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Qurre uniQuE and interesting behavior of shape memory alloy (SMA) under complex
loading conditions, including the complicated path-dependence, have been observed in
systematic experiments by applying some combined loads of axial force and torque to
the thin-walled tubular specimen of Cu-based polycrystalline shape memory alloy. A
set of constitutive equations is proposed, which can describe the complicated behavior
observed in the experiments. The mesoscopic approach is employed in the formulation
because the complicated behavior is closely related to the microstructural changes
of the material, and the obtained equations show a reasonable agreement with the
exprimental results. In the first paper, the process of modelling and the details of
the formulated constitutive equations are described, and the comparison between the
experimental results and the results evaluated by using the proposed constitutive
equations will be shown in the second report.

1. Introduction

SHAPE MEMORY ALLOYS (SMA) were expected to become very important for the
engineering applications because of their unique thermo-mechanical properties
[1]. Therefore, quite active research and development has been continued in the
recent years [2 — 4]. In order to support the engineering applications, the basic
and fundamental research work has also been vital; for example, the material
development of SMA of better qualities (e.g., the thin-film of SMA [5 - 9]),
the development of less expensive SMA and the improvement of their functions
and properties (e.g., Fe-based SMA [10, 11]), the experimental research works
[12, 13] to investigate the mechanisms of thermo-mechanical properties and their
modeling and formulation [14 - 23] appropriate for the prediction of the material
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behavior and the design of devices constructed from SMA elements. This paper is
concentrated on modeling and formulation of the thermo-mechanical properties
of SMA.

The research on the modeling and formulations in the last decades were
mostly limited to simple loading conditions (particularly, uniaxial tensile load-
ing), and thus the applications have been considered on the basis of these works.
On the other hand, when we take into account the fact that the basic deforma-
tion mechanism of SMA is a combination of (1) the temperature (T)-induced
martensite phase transformation, and (2) the stress (oj; : 7,5 = 1,2,3)-induced
martensite phase transformation, various and unknown unique behaviors of SMA
are possible. Actually, new engineering applications of SMA can be developed
for the multi-axial/complex loading conditions. As an example, the position-
ing devices or actuators which perform complicated three-dimensional motions
themselves by controlling several stress components can be designed. Also, fur-
ther investigation and clear understanding of new features of SMA will be helpful
in the design of future intelligent material systems [24 — 26]. In the literature,
however, there are only few reports on the basic research focused on the behavior
of SMA under complex loading conditions, experimentally and theoretically as
well. From the above mentioned point of view, the authors have continued a series
of systematic experiments on the thermo-mechanical behavior of polycrystalline
SMA under complex loading conditions, by applying the combined loads of axial
force and torque to the thin-walled tubular specimen of Cu-based polycrystalline
SMA [27 — 32]. In the experimental part of the research, unique behavior have
been obtained. Some phenomena can not be observed by the simple loading
experiments. For example,

1. In the proportional deformation tests using the combined loads of axial
force and torque, the corresponding deformation is also proportional. That is,
the thin-walled tube exhibits the simultaneous torsional and axial (elongation/
contraction) deformations under this stress condition[29, 30].

2. Strong and unique path dependence was confirmed. That is, the obtained
strain states are different when the stress paths are different, though the current
stress states are the same. One special exception is that the zero-stress state
corresponds to the zero-strain state, regardless of their paths. That is, the original
shape of the specimen is memorized [29, 30].

3. When only the axial force is changed after the combined load of axial
force and torque is applied to the thin-walled tube, the tube shows torsional
deformation too without any change of torsional loading. The same kind of
deformation can be observed under no change of axial force. That is, the axial
deformation of a tube can be obtained by changing the torsional loading without
any change of axial force. This is also one of the interesting features of SMA
under complex loading conditions [29, 30].
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4. When a tubular specimen subjected to the torsional loading is heated up
to a certain temperature, the torsional deformation induced by the martensite
phase transformation decreases monotonically and finally disappears. On the
other hand, when the specimen subjected to the reverse torsional load following
the forward torsional loading is heated up, the change of torsional deformation
was observed to be non-monotonic, that is, the direction of torsional deformation
changes during the heating process [32]. The same phenomenon can be expected
in the case of tension-compression loading. That is, the specimen will be longer
at first and shorter in the next stage during the monotonic heating process.

The experimental results under complex loading conditions including the
above exposed interesting phenomena could be understood clearly by considering
the microscopic behavior of martensite variants. In the present paper, a set of
constitutive equations of SMA under the complex (general) thermo-mechanical
loading conditions is proposed, which can reproduce the special behavior ob-
tained in the experiments. In the formulation of constitutive equations, the meso-
mechanical modeling approach [33] proposed by one of the authors is employed,
which can incorporate the multi-layered microstructure of the polycrystalline
materials. This meso-mechanical modeling approach was employed for the for-
mulation of inelastic (or plastic) constitutive equations of polycrystalline metallic
materials whose main deformation mechanism is slipping (by dislocations) inside
the grains, especially under complex/general loading conditions, where the com-
plicated metallurgical dislocation mechanisms controlling the slip deformation
are taken account into by using the so-called slip system idea, and the mechan-
ical model of a grain can be obtained as the collection of several slip systems.
The interactions among slip systems are assumed in the grain component. The
polycrystal model is composed of a large number of crystal grain components
and the interactions among grains are determined by using a micromechanical
approach. In the present case of polycrystalline SMA, the mechanism of phase
transformation is employed instead of the slip mechanism.

In the present report, the derivation of a set of constitutive equations of SMA
under complex loading conditions is described. In the following second report,
the accuracy /reliability, and applicability of these constitutive equations are dis-
cussed by comparing the calculated results with the corresponding experimental
ones.

2. Thermo-mechanical model of phase- transformation
The basic phase transformation mechanisms of SMA are the temperature-

induced and stress-induced martensite phase transformation. The deformation
induced by these martensite phase transformations is considered to be the twin-
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type (shear) deformation with a negligibly small change of volume, and controlled
by the temperature and the stress tensor [1, 34]. This twin-type (shear) deforma-
tion occurs only in the crystallographically determined (easy twin) directions on
the crystallographically determined (easy twin) planes. This twin (shear) defor-
mation system with a specific direction and a specific plane is hereafter named the
phase transformation system and corresponds to the technical term “slip system”
used in the crystal plasticity.

When SMA is subjected to the thermal loading (the change of temperature)
only, the martensite phase transformation with the (twin-type) shear strain oc-
curs. However, in this case, no macroscopically significant deformation of crystal
grain (as well as the polycrystal composed of these grain components) can be ob-
served. This phenomenon can be explained as follows: in the case of temperature
change without any applied external or internal stress, the phase transformation
is possible to occur simultaneously in every transformation systems with differ-
ent orientations, and thus the induced shear (twin) strains cancel each other in
the average. On the other hand, in the case of stress-induced phase transforma-
tion, the phase transformation occurs in the phase transformation systems with
the preferable orientations to the stress state. Thus, only the shear strains with
specific directions are summed-up and consequently, the significant macroscopic
inelastic deformation can be observed in the crystal components (as well as in
the polycrystal).

Our engineering interests are the macroscopic inelastic deformations, the force
produced when the deformation is constrained, and their combination. Therefore,
only the case when the material is subjected to some stresses is considered in the
present paper. The effect of temperature is incorporated as the temperature
effect on the shear stress which is necessary for the phase transformation, i.e., on
the critical (resolved) shear stress. The typical feature of temperature effect is
that the lower is the temperature, the easier the martensite phase transformation
will occur (the smaller will be the critical shear stress). That is, the deformation
of SMA needs larger stress at higher temperature. This feature of SMA is quite
different from that of usual metallic materials with the slip or diffusion mechanism
controlled by thermo-activation.

The above-mentioned phase transformation mechanism is determined by us-
ing the “shear stress 7 - phase transformation) shear strain 4" ' - temperature T"
relation of the phase transformation system. When the material is of the austenite
structure (the parent phase), the mechanical characteristic of this transformation
system can be expressed by the loading curve OABC and the unloading curve
CDEO shown in Fig. 1, where mus(T"), 7as(T), and 7or(T') are the martensite
phase transformation start and finish shear stresses, and the austenite (reverse)
phase transformation start and finish shear stresses at the temperature 7', re-

spectively. The 4PT is the phase transformation shear strain and bl is the
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FiG. 1. Typical stress-strain relation of phase transformation system (I).

maximum value of 4FT. In this figure, at the temperature T, the martensite
phase transformation in the phase transformation system begins at point A, and
the martensite strain 4F 7 increases with the increase of shear stress 7 along the
line AB. The increase of ¥''T stops at point B at which the martensite phase
transformation is completed, and then ¥FT does not increase though the shear
stress increases (B— C). In the next step, when the stress is unloaded from the
point C, the reverse transformation starts at the point D where the stress is
smaller than the stress at B, and this reverse transformation is completed at the
point E. The dashed curve in Fig. 1 shows the relation between the shear stress
7 and the phase transformation strain 4*T at a different temperature Ty(< T).
The dashed loop abde at the temperature Tj can be obtained by shifting the loop
ABDE at the temperature T without any change of its shape. The sub-loading
process can be incorporated as follows: As shown in Fig. 2, when the material is
unloaded (dr < 0) at the point P during the martensite phase transformation,
the phase transformation strain v*'T does not change and the shear stress reaches
the point Q on the reverse transformation line DE. If the unloading (d7 < 0) is
continued, the reverse phase transformation begins at the point (Q and the shear
phase transformation strain vF'7 decreases Q— R— E). When the material is
loaded (dr > 0) at the point R on the reverse transformation line, the reverse
transformation stops and the transformation shear strain vF7 does not change
till the stress arrives at the point S on the phase transformation line AB. The
detail of sub-loop (or internal loop) PQRS depends on the material and has been
still discussed in [35 — 41]. In the present paper, the simplest form has been
selected.
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F1G. 2. Typical stress-strain relation of phase transformation system (II).

The relation between shear stress 7 and (phase transformation) shear strain
~PT_temperature T' mentioned above can be formulated in the following form.

First, when the linear strain hardening rule shown in Figs. 1 and 2 is as-
sumed for simplicity, the critical shear stress for martensite phase transformation
(¥, T) at the phase transformation shear strain ~PT and the temperature T
is expressed as follows:

(2.1) (T, T) = rus(T) + Hy'T,

where H is the hardening coefficient (the material constant). The martensite
start stress Tys(7T') is assumed to depend on the temperature 7' linearly, what has
been confirmed both experimentally as well as theoretically (Clausius-Clapeyron
equation [1, 34]), and thus,

(2.2) ms(T) = Toms + B(T — Ty),

where £ is the material constant, and Toums is the martensite phase transformation
(critical) shear stress at the reference temperature Ty (for example, the room
temperature). By using (2.1) and (2.2), m(yFF,T) can be expressed in the
following form:

(2.3) (YT, T) = Toms + B(T — To) + HYF™.

Following (2.3), the martensite phase transformation start function (M-type yield
function) Fyy is obtained in the following form:

(2.4), Fu=71- [toms + HY'T + B(T - Ty)]
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where 7 is the shear stress resolved on the considered phase transformation sys-
tem. When the shear stress 7 satisfies the equation

(2.4)2 Fum =0,

the deformation is as follows:

1. Under the loading condition, that is, for dF\y = dr — BdT > 0, the
martensite phase transformation takes place and thus, dyFT > 0. In this situa-
tion, considering that dr — Hdy*T — BdT = 0, from (2.4); and (2.4),

(2.5) dy*T = (dr — BdT)/H,

2. Under the neutral loading dFyy = 0, or for the unloading dFy < 0, i.e.,
under the condition dFy = dr — BdT < (), the martensite phase transformation
does not occur and the deformation is elastic. Therefore, the increment of phase
transformation induced shear strain dy"7 is expressed as follows:

(2.6) dy*T =0.

The relation between the stress increment dr and the strain increment dy"'T can
be summarized in the following form:

(2.7) dy"" = (dFy) (Ymax — " " )(d7 — BdT)/H,
where
(2.8) (Xy=1 for X >0, (Xj=0 for X <0,

and 0L is the material constant (the maximum phase transformation shear
strain); the 4°T can not increase after the phase transformation is completed in
the phase transformation system, and (y*'T —~+FT) in (2.7) is used for this mech-
anism. As found from (2.3), the vh., and the martensite phase transformation
finish shear stress mvp(7) are related in the following form:

(2.9) m™r(T) = Toms + B(T — To) + Hybay.

In what follows, the formulation of the reverse (austenite) phase transfor-
mation is considered in the similar way as that mentioned in the case of the
martensite phase transformation. According to Fig. 1, the reverse (austenite)
phase transformation critical shear stress 74 is expressed in the linear strain-
hardening form:

(2.10) Ta(7"T,T) = Toar + HY'T + B(T - To),

http://rcin.org.pl



854 M. Tokupa, M. YE, B. BUNDARA AND P. SITTNER

where 7par is the reverse phase transformation (critical) shear stress at the ref-
erence temperature Ty. Therefore, the austenite (reverse) phase transformation
function (A-type yield function) Fy is

(2.11); —Fa =7~ [roar + HY' T+ B(T - Tv)] ,

where 7 is the (resolved) shear stress on the considered phase transformation
system. When the stress state 7 satisfies the following equation:

(2.11), Fx =0,

the deformation can be classified as follows.

1. Under the loading condition; dFy = —dr+8dT > 0, the austenite (reverse)
phase transformation occurs, and thus, dy*'* < 0. From (2.11); and (2.11)s,
dr — Hdy*T — BdT = 0, and then,

(2.12) dy*T = (dr — BdT)/H.

2. Under the neutral loading dF4 = 0, or under the unloading condition
dF4 < 0, that is, in the case of dF4 = —dr + BdT < 0, the austenite (re-
verse) phase transformation does not proceed, and thus, the phase transformation
(shear) strain increment dy"T is as follows;

(2.13) dyFT =0.

The stress-strain relation explained above can be summarized in the following
form;
(2.14) dy*'T =< dFy >< 4FT > (d7 — BdT)/H,

where < vPT > is used to take into account that the reverse transformation stops
when the existing phase transformation strain vF7 is included completely by the
reverse transformation.

3. Thermo-mechanical model of crystal grain component

The deformation property (stress-strain-temperature relation) of crystal grain
component with the phase transformation systems described in the previous sec-
tion can be formulated in the following manner.

The number of phase transformation systems in the crystal grain is assumed
to be M (for example, M = 24 for the martensite phase transformation of Cu-
based SMA used in authors’ experiments). When the single crystal grain is in
uniform stress state o;;(i,j = 1,2, 3), the shear stress 7(m) resolved on the m-th
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(m = 1,2,.., M) phase transformation system can be obtained by the following
equation:

3
(3.1) 'r(m] = Z “(m)ijaij-

tj=1
The coefficient a(,,);; in (3.1) is the so-called generalized Schmid factor defined
as follows:
(3.2) Amyij = [S(m)inemyj + S(m)in(myil /25
where s(,,); and ngy)i(¢ = 1,2,3) are the unit vector along the shear direction
and the unit vector normal to the transformation plane of the m-th phase trans-
formation system, respectively. By using the obtained resolved shear stress 7(,,),
the shear strain increment d’y{r:lr) of the m-th phase transformation system can be
estimated by (2.7) and (2.14) when only the m-th system becomes active. When
some systems become active simultaneously in the crystal grain component, the
corrections are necessary in order to incorporate the interactions among the phase
transformation systems as described below.

2. The critical shear stresses Tyy(m) and Ta(my,) for the m-th phase transforma-
tion system are affected by a different active transformation system: interactions
among the phase transformation systems in a grain. If the isotropic hardening
rule is employed for simplicity, the 7yj(;n) and 75(,) are modified as follows:

M

(3.3) )T T T) = Toms + BT —To) + HY 7" (p),
p=1
M

(34) TamF T T) = Toar + BT - To) + HY 77 (p).
p=1

2. The phase transformation can not proceed any more after the phase trans-
formation covers the whole area of the grain component. That is, the following
equation in the volume fraction §(,,) of the m-th (m = 1.2,.., M) phase transfor-
mation system has to be considered:

(3.5) Z §m) < 1.

m=1

By considering the relation §,) = 'ym)/'ymax, the phase transformation stops
when the following equation is satisfied:

(3.6) Z "Y(m) 7max

http://rcin.org.pl



856 M. Tokupa, M. YE, B. BUNDARA AND P. SITTNER

By incorporating the above two corrections, the relation between the increment
of resolved shear stress dr(;) and the increment of phase transformation shear
strain d’ygg) can be obtained as follows:

1) arfh = (dFxm ) (BE - Zw(,,)> (+#5) - (4w - gar) /1.

In this equation,
(3.8)1 Fx(m) = Fmm), G (fy(*:;f)) =1, when Fym) =0,

(38)2  Fx(m = FA(m), G(T(m)) <7(m)> when Fj () = 0,

(3.8)3 Fxim)=0, G (’]fgg‘}) =1, when Fyiin) #0, Famm #0,

where
M
(3.8)4 FM(m] = T(m) — | ToMS -+ H Z“}f{;{ + ﬁ(T e Tu) ¥
p=1
M
(3.8)s ~Fp(my = Tamy — |ToaF + H Y ¥y + B(T = To)
p:l

On the other hand, the phase transformation (deviatoric) strain increment def?
of the crystal grain component can be obtained as follows:

M
(3.9) dej;’ = Z a(m)ijdq(",,}‘).

m=1
Therefore, if (3.7) is employed in (3.9),
M

M
(3.10) dBET = Z ®(m)ij <dFX(m)> <'T:I:1£x o Z 7{;T>
p=1

m=1
-G(«,{;,Tﬂ) (dr(m) - [idT) / H.
3

(3.11) d‘?’(mJ = Z a(m}ijdagj,
1,j=1
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the relations among the increment of phase transformation strain def}’r, the in-
crement of stress doj;, and the increment of temperature dT' for the crystal grain
component can be obtained in the following form.

M M
(3.12), degr = Z QX (m)ij <dF,\'{m}> <7r¥1’1;.1x i Z 7{;{'>
m=1 p=1

3
& ("’(PWT)) > mndow — BT /H,

kil

(3-12)9 d’]f(m] = <dF\ m)> <7max ZT(}J]> (T[PWB)

3
Y agnyijdoi; — BdT / H,

$,9=1
with the conditions:

(3.12)3 Fx(m) = Fm(m), G (185) =1, when Fym) =0,
(31‘2)4 FX(m} = FA{m}’ G (')(([:5) = <’7(PﬂT)>, when FA(m) = Ov

(312)s  Fxm) =0, G ('Y(P,,f)) =1, when Fym) #0, Fam) # 0,

where

(312)s  Fupm) =T(m) — |ToMm+ H Z Yo + BT -To)|,

L p l

i M
(3.12)7 = Fagm) = Tim) — |[ToM + HY v6) + BT - To)| ,

L p=l

3
(3.12)s Tim) = D m)is0ii-
1,7=1

As it can be found from the set of Eq. (3.12);_7, the obtained stress-strain-
temperature relations are of a form of the theory whose internal variables are
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the phase transformation strain ')r(*:nl; (m = 1,2...,M). When we recall M = 24
for the martensite phase transformation and the corresponding reverse phase
transformation, the deformation of a single crystal grain component is found to
be controlled by 24 internal variables.

The increment of total strain de;; of the crystal grain component is as fol-
lows:
(3.13) deij = def; + dej + de;,
where dsfj, deij and de}; are the elastic part, phase transformation part, and
thermal part of (total) strain increment de;;, respectively. The elastic and ther-
mal parts can be described as follows, when the material is assumed to be elas-
tically and thermally isotropic,

(314) d.‘.'fj = ds,;j/2G -+ 6;'_;.'0’/31{,
(3.15) dE:J = ﬁtsgde,

where d;; is the Kronecker delta, s;; and o are the deviatoric and volumetric parts
of stress tensor oy;, respectively, G is the shear modulus, K is the bulk modulus,
3 is the coefficient of thermal expansion.

The conclusion of this section is that the stress-temperature relation of the
grain component is given by a set of Egs. (3.12);-7, (3.13) - (3.15) whose form
is of the internal variable type.

4. Thermo-mechanical model of the polycrystal

When the stress-strain-temperature relation of a polycrystal is derived on the
basis of stress-strain-temperature relation of its crystal grain component, the in-
teractions among grain components have to be reconsidered. That is, each grain
component has its own stress and strain depending on its own orientation in the
polycrystal because each grain has the anisotropy related with the phase transfor-
mation system: thus the complicated interactions among grains appear in order
to satisfy the compatibility condition of strain as well as the equilibrium condition
of stress in the polyerystal. Thus the non-uniform stress and strain distributions
appear even if the applied load is quite simple, for example, the uniaxial tension
of a solid bar. The effect of non-uniform strain and stress distributions on the
mechanical properties of polycrystalline materials are very important, especially
when the strain or stress path is complex (e.g., non-proportional stress/strain
history including the arbitrary change of temperature). This kind of interaction
effect would be even more significant in the case of SMA than the polycrystalline
metallic materials whose deformation mechanism is the dislocation slip. For ex-
ample, as described in Sec. 2, the phase transformation can occur by the change
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of temperature without any stress, but the significant deformation can not be
observed in this case, because the produced phase transformation shear strain
cancel each other. On the other hand, if the material is in some state of stress,
only the preferable phase transformation system becomes active, and significant
phase transformation strain can be observed even if the stress is rather small
(due to the temperature effect). That is, the produced internal (residual) stress
may have a significant effect on the macro-deformation of polycrystalline materi-
als. This effect of internal or residual stress is quite interesting for the design of
two-way shape memory properties of SMA, and thus the effect of residual stress
or internal stress are quite interesting from the engineering application as well
as the micromechanic points of view. Also, the internal stress may have an im-
portant role on the path dependent behavior when the polyerystalline material
is subjected to a complex loading path. This is one of the main reasons why the
meso-mechanical technique [33] was employed for the derivation of constitutive
equations in this research work.

The above mentioned interaction among grain can be taken into account by
using the well-developed mechanics of inhomogeneous solids. The typical models
proposed on the basis of inhomogeneous solid mechanics are the KBM model
[43, 44] (self-consistent model) and eigen-strain model [45, 46]. Both of them
are based on the inclusion theory developed by ESHELBY [42]. According to the
inclusion theory, the stress and strain distributions in the inclusions are uniform
and have a quite simple linear relation with the applied load, when the spherical
or ellipsoidal anisotropic inclusion is embedded in an isotropic elastic matrix.
Therefore, the stress and strain distributions are uniform in the inclusions, and
thus. the complicated stress and strain distributions around the grain boundaries
in the case of a polycrystal can not be incorporated directly. There exists no
convenient (simple) model which can incorporate the distributions of stress and
strain in each grain component. This kind of effect has been investigated by
using the finite element analyses. However, it is very difficult to incorporate this
effect in the compact constitutive equations. Moreover, this grain boundary effect
has been investigated by using the electron microscopy as well as the computer
analysis (e.g., FEM analysis, molecular dynamic analysis, etc.). However, so
many unknown problems are still left for futher consideration.

Among two convenient and simple theories of inhomogeneous solid mechanics
metioned above, the eigen-strain theory is rather effective, e.g., in the deformation
course of materials reinforced by dispersed particles, and on the other hand, the
KBW model is effective in the case of, for example, the polycrystal composed
of many grain components where the characteristics of grain component are as
follows:

1. the grain component has its orientation described by the generalized
Schmid factor,
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2. the grain component has a limit of transformability described by Eq. (3.5),
and thus the size, shape and location of the grain in the polycrystal are not con-
sidered in the model, though the volume fraction is taken into account. In this
case, the following equation can be obtained for SMA with the phase transfor-
mation mechanism.

k PT(k
(4.1) s3) — 8ij = oG (el ® - BET)
where sgc} is the deviatoric stress component of the k-th grain component em-

beded in the polycrystal, S;; is the averaged (macroscopic) deviatoric stress

[Sij = average (sgf))], ef;T(k) is the (deviatoric) phase transformation strain

components of the k-th grain, E’gl' is the averaged (macroscopic) phase transfor-

mation [EE-T = average (e&f))]
The coefficient e in (4.1) is still being discussed in the case of inelastic matrix and
it is not the material constant, in general. However, the coefficient « is assumed
to be constant in the engineering applications, for simplicity. The proposed values

are as follows:

, G is the averaged shear modulus of polycrystal.

a=0 (for stress constant model, the so-called Maxwell model),
a =02 (for modified KBW model by Berveiller-Zaoui [47]),

a=1.0 (for KBW original model [43]),
@ =2.0 (for strain constant model, the so-called Voigt model),

a =00 (for inelastic strain constant model; Taylor model),

In the final stage of this paper, one simple example of consitutive equations of

SMA incorporating the interaction among grains in the polycrystal is demon-
strated in a closed form. Here the stress constant model (a = 0) is selected as
an example. That is,

(4.2) o) = £ = Sy + 8.

ij
where S;; and X are the deviatoric and volumetric parts of stress X;;, respectively.

and d;; is the Kroncker delta. In this case, the total strain increment dsl{-f) of the
k-th grain component in the polycrystal model can be described as follows:

(4.3)  dell) = def? +def" ™) + deg

= ds¥ /26 + 8;5d0® [3K + 5;;dT + dej, )

M
= dS;/2G + 6;;dS /3K + B8i;dT + Y [a{fj) i <4Ff£ﬂ)>
m=1
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(43) <7 Zv"““)c‘*’( L (Zﬂf(m)“dsm ﬁdT) / H

[cont.] p=1 k=1

The strain increment dE;; of the polycrystal model can be expressed by the
following equation:

K
(44) dE;=) V® {dsij/zc: +0i;d Y [3K + Boy;dT
k=1

i (k) PT(K) \ o (k
== Z [ O myij <ng(m)> <7nn~< Z7{ﬂ) >G( ) ( })

m=1

3
-(Z @Sk - ,fb’dT) / H

ki=1

where V() is the volume fraction of the k-th grain component. Therefore,

K M
) ; k k
(4.5) dE;; = Z V“){Z laEnZ}ij <de\'()m)>

k=1 m=1
A PT(k)
PT k
<7ma.x o ZT{T’) >C'( ) ( ) (Z a{mwdSH [)'dT)/
=1 k=1
+dS;; /2G + 8;5d Y _ [3K + Boy;dT,
where
: PT(k) __ PT(k)
(4.6) V) [ Dy s
and
(k)  _ (k) (k)
FX(m) = F“{m), if FM{m) 0,
(4.7)
(k) _ (k) . k)
Fx(m) . F A(m) — =0, if FA(m] =0,
where
k k k
Fl&()m} = 1|-([m}) [rom + H'Y(m( ) + B(T — Tp)),
(4.8)

(k) _ _(k) PT(k)
=Ey =T = [Toa + gy T = 1))
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A set of Eqs. (4.4) — (4.8) is an example of a set of constitutive equations con-
structed on the basis of a mesoscopic approach. In this approach, the simplest
models are selected for each structural levels. It is possible to use more compli-
cated but elegant and more accurate models for all structures and interactions
between them. When we select the model of a structure, it is very important to
consider the balance of reliability /accuracy among the selected models as well as
the computer capacity according to the engineering needs.

Finally, it should be noted that the proposed constitutive equations can be
described symbolically in a form of internal variable theory, where internal vari-

ables are '}'(I:B(k} , in a following manner.

3
dE;; = Z Fijki (Spq 3150 i TPT{R)) dSi

kl=1

' k
+Fi; (Sij, s il 'y(pf;{“}) dZ + F;j (Spg, 2, T : ,Y(r:}{ )\dT,

(4.9)

PT{k k __PT(k
Z H((ngqu (S, 5, T 7(,,,1)( ')dSpq
pg=1

+H(m)(k} (Sij; )y ,.}.(PT (L]) dS + H (k} (Sfj‘ 2T ’Y(!:i](k}) dT.

5. Concluding remarks

The thermo-mechanical models selected for each structural level are quite
simple and can be treated without any computer. For example, the inhomoge-
neous solid mechanical model was developed long ago, and these models were
capable of solving so many important engineering problems without the aid of
computer.

In our opinion, even if the macroscopic behavior is quite complex depending
on the history of thermo-mechanical loading, this complicated behavior can be
reproduced by a combination of some simple mechanisms corresponding to each
structural level. That is, if the materials are considered to be a kind of thermo-
mechanical system composed of simple mechanical components (materials), the
complicated behavior can be reproduced.
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