo T ) :
To(x,T) = f‘i(x,T) £ 0P ~Ty).

The u*(al, s2@) are internal energies and entropies of the hases, while p =
0 0 8 I P P

p‘(]a) (e = 1,2) is the density at reference temperature Ty and at stress-free state

o = 0 (assumed to be the same for both phases). The £,(x,T) are the fields
of total strain in the respective phases. The eigenstrains lﬁ"ﬂ (x,T) of the phases
with respect to the reference configuration (o0 = 0,7 = Tp) might, in general, be
of various physical origin. In the present paper we explicitly take into account
the strains originating from thermal expansion of the material and eigenstrains

originating from thermoelastic phase transformation (f‘g(x,T)}. Please note that
we have made an assumption that phase transformation eigenstrains does depend
on temperature. This assumption is well justified for the case of the so-called R-
phase transformation [7]. In the case of monoclinic martensitic transformation in

-0
the pseudoelastic range of SMA materials behavior, the I', may be adopted to be

independent of temperature. The dependence of fﬂ on location in the RVE results
from the assumption that RVE domain will usually embrace the austentic phase
and many martensitic variants. In our present investigations, the microstructure
of the RVE domain is assumed to be known and fixed, being otherwise totally
arbitrary. We neglect at the moment any eigenstrains originating from, e.g. the
plastic deformations induced as a result of the SMA training procedure. The
training procedure of SMA materials is a standard step in obtaining so-called
two-way shape memory effect.

In the sequel -.rr{{ (T') denotes the difference of free energy micro-potentials of
the phases at the stress-free state (o =0),

(4.2) '”g[T) = ¢?1] — qﬁ?g) = Au" —TAs", 4u'= uam - ua(z),
At = 36(}}35(2}.

The mean free energy macro-potential of RVE (per unit of volume) may be
expressed with the aid of the meso-scale state variables as follows,

(4.3) pP < pp >vo= pPo + pPm,
PPy = P(Zlfﬁ?i)(T) + 228(9)(T)) = [T — To — Tn(T/Tp)]
+ug® — st — zoxf (T),
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(4.3)
|cont.| p® = 0.5 ]:2:] <6'(X, T) 'Miﬁn{x1 T)>

Vi

+z.2<€r(x,:r) ; szr(x,T)> :

Va

~

E(x,T) = £a(x,T), G(x,T)= Galx,T), forxE€V,,

Vo=V + Vs,

Za = Vo/Vo, z1+z2=1, (())a= VL (-)dV.

Va

where @ is an average free energy of mixture of phases at a stress-free state, &,
is an average elastic energy stored in macro-element as a result of the conditions
applied on its boundary. The G4(x,T) are the stress fields in the volumes of
respective phases V,, @ = 1,2. The symbol V; denotes total volume of a macro-
element. The definitions (4.3); are only used to shorten the notation. In the
case of shape memory alloys, due to a slight difference in density of austenitic
and martensitic phases, the mass fractions z, and volume fractions v, of the
respective phases can be identified.

The elastic energy &, is here of special interest. It can be determined with
the aid of solution to the following boundary value problem of micro-mechanics.
Let us suppose that RVE with volume v is a composite structure of two coherent
elastic phases with volumes v, (a = 1,2), and with an arbitrary but fixed mi-
crogeometry. We assume the RVE to be statistically representative. An RVE is
regarded as statistically representative of macro-response of the continuum mate-
rial neighborhood, if and only if an arbitrary constant macro-stress X produces,
through solution of the relevant boundary value problem with traction bound-
ary condition (t°(x) = n- X on dV), a macrostrain (E¥ =< g(x,XZ) >,) such
that when the displacement boundary conditions (u’(x) = x - E* on dV) are
imposed instead, then the macrostress (< o(x,X) >,= I% o L) is obtained,
where the equality holds to a given degree of accuracy (see also NEMAT-NASSER
and HoRrI [11]). The direct consequence of statistical representativeness of RVE
is that the macrostrain potential ¥*(X) =< ¥ >, and the macrostress po-
tential #7(E) = (¢¥), correspond to each other in the sense that 9(¥*(X))/
d(X) = E while 9(®¥(E))/0(E) = I, and in accordance with the Legendre
transformation ¥*(X) 4+ @®¥(E) = L-E. This in turn enables us to impose either
the traction or the displacement boundary conditions when posing the problem
of micro-mechanics aiming at derivation of the particular Helmholz or Gibbs
macro-potential.
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In accordance with the thermodynamic formalism, simple derivation of (4.1)
with respect to €(x,T') gives us generalized Hook’s laws, which must be obeyed
by the phases,

(44)  Ex,T)=Maba(x,T) +Falx,T), Fulx,T)=Fa(T) + T (x,T),
%X & Ve =12

én(xs T)= % (Vﬁn +TV1:1::) ; Fa(T) = <f‘u(xe T)> ;

<fﬁ(x,’f)> =0

where o (T") is the volume average of the local eigenstrain field r (x,T) over the

domain of the phase «, while ri(x, T) is the field of deviations of the eigenstrain

field from the respective mean value 'y (T). The fields &'(x,T) and a(x t) can
be discontinuous on the phase boundaries.

We are searching for the displacement field fl(x,T) continuous in the whole
domain of RVE, which at a fixed microgeometry, prescribed fields of eigenstrain
Ia(x,T) and prescribed uniform boundary condition on the surface 9V of the
macro-element,

4. -0 =n- o,
(4.5) n-o(x,T) S o

(where o(?) = const denotes the prescribed uniform stress. Naturally, it is equal
to the average stress in the RVE. It denotes also macroscopic stress in the inves-
tigated macroscopic material point), gives after substitution into (4.4), the stress

fields é‘a(x, T), which identically satisfy the mechanical equilibrium equations,
(4.6) div(6(x,T)) = 0.

Boundary condition (4.5) is commonly accepted in all those derivation where
the postulate of local state is assumed to be valid. The postulate asserts that
the state of the body in a material point is determined by the arbitrarily small
neighborhood around that point (RVE). In that perspective, the postulate of lo-
cal state tells us that the variations of the local field far from the investigated
material point are irrelevant in evaluating its macroscopic state. Hence we may
adopt a constant boundary condition on the RVE boundary and neglect any de-
viations from the mean value on the RVE boundary. Precise formulation of Rep-
resentative Volume Element Problem requires its infinite dimensions. In actual
calculations, the size of the RVE is chosen to be sufficiently large to comprise the
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characteristic features of the investigated microstructure and at the same time,
sufficiently small to make the postulate of local state valid within acceptable
accuracy. The prescribed uniform boundary condition on the RVE boundary in
fact predetermines in a natural way the unknown macroscopic state in a material
point.

In further part of the present investigation we will keep the temperature T'
fixed until the very last section. Hence we will not write it explicitly in the further
formula believing that it does not produce any misunderstandings. This means
at the same time that we will investigate the isothermal problem of elasticity in
the next sections. We will return to the full explicit notation with temperature
T where necessary.

In general, the problem of elasticity (4.4) - (4.6) posed for actual martensitic
microstructures is very difficult. However, when the solution is known, it is very
easy to evaluate the elastic energy @,, by a simple substitution of the known
solution. After the averaging procedure we may obtain an expression for the
macroscopic free energy potential (4.3). It will be a function of state parameters
measurable on the macro-scale (e.g. phase fractions, averaged eigenstrains, elastic
properties of individual phases) as well as some parameters characterizing the
RVE microstructure (e.g. the number and direction of martensitic plate layers,
etc.).

In the next sections we will try to find a symbolical solution of the micro-
mechanical problem posed above, convenient for obtaining a clear structure of
the function @,,. For that purpose it will be advantageous to divide the solution
of the original problem of micro-mechanics into auxiliary problems. This will be
done in the next section.

5. Auxiliary boundary value problems of mezo-mechanics

The elastic energy @,, strongly depends on actual configuration of the phases
emerging during phase transformation, i.e. microstructure of the RVE. The two
idealized situations can be distinguished leading to the lower and upper estimates
of elastic energy @,,, so-called REUSS and VOIGT estimates, respectively (see,
e.g. HiLL ([5]). In the case of VOIGT estimate it is assumed that average strains in
individual phases are equal, what corresponds to a mechanical model of the RVE
consisting of a set of springs connected in parallel under load. Alternatively we
may imagine that this situation corresponds to the macro-element microstructure
composed of flat martensitic and possibly austenitic plates oriented in parallel
to the applied stress vector. Then the obtained value of energy constitutes the
upper estimate of the real value of RVE elastic energy. In the case of Reuss
estimate it is assumed that the average stresses in an individual phases are equal.
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This supposition corresponds to a mechanical model of the RVE consisting of a set
of springs connected in series under loading force or a microstructure composed of
martensitic plates and possibly austenitic plates oriented perpendicularly to the
applied stress vector. The Reuss model gives a lower estimate of the actual elastic
energy of the RVE. Usually none of these microstructures appears in reality and
the actual elastic energy of RVE lies somewhere between the REUSS and VOIGT
estimate.

The fields of stresses, strains and displacements of original problem (4.4) -
(4.6) is now decomposed in a special way,

=

i(x) = u(x) + e®x, £(x) = Eé(x) + @), 6(x) = 6(x) + o,
(5.1)
el = MY g+ TY, MY =M+ M)

From (4.5) and (5.1)3 it results that the following condition must be fulfilled,
(5.2) n- o(x) gy =0.

Thus, the average stress over the total volume of RVE (V0) from the field ¢(x)
is equal to zero.

There is an infinite number of additive decompositions in the linear problem
of elasticity (4.4) — (4.6). Separation of certain uniform fields of stresses and
strains from the solution of the original problem of mezo-mechanics has a twofold
application. On the one hand, we want to isolate in the macroscopic free energy
potential the terms connected with boundary condition (4.5). On the other hand,
we want to obtain the additive decomposition of the total elastic energy of macro-
element @, . We will show below that the energy @,, may be decomposed
into additive form (5.3) linked with additive decomposition expressed by (5.1).
The additive decomposition will consist of two parts, the first of which is the
lower (Reuss) estimate while the second, in accordance with the result obtained
by HiLL [5], is always non-negative,

(5.3) oy = % (s —) LR (e-1V) + W,

where TV = (f‘(x))g = 2111 + 2917 is the average (over the whole RVE volume)
phase transformation eigenstrain, while L is the Reuss estimate of the effective
tensor of elastic moduli, L* = {M"")'l.

Substituting (5.1) and (4.4); into (4.4); we have,

(54)  €B) 4 Eu(x) = MY (6a(x) + 6)) 4 jo(My — M) (64 (x) + 6'7))
T 5,0 =) 4 Tk
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and subsequently,

Ea(x) = MaBa(x) +jadd + 5 (x),

Al = (M- T) + (M, - My)e®,
where the following identities were used,
(5.6) Ma=M"+jaMs-My), To=T"+ja(R-T0),
1= —22,J2 = 21.

The expression for Afcan also be expressed in terms of €(*) using the identities
shown below,

(Ta—T) = (@O) YLl — Tn Ty + /Ty = BT,

Il

(5.7)
(My — M) (MY) ™ = (LY)"'(Ly - Ly) where LY = 2L, +21Lo.
Combining (5.7) with (5.1)2 we obtain,
58) Al =@Y)lZf, =/ =zF+14e®, Zf =L, - LM,
L% = (In = Lv).

In view of (5.5)1, (5.2) and (4.6), the primary problem of micro-mechanics
has been reduced to the following problem,

Ea(x) = MaOa(x) +Th(x), div(6) =0, §(x)|av =0,
(5.9)
f';(x) = .0 +f“i(x).
When the solution of problem (5.9) is known, then the solution of primary prob-

lem (4.4) — (4.6) can be immediately found with the aid of (5.1). The decompo-
sition (5.1) leads to the following division of macro-element elastic energy,

(5.10) PP = % [zl<(6{x) + U‘z)) M, ((“r(x) 1E 0(’))>

+zz< (6(:{) e o“"}) - My (6(") [ G(z}) >J

[m <6‘(x) : Mlﬁ'(x)> + z<2<('r(x) : Mgﬁ'[x)> + o ‘M"U(z}] )
1

2
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since

2 (216 (x))1 - M10®) + 2(6())2 - Mgcr(z))
=2(—z120 + n123)(Ae — AN) . 6@ =,
where in the above formulae the following relations were used (see (5.9)),

(511) (6 = —zLi(Ae - Af), (6(x))2 = z1Ly(Ae — AY),
< €(x) >a=< E(x) >0 +jadE, At =< E(x) >2— < E(x)>

< B(x) >=0,. <Tox) >a=0

After substituting (5.1), into (5.10)9, the explicit form of energy W* appear-

ing in (5.3) is obtained,

512 W' = 3[5(660 - MisGh + 2{66) - Mad(x))a] 2 0

Hereby, we have proved that with the additive decomposition (5.1), additive
decomposition of elastic energy (5.3) is linked. It is worth noting that decompo-
sition (5.3) is quite arbitrary. At the moment it has the drawback that energy W*
depends explicitly on €(2). We will correct this deficiency later by introducing
the energy W**.

As it can be seen from (5.9) and (5.12), the energy W™ can be interpreted
as an elastic energy of specific comparative macro-element with no force loads
on external walls, and stored in the effect of operation of the “Ersatz” eigen-
strains f‘;(x) defined by (5.9)3. The comparative macro-element has the same
microstructure and material properties as the actual macro-element.

Let us return to the problem (5.9). The solution of this problem may also be
expressed as a sum of two auxiliary solutions in a manner similar to that applied
in the case of the original problem,

i = u'(x) +i"(x), &(x)=¢&(x)+8&"(x),

3 (x) = & (x) + 8" (x),
(5.13) L
EL(X) = Ma&h(x) + o, El(x) = Ma&”(x) + T (),
() oy = £(x)],, = 0.

The physical reason for appearance of non-vanishing fields &% (x), £ (x). can

be the formation (during phase transformation) of variously oriented mismatching
variants of martensitic plates, e.g. due to kinematic constraints. These fields do
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not depend on the average values I'y of eigenstrains of particular phases, nor on
the average total stress o(%) prescribed by the boundary condition.

The following relations are valid due to the boundary conditions of auxiliary
problems (5.13) (see also NEMAT-NASSER and HORI [11]),

(6'(x) - €'(x)o = (6"(x) - €'(x))o = (6'(x) - £"(x))o

=(6"(x) - &"(x))o =0,
(5.14) 1

Vo

/0‘(}() - g(x)dV.

Vo

(o(x) - £(x))o

This means that the average work of stresses on the corresponding strains
calculated over the total volume of the macro-element is always equal to zero.
The above relations result directly from application of the Gauss theorem, the
mechanical equilibrium conditions and boundary conditions of the auxiliary prob-
lems. In the sequel, the following notation is used,

Ea = (E;(x))ﬂl E:: = (ég(}{)n, AEI = E'r.z - E"l‘
Ae' =l - e,
G = (Ga(®)as O = (Fa(®))ay A0’ =0} -0},

" U "
Ao’ = 0y — 0.

(5.15)

Averaging (5.13)y over the total volume of RVE and using (5.13); and (5.11)9
vields,
Ad’ = LV(Ae - AT, A" =LY Ae",
(5.16)
AG = AG + Ad”, Ae= A€ +Ae", Ao =LY(Ae - AY).

The above relations will be used in the next section.

6. The accommodation energy W**

The decomposition of energy W* (5.12) can be performed in the same way
as in the case of energy @, (formula (5.10)),

(6.1) W*= % {z1<(i’r’ + ") - M, (6" + (r")>
1

+22<(6' +06") My(6' + &”)> ]
2
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Then using the relations (5.13)2 for M,0,(x) and simplifying the obtained
formula by means of relations (5.14), we have,

(6.2) W = % |:le2<6"|1 (x}> Al = 3132<6';(K)> A
1
—z1<6','(x) . I"(f{x)> - zg<fr;{x) : I:';j(x)>
1

+2z1<6"1’ (x) - (&1 (x) + zgﬂf)>1 + 222<6g(x) . (E;(x) - zlAf)> ] :
2

2

Next, using (5.8)1, (5.15) and taking advantage of the properties (5.16), we
obtain,

(6.3)  2W*=-—zznL!. (Ae’ +24¢" - Af) - zl<fr’1’(x) - IA"‘f(><)>

1]
—-z2<<“r;’(x) - i“;‘(x)>

The solution of the problem marked by the “prime” symbol can be written in
the following symbolic form (see also HILL [5]),

2

(64)  E(x)=Ms(x)E, A=MZL/, M= (Mx); - Mi(x)),,

where concentration tensors M, depend in general on the parameters represent-
ing microstructure, phase fractions and elastic moduli, etc..

The average partial strains (second-order strains) constituting the solution of
the problem (4.4) - (4.6) can be now expressed as follows,

(6.5) Eq = @ 4 jo(MES + Ae").

There exists a direct relation between the tensor M and the classical Hill's
concentration tensors. The general averaged solution of the original problem
investigated can be presented in the form,

(6.6) Ea = (Ea(X))a = Age® + Dgi T + Dyal.

Using (5.8) and assuming fﬁ(x) =0 (Ag" = 0), it can be easily observed by
comparison of (6.5) and (6.6), that the following relations are valid,

(6.7)  Aa=I+jaM(Li-Lz), Dau =—joML;, Dq2=joML,.
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Because the Hill's concentration tensors A,,Dga1, D2 depend on the single
fourth order tensor M, then whenever one of them is known, then the other one
can be immediately determined, in view of the relations (6.7).

The relations (6.4) yield,

1 7
521 Zz}:f ¥ ((LU)_I — M) Zf + [zIWI = ZQWQ] e legz‘r ’ N,

w*
(6.8)
N=Aeg", W= —% < O (x) - f';i(x) >1,

When deviations from the average values of the eigenstrains in the phases

ff.(x) = 0, then the terms W, and N are also identically equal to zero and the
first term appearing on the right hand side of (6.8), is the only non-zero term.
It should be observed that tensors M, N and energies W, do not depend on
o'%) and on [, they are however functions of the macro-element micro-geometry,
elastic moduli L, and phase fractions z,.

The terms W, (6.8) can be expressed in the form where parts linearly pro-
portional to the phase mass fractions 2, are explicitly separated,

(6.9) Wo = Wo + jaW2,

where the terms W, > 0 do not depend linearly on z,.
Then the expression for energy W* takes the form,

W?* = z129pPit + 21 W + 22W5 20
(6.10) ;
pbis = §}.:f (@YY -M)E 2 N+ AW, AW = W - Y.

Using (4.3), (5.3) and (6.10), the macroscopic free energy potential of SMA
macro-element may be expressed as follows,

1 -
(611)  p#=g(e®) —TV) LW —TV) + 2129850 + W}

+2oWy5 + p®o(T).

By direct differentiation of the free energy function @ with respect to €(*),
we can obtain the thermo-mechanical constitutive relations for the SMA macro-
element. They are valid when the conditions for elastic behavior of the material
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are fulfilled (no phase transformation or dissipative change of microstructure).
They take the following form,

o(®) = 9(pd)/0e®) = LS el®) 4 gPe,
(6.12) L¢ = LR 4+ 52L9 (LY)! - M) LY,

e = (L) LAY — 1z (L4 (V) - M) £7 - 1N) .

Neither the effective elastic tensor L/ nor the effective (macroscopic) phase
transformation eigenstrain tensor €”¢ does depend on €). In the case when
L, = Ly, the above expressions can be considerably simplified to give,

(6.13) L/ =L, ee=I", o¥=L (s{” = r"’) .

A more detailed discussion of some special cases will be presented in the next
section. We may now rewrite the expression for the free energy of the SMA
macro-element in the most convenient form,

1
(6.14) pd = 5(5.‘*2J — £7¢) . L (el®) — gP¢) 4 W** + p&y(T).
The formula (6.14) constitutes the central result of the present paper.
Comparing (6.11) and (6.14) and using inequality (5.12) it is easy to show
that the following inequality holds,

(6.15) W** = 2120p®% + 21 Wi + W3 >0,
while {
(6.16) p®3, = EePde (B =ML

1 = A .
+5 (M + &) @ (@)~ - M) 2
-LN) + %zr (LY)' = M) ZF - Z'N + aW°.

Please note that the energy @, defined by (6.16) does not depend on g2,

The general form of function @ (formula (6.14)) derived in this paper is valid
for an arbitrary microstructure. The weak point is here the fact that the func-
tional dependence of the objects M, N and W, on particular micro-structural
geometry is not known, neither is their evolution with applied external thermo-
mechanical loads (e.g. € and T'). In general, the dependence of average phase
transformation eigenstrains ', on the temperature or mechanical load is also

http://rcin.org.pl



ON THE MACROSCOPIC FREE ENERGY POTENTIAL... 905

not known. Hence the expression for free energy potential (6.14) is in fact quite
formal.

It would be interesting for the reader to see how this result may be used
to obtain the explicit free energy potential applicable for construction of the
SMA materials incremental constitutive model. Such a model has been already
constructed. It is the so-called Ry, model of SMA pseudoelastic behavior proposed
by RANIECKI, LEXCELLENT and TANAKA in [18] and later extended by RANIECK]I
and LEXCELLENT in [17]. We will specify below the simplifications that had to
be introduced into the formula (6.14) in order to obtain the form of free energy
function used in the R;, model of the SMA materials behavior,

i) It was assumed that both the phases constitute isotropic elastic solids with
the same elastic moduli, the same thermal expansion coefficient o and the same
specific heats ¢. Then the Reuss and Voigt estimates, as well as the tensors Le/,
L LY, reduce to the one isotropic tensor of elastic moduli L (L4 = 0).

ii) The eigenstrains were proposed in the form,

(6.17) I = ag(T — Tp)1; I =QD(T—T(})1+1{,

where 1 denotes the second order unit tensor, and k constitutes an approximation
of the overall average strain connected with thermoelastic phase transformation.
This assumption leads to the following estimation of the tensor: gP¢ = =
ao(T — Ty)1 + z9k. Moreover, the authors of the R model have accepted that
the trace of the phase distortion tensor k is always zero, and that it is always
collinear with the total strain deviator in accordance with the following formula,

(6.18) k=nEle, e=(E-§)Y2  tr(k)=0,

where 7 is an amplitude of pseudoelastic flow in simple tension.
ili) The energy of internal interactions between the phases zjzyp®], (see
(6.16)) was proposed in the form of a linear function of temperature,

(6.19) @} (T) =1y — TSp,

where g, 5p are material constants, which are to be identified on the basis of the
existing experimental data. Hence, as a first guess in the R;, model, the influence
of changing microstructure and mass fractions on the tensors ((LU)“ -M), N
and scalar AW? has been neglected. Note that when L? = 0 then in formula
(6.16) only the last three terms are non-zero.

iv) It was additionally assumed that the term W is negligible, while Wj =
E{',(l] — T§6m is a linear function of temperature, this assumption allows us to
include subsequently the terms connected with Wy i.e. *ﬁa(g), EEm
ut@ @

0. %294

into the terms
representing the internal energy and entropy of the martensitic phase
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formation in the reference state (o0 = 0,7 = Tp). The last operation allows
us to use negative interaction energy z;29p®j, during modeling of the R-phase
transformation. We will present a more detailed discussion on that subject in
the next section.

After substitution of the simplifying assumptions from i) to iv) into the for-
mula (6.14) we obtain the form of free energy function proposed in paper [18],

&, = (e — €") - L(e — €7)/2 — (T — Tp)oxg - L(e — £P*)
+¢"(T, 2),

(6.20) ¢*(T,2) = (T — To) — T n(T/Tp) + uf = Ts§' = znf (T)
+u(T)(1 — 2)z,

€P(2,k) = nzg/e.

We will omit here the discussion on how to construct the SMA constitu-
tive model using @,, and its validation with the macroscopic experimental evi-
dence obtained for SMA materials, sending the interested readers to the papers
(17, 18, 7).

7. Discussion and conclusions

In the previous section we have obtained the expression for macroscopic free
energy function assumed to be valid for shape memory alloys in their pseudoe-
lastic range of behavior (6.14). The first term appearing on the right hand side
of formula (6.14) is “classical”. It is quite well known from, e.g. the theory of
plasticity. It represents a response of the system loaded mechanically in the
form of elastic energy storage, which is fully recoverable under unloading. The
strains £P° represent in general the inelastic strains and may be of various origins
(phase transformation, reorientation, plasticity, and other non-mechanical fields,
e.g. magnetic or thermal).

The last term on the right hand side of formula (6.14) is also quite classical.
It can be used to describe the thermal phenomena — taking place in the material,
such as e.g. heat capacity or entropy change of the SMA macro-element during
the loading or unloading processes.

The most interesting term appearing in the formula (6.14) is the term W**
that we called the accommodation energy. It is defined by the formula (6.15)
and is always non-negative. The thermo-elastic martensitic transformation takes
place in a SMA macro-element upon reaching certain critical conditions. The
austenite-martensite microstructure starts to appear adapting to the external

http://rcin.org.pl



ON THE MACROSCOPIC FREE ENERGY POTENTIAL... 907

load. By adaptation we mean minimization of free energy of the macro-element
“as much as possible”. We will explain what we mean by that thereafter. The
thermo-elastic martensitic transformation is coherent. This constraint must be
fulfilled at all times. For some special austenite-martensite microstructures it is
possible without using any force. In such cases the microstructure is like a set
of perfectly matching “puzzle” pieces. We may say that “ideal accommodation of
microstructure to the applied loading” takes place. This expression can be often
found in the literature devoted to physical foundations of metallurgy. We may
express this special situation in precise mathematical terms of the problem of
mezo-mechanics investigated in the present paper.

Let us assume that the tensor A/ ((5.5); or (5.8)) takes the form of a sym-

metric diadic of two vectors. Let us also assume that the fields lﬁ"z(x) (4.4) fulfill
the compatibility conditions in the regions of individual phases and geometrical
consistency conditions on the inter-phase boundaries. Then the pairs of fields,

(71)  E(x)=jed!, GL(x)=0 and E'x)=1%(x), &'(x)=0,

make the actual solution of the problem (5.9) (as they identically satisfy the re-
quired equilibrium and boundary conditions). Comparing (6.21); with (6.4); we
obtain M = (LY)~!. Substituting (6.21)4 into (6.8)s we obtain N = 0, W, = 0.
Taking advantage of (6.9) we have AW = 0, W} = 0 for @ = 1,2. Using the pre-
vious equalities in (6.12) and (6.16) it appears that L¢/ = LR, gre = TV p®}, = 0.
Finally, from (6.15) we obtain W** = 0 and the free energy potential (6.14) takes
the value of lower (Reuss) estimate p® = é{s(’) = TV) - LB(e%) - V) + p#4(T)
for the considered ideally accommodated microstructure. For the illustrative
purposes we may imagine this ideally accommodated “microstructure” as four
mono-crystalline martensitic plates composed of one martensitic variant each
(no lower level internal martensitic substructure), embedded in mono-crystalline
austenite. Such a self-accommodated group of martensitic plates quite often
appears for thermally induced thermo-elastic martensite. In the case of self-

accommodating group, instead of condition (6.21)3, a more stringent condition

Ei:(x) = Ra(x) = 0 is fulfilled. We may say that when thermally induced groups

of self-accommodating martensitic plates are formed then ideal strain accom-
modation takes place. In such a case not only the energy W** but also the
macroscopic total strain of the sample is zero. When “only” W** = 0, we may
speak about ideal energetic accommodation of the microstructure to the applied
load.

In general, it is impossible for the macro-element microstructure to “adapt
ideally” to the external load o{?). This means that the conditions (6.21) are not
fulfilled in general. In such a case, the compatibility conditions in the regions
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of individual phases and the coherency conditions on the inter- and intra- phase
boundaries must be enforced by self-equilibrating internal stresses of the second
kind. On the macroscopic scale it means that energy W** > 0. The energy W**
can be termed the energy of unaccommodation of the macro-element microstruc-
ture to the prescribed external loading or the coherency energy (MULLER and Xu
[10]). Alternatively it may be termed, as we do it, the accommodation energy
since it is this energy, which assures the satisfaction of the compatibility condi-
tions for the actual strain fields and coherence conditions for the displacement
fields.

In Section 1 we indicated the paradox in the attempts to describe SMA ma-
terials behavior during the R-phase transformation. Identification of the model
material parameters led in the case of NiTi alloy undergoing the R-phase transfor-
mation to negative values of an interaction energy &M which seemed somehow
impossible on physical grounds. Now we may explain this paradox as follows.
The formula (6.15) defines the accommodation energy W**, which as it has been
shown above, is always non-negative. The interaction energy PAM — z122p%;, is
only a part of the accommodation energy W**. The energy P*M may be negative
for some special microstructures when at the same time, the terms W and/or Wy
are non-negative and 2, Wy +2sW3 > z120p®},. Such a situation occurs when the

fields of deviations i"i(x) from the mean values of phase eigenstrains are “highly”
incompatible (incommensurate). The macroscopic stress-strain curves obtained
for NiTi samples undergoing the R-phase transformation (see e.g. Fig. 2), and
the investigations presented in the present paper allow to draw conclusion that
the reach incommensurate microstructure is forming in the sample undergoing
R-phase transformation. In order to coerce the coherence kinematic constraints
of the transformation, relatively high energy Wj is necessary (in this particular
case we may safely assume for not trained NiTi specimens that W7 is negligible).
The experimental works by MivAzaKl, WAYMAN [9] confirm this supposition, as
they report the formation of incommensurate microstructures in the NiTi samples
undergoing R-phase transformation.

The energies Wi (a = 1,2) may be completely neglected, e.g. in the case of
a CuZnAl mono-crystalline alloy undergoing monoclinic martensitic transforma-
tion. This case studied by MULLER and Xu [10] gave a false impression that the
coherency energy z129p®;, introduced by them heuristically constitutes all of the
accommodation energy W**.

Although we have managed to explain why and when the interaction en-
ergy might be negative, a new open scientific problem has appeared why the
actual paths for R-phase transformation deviate from the paths of full thermo-
dynamic equilibrium. In the case of monoclinic martensitic transformation when
the interaction energy is positive, it could be explained by instability of full ther-
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modynamic equilibrium path. When the interaction energy is negative, the full
equilibrium path is stable (see e.g. [18]).

We will discuss one more potential field of application of our research. It
is connected with the two-way shape memory effect. At present, a number of
different training techniques are applied in order to induce a two-way shape
memory effect:

- Deform a sample in fully martensitic state above the plastic yield limit of
martensite.

- Deform the sample in austenitic (martensitic) state by application of force,
then reduce (increase) the temperature below My (above Ay) in the presence of
the applied stress.

- Deform the sample in the austenitic state after formation of minute precip-
itates due to the aging procedure.

The Mj denotes here the martensite finish temperature, while Ay austenite
finish temperature. Stabilization and “saturation” of the acquired effect is ob-
tained by application of cyclic mechanical loading at constant temperature, or
by cyclic thermal loading at constant (stress, strain), or by application of mixed
techniques.

On the micro-scale of observation, all the techniques listed above target at
generation of localized centers of internal stresses (possibly uniformly distributed)
in the high temperature parent phase. These localized centers of internal stresses
are permanent crystallographic lattice defects such as dislocations induced by
deformation (techniques one and two mentioned above), stress-induced retained
martensite (technique two), precipitates (technique three).

On the macro-scale, the primary target of these procedures is to create self-
equilibrated initial stress field within the SMA element in order to enforce par-
ticular geometrical path of the forward and reverse phase transformations. The
typical apparent macroscopic results of the two-way effect training procedure,
consisting in cyclic thermo-mechanical treatment are,

e Existence of the permanent strain at zero stress.

e Shifting of forward critical transformation temperature ¢V towards lower
values.

e Serious increase of hardening slope.

e Change in shape and decrease in size of the hysteresis loop.

The evolution resulting from the two-way training procedure of shape mem-
ory alloy can be well grasped by comparing the stress-strain curve of Fig. 1 for
not trained SMA, and that in Fig. 2 in the paper [15] (which is schematically very
similar to the Fig. 2 of the present paper). From the similarity of the stress-strain
curves for “R-phase transformation” and “two-way shape memory effect” we can
guess that energetically similar phenomena take place in the both cases. We have
already revealed in the present section that proper description of the R-phase
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transformation requires fulfillment of the inequality 2, W} + 2,W3 > 212909}, In
the case of R-phase transformation it appeared that it was sufficient to assume
W5 was strictly positive. This term arises from the incompatible eigenstrain
fields resulting from the R-phase transformation. In the case of two-way shape
memory effect both terms W} (a = 1,2) most probably will have to be assumed
to be strictly positive in order to obtain proper modeling description of this effect.
On microscopic grounds this statement can be justified by the existence of incom-
patible strain fields resulting from the training procedure in both phases. They
will result from plastic strains, the retained martensite eigenstrains or strains
resulting from precipitates in the parent phase, and from incompatible phase
transformation eigenstrains in the product phase.

The successful constitutive model of the two-way shape memory effect will
require the assumption of the proper form of the terms W and their evolution.
Even when at the beginning they will be zero for a “virgin” SMA sample material
(W2 = 0), after several or several dozens of training cycles, a certain amount of
energy will be stored in the modified microstructure of the shape memory macro-
element. The self-equilibrated micro-stresses will appear, which do not vanish
even when one of the phases completely disappears.
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