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Influence of finite deformations on the growth mechanism
of microvoids contained in structural metals
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In THIS PAPER an analysis of the growth mechanism of the single microvoid for finite
deformations is presented. A hollow sphere model is assumed. Such a model has been
considered in many previous papers, however on the assumption that the strains re-
main small. The material surrounding the microvoid is assumed to be work-hardening,
viscoplastic, described by the constitutive equations formulated by PErRzYNA [1]. Qu-
antitative and qualitative distinctions between the presented solution and geometri-
cally linear solution are discussed. On the basis of the obtained solution, constitutive
functions of a certain damage evolution equation for the complex stress state have
been identified. A numerical example of the fracture analysis for a structural element
is presented.

1. Introduction

PHENOMENA such as nucleation, growth and coalescence of microvoids play a very
important role in the ductile fracture process of structural metals. Domains of
localized strains determine the places of void nucleation. In these domains, the
voids generally nucleate by decohesion of second phase particles or by transgra-
nular and intergranular cracking. The localized plastic deformation controls the
growth and coalescence processes (neck, shear band).

Micromechanics analysis of void nucleation and coalescence, as well as of
void growth, establishes the basis of constitutive modeling for porous plastic
solids. Such relations play an important role in the theoretical description and
in numerical analysis of the deformation and fracture processes for structural
elements. Prediction of ductile fracture behavior requires the knowledge of the
relation between the growth of a void and the imposed stress and strain histories.

McCLINTOCKs [2] analysis of the expansion of a long cylindrical hole in an
ideally plastic solid marks the beginning of the recently appearing, extensive li-
terature on the micromechanics of ductile fracture. Moreover, this paper showed
that a precise mechanics analysis of a carefully chosen continuum model could
help us to quantify the complex microstructural behavior. The imposed axial
strain rate and the transverse stress were considered. The linearized geometri-
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cal relations were assumed. McClintock’s exact solution exhibits an exponential
increase in the void growth rate with positive transverse stress.

Rice and TRACEY [3] analyzed the growth of an isolated spherical void sur-
rounded by an ideally plastic matrix. This void was subjected to a general stress
state. The approximate solution has been obtained by using the Rayleigh-Ritz
method. The influence of viscoplastic properties of the matrix on the growth of a
spherical void has been analyzed in [4]. For the limiting case (rigid-ideally plastic
solid) the solution presented in [4] reduces to the solution obtained in [3]. Finite
element results for the growth of an isolated spherical void in an ideally plastic
solid have been obtained in paper [5]. The model of a single void immersed in
the infinite material space is a characteristic mark of the void growth analysis
reported in papers [2 — 5]. This approach does not take into account the void
interaction effects.

A different approach taking into account void interaction effects has been
presented by CARoLL and Hovt [6]. In their paper, the description of the growth
mechanism has been obtained by an analysis of the collapse of a hollow sphere
made of incompressible elastic-plastic material. JOHNSON [7] has analyzed the
same hollow sphere model problem. The viscoplastic effects have been taken into
account. Other generalizations allowed for the work-hardening effects. The void
growth process for a linear, work-hardening viscoplastic material has been analy-
zed by PERZYNA [8]. In Perzyna’s model, EFTis and NEMES [9] have assumed the
non-linear work-hardening rule. The influence of thermal effects on the growth
mechanism for the discussed model has been investigated in [10].

In all papers quoted above the void growth analysis was based on the sim-
plifying assumption that the strains in the material surrounding an isolated void
remain small. In this paper we give up this assumption and consider the fini-
te deformation of the matrix material. Such conditions can be realized in many
technological problems of structural metals.

Section 2 is focused on an analysis of the growth mechanism of a single void
for finite strains. The model of the hollow sphere proposed in [6] and [7] is as-
sumed. It has been assumed that the matrix material is described by Perzyna’s
viscoplastic law and by the non-linear work-hardening rule. Quantitative and
qualitative distinctions between the presented solution and the geometrically li-
nearized solution [9] are discussed. In Section 3 the damage evolution equation
for the complex state of stress [11] is discussed. A numerical example of fracture
analysis for the structural element is presented in Section 4. The last section
brings final conclusions and comments.
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2. The growth mechanism of the isolated spherical void for finite
deformations

We consider a rectangular volume element containing a representative distri-
bution of voids as shown in Fig. 1. Let us assume a uniform hydrostatic tension
p acting over the surface of this element [7].

p

voids (p,)

V =V, - void volume
solid (p,)

V, -solid volume

p

F1G. 1. Material element containing voids: P is the average mean stress acting over the
element face, p, is the gas pressure in the voids, p, is the average mean stress in the
solid material.

The equilibrium of forces acting on the cross-sectional area A occupied by
the voids is expressed by the following equation [7]:

(2'1) Asﬁs + (A = As)pg = Aﬁm

where 7, is the mean stress (spatial average) in the solid material which acts
on the average area A, on the plane of total area A, and p, is the internal gas
pressure (for reactive media). For a random distribution of hole shapes and sizes
Ag/A =V, /V, and we obtain that the mean stress in the solid constituent is

: o
(2.2) Pa = T_¢P ~T_¢Po
where
V-V,
(2.3) ¢=—

is the porosity parameter describing the ratio of the voids volume to the volume
of the aggregate.

A simplified model of the porous element is now assumed. Let us consider
a single spherical void of initial radius ag in a sphere of initial radius bg. In the
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actual configuration, the void is subjected to internal pressure p, and external
stress p, (Fig. 2.)

T solid

F1G. 2. Porous material model.

For these assumptions the porosity parameters, namely the initial and actual
ones, are determined by relations

: _a =10
(24) Eﬂ'—bga ‘E_bg

We carry out the analysis of the spherical void growth in the Eulerian polar
coordinate system {r, §, ¢}. The Lagrangian coordinates of the material point are
denoted by {R, ©, @}, and the corresponding Eulerian coordinates are as follows:

(2.5) r=[R+cw]”, 0=, ¢=o

The first of the above functions of motion results from the assumption that the
volume of the surrounding material has to be preserved. The integration function
C(t) depends only on time. The remaining functions of motion determine the
conditions of spherical symmetry. Differentiating the functions (2.5) with respect
to time we obtain the velocity field

(2.6) 7= %C’(t), 6=¢=0.
http://rcin.org.pl



INFLUENCE OF FINITE DEFORMATIONS 75

The spatial velocity gradient is represented by the matrix

s :
_m 0
(2.7) gradv=| 0 Lo C(t).
3rd
1
0 =

This matrix is symmetrical. Thus, the rotational speed of the material particle
vanishes. The deformation rate tensor is equal to the spatial velocity gradient, d =
grad v. Moreover, the incompressibility condition is satisfied, trd = tr(gradv) =
0. The equivalent rate of deformation and equivalent deformation are as follows:

= 2 1/’2 2 - — ‘-'. 2 Ta
(28) g = [g(d . d)] = @C(t], £ = fEdt — gll’l T3 e C(t)

The equation of motion described by physical components of the Cauchy
stress tensor has the form

. Oo
(2.9) e
where p is the solid density. Our analysis will be restricted to the case where
inertial effects are neglected, i.e. pi¥ = 0. Equation (2.9) is then integrated from
a to b with boundary conditions o,.(a,t) = py and o..(b,t) = p,, to give

2
= +;(Urr_099J:

b
AS
(2.10) B, —p, = —2/ i, AS =0y~ ou.

The rate-dependent matrix material characterized by linear overstress func-
tion and nonlinear hardening is assumed. In this case the yield condition is given
by the following relation [8]:

(2.11) V32 =0 [1 ol (5)]

7o
where

(2.12) 0* = 05— (05 — 00) exp(—0E),

is the plastic strain-dependent yield stress due to the work-hardening effects [9].
In Eq. (2.12) 0¢ and o, denote the yield and saturation stress of the matrix

material, g is the viscosity constant. We shall apply the linearized form of the
relations (2.10) and (2.11), namely

http://rcin.org.pl



76 W. DORNOWSKI

(2.13) 099 — Opr = —AS = 04 — (05 — 0p) exp(—0E) + - Tox
0

The integral of the above expressions has the form

b
(2.14) / _asdr = 0,01 — (05 — 09)Ca + -a—’Cg,
- r “0
where
far 1.1 [& 2¢
r E
2.1 = === = [ Zdr =22
( 5] Cl ./T‘ 311'16, 03 /rr gsf
(13 a
The integral
b b
—62
(2.16) Cy :/e f ol oyt
T
a a

has a non-elementary form, therefore we have to find its approximate value. We
make the following change of variables in the expression (2.16):

c C(t
(2.17) le—T—:xlzle,zzzl_Obgt)

3 and 0 < 71 <19 < 1.
a

Thus the integral Cy can be rewritten as follows:

The functions fi(z) = - 1

integrable for all points from the interval [z;,zs]|. Therefore, the mean value
theorem for integrals gives

2 .
and f(z) = £3% are continuous, bounded and
z

1 1
(2.19) C2 =3y f T =3 Eﬁ" = h(y) fory € [z1,z4].

The function h(y) is continuous and monotonic over the interval [z, z5] and it
has the upper and lower bound values at the end points of this interval. Thus we
have

2 2
(2.20) :a:i"'5 < h(y) < lln 111255.

3¢
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The function h(y) can be approximated by the mean value of the upper and lower
bound values

1 385, @y 1.1
(2.21) h(y) = ging (zf‘s + zg") = §IngFE &),
where

, g 1-£)\3 1—5)%5
2.9 F(E, €)= . ,
:22) (&) (1-50 € ) +(1—§n
Finally, we obtain

)

(2.23) Cy = glﬂ EF(E:&!)-

Substitution of the determined integrals and Eq. (2.2) into Eq. (2.10) gives
the evolution equation for the porosity parameter in the following form:

(2.24) €= g?% {ﬁ —pg — %(1 - €) ln%[%, — (05— ao)F(Eo,é)]}-

The equilibrium state is reached at £ = 0, thus

(2.25) Peq = Pg + %(1 —§&)In %[203 — (o5 — 00)F (&, €)).

The relation of Eq. (2.25) shows a direct influence of the work-hardening
effects on the value of the equilibrium pressure peq(€) for particular porosity &.

For infinitesimal strains of the surrounding material, the strain-displacement
relations may be written as follows [7]:

du

(2.26) err =27 e = €09 = ;,
where
(2.27) u=r-R=r—[*-C(t)'s

is the radial displacement. The infinitesimal equivalent strain and its rate are
given by the expressions

=3 -390 - S}

EF= _EQ(_Q {_13_ [1 b C(‘i)]l”3 5 2 [1 5 C(t)]—ﬂa}'

3 3 SIE T Trdn

,.3
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In this case, the derivation of an evolution equation for the porosity parameter
is similar to the previous one. Thus, without going into details, we present the
final result

g B i §
A S Tk

{;‘J —pg — %(1 —&)In %[205 — (05 — 00) F(&o, 5)]}

where

= _pv1=2/3
F(&,6) = exp {g:} S —¢ [?E(ll— 53 }

3 &(1—&o)
2 fo—£&(1—E\ Y3
*e"p[§°T——&,(1—eo) ]

(2.30)

1/3
+8 ll— (6—0) K]}
3

It can be easily seen that the expressions (2.29) and (2.30) have a more
complex structure than those obtained for finite deformation. Furthemore, the
function F;(&y, €) has a singular point for the initial instant of the growth process
(§ = &o). This property demands some additional activities in the numerical
integration of the evolution equation (2.29). The proposed function (2.22) has no
singular points. The comparison of the described solutions is shown in Figs. 3
and 4. Line [ denotes the presented solution and line 2 denotes the geometrically

linear solution [9]. The following material constants are assumed in numerical
calculations:

p=800MPa, p,=0, 7 =100s"!, o, =350 MPa,
oo = 40MPa, d =5,& = 0.001.

The curves in Fig. 3 illustrate the dependence of the equilibrium pressure peq
on the porosity parameter . The character of the analyzed quantity is the same
for both discussed solutions. In the first phase of the void growth, the equilibrium
pressure increases steadily to reach a maximal value, after that it decreases.
Small quantitative differences occur at the maximum of peq. For a geometrically
linearized solution the maximum of pe, is greater than the corresponding value
for the solution obtained.
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[MPa]

i & & & 3

0 0.008 0.01 0.015 0.02

g

F1G. 3. Dependence of the equilibrium pressure peq on the porosity parameter £: line 1 -
proposed solution, line 2 — geometrically linearized solution.

The evolution of the porosity is presented in Fig. 4. For this quantity the
differences between the considered solutions are significant. For majority of me-
tals, the loss of local carrying capacity is observed at £ 22 0.3. In the case of
geometrically linear solution (line 2) this value is reached in double time. This
result is of great importance to the estimation of the fracture time for structural
elements loaded monotonically.

0.4
0.3
1
€ o \_ 2 \
0.1
0
0 0.02 0.04 0.08 0.08

t[s]

FiG. 4. Evolution of the porosity parameter &: line ! — proposed solution, line 2 — geo-
metrically linearized solution.
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3. The microvoids growth equation for the complex state of stress

In the paper [11] the intensity invariant for the growth process in the complex
state of stress was postulated in the following form:

(3.1) I, = biJy + bay [T + ba( ),

where b;(i = 1,2,3) are the material constants, and by J; we denote the first
invariant of the Cauchy stress tensor o, J5 and Jj are the second and third inva-
riants of the stress deviator, respectively. For the growth mechanism we assume

(11]

(32) by = = Iy = 06,2

where T, /6o denotes the dynamic viscosity of the material, g*(£) represents the

void growth material function and allows for void interaction, and o.q(§,2") is

the porosity and equivalent plastic strain-depend void growth threshold stress.
Comparison of Eq. (2.24) and (3.2) shows that

ok
l—€’
(3.3)
a6 2F) = el —E)In é[za, (o= o)l E)):

The material constant ¢; controls the rate of growth and the material constant
¢o determines the level of the threshold stress. The constants og and o denote
the yield and saturation stress of the matrix material. The assumption that the
growth process runs in domains of inelastic deformations leads to the particular
relation

1
2(1 — &) In(1/&)

The evolution equation in the form (3.2) was also advantageous in certain
problems of the plastic flow for cyclic dynamic loading [12].

(3.4) cy 2

4. Numerical example

The main objective of this example is the illustration of the fracture process
in inelastic materials during dynamic loading. This kind of fracture can occur as
a result of the shear-band localization generally attributed to a plastic instability
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implied by microdamage softening during dynamic plastic flow process. In the
dynamical initial-boundary value problem, the stress and deformation due to
wave reflections and interactions are not uniformly distributed, and this kind
of heterogeneity can lead to strain localization in the absence of geometrical or
material irregularities [14].

The subject of the fracture numerical analysis is a thin rectangular steel plate,
Fig. 5a.

a) b)
1'!. =03 m/s
E I ’:r ‘. =50 ps
t=18
= Vo
] °
-
t
A A
Y rl rl

a=6.0cm

F1G. 5. Dimensions of the plate and variation in time of the kinematic constraints.

The shorter edges of the plate have been subjected to the tensile kinematic
constraints, Fig. 5b. The rate-dependent material was assumed, and the effect of
the plastic work-hardening was omitted. The porosity evolution has been descri-
bed by Eq. (3.2) in which the proposed function F(€, &) (2.22) was used. The
initial-boundary value problem of this type was the subject of an experimental
investigation [13], as well as of a numerical analysis by the finite element method
[14]. In the paper [13], different fracture types of sheet specimens were investiga-
ted. The plane stress and plane strain conditions were assumed. It was confirmed
that the variations in specimen geometry produce significant changes in the stress
state, directions of shear bands and in ductility. The final fracture of the plate
occurred in the shear bands. Numerical solutions presented in the paper [14] have
been obtained by the finite element method. Particular attention has been focu-
sed on the thin shear band region of finite width, which undergoes significant
deformations and temperature rise. The numerical results are compared with the
available experimental observation data.

In this paper we have restricted our attention to the presentation of our own
numerical results. Interesting aspects of the initial-boundary problem formulation
and of the applied finite difference method have been omitted.
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w.

Figure 6 illustrates the evolution of an equivalent plastic deformation in the
discretized domain of the plate. In the initial phase of deformation the shear
effects (white bands) occur in the region adjacent to the loaded edges. With
continued loading process, two cross shear-bands are developed in the center of
the plate. Numerical experiments have revealed that the final distribution of shear
bands also depends on the rate of deformation, not only on the plate geometry.
For the rates larger than those assumed in the example, the shear bands develop
in the region adjacent to the loaded edges.

t=2ms {=4ms t=6ms t=8 ms t=18 ms

3

Fi1G. 6. Evolution of the equivalent plastic deformation in the discretized domain of the
plate.

In Fig. 7 we present the distribution of the equivalent plastic deformation
along the cross-section X = a/4 for chosen instants of the deformation process.
It can be observed that the plastic strains develop in the zones of localized vi-
scoplastic flow. The width of these zones does not tend to singular lines as for
rate-independent models and depends significantly on the viscosity, which is used
in calculations [14]. The obtained results are in good agreement with the experi-
mental observations of CHAKRABARTI and SPERTNAK [13].

The porosity evolution corresponding to the evolution of equivalent plastic
deformation (Fig. 7) is shown in Fig. 8.

It can be seen that the intensive increase in the porosity in shear bands
occurs shortly before the final fracture of the plate. The process of the void
growth, as well as of its coalescence, leads to the nucleation of a macrocrack. The
development of macrocracks is illustrated in Fig. 9 by means of three selected
instants of the deformation process. The cracking started in the center of a plate,
and with continued loading process the macrocraks develop along the shear bands.
The deformed configuration for final fracture of a plate ({; = 18 ms) is shown
in Fig. 10. Figure 11 shows the variation in time of the porosity parameter £grow
at the mid-point of a plate. This variation is interesting from the viewpoint of
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Fic. 7. Distribution of the equivalent plastic deformation along the cross-section
X = a/4 for chosen instants of the deformation process.
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FiG. 8. Distribution of porosity along the cross-section X = a/4 for chosen instants of
the deformation process.

t=14ms t=16ms t=17 ms

- <

Fi1G. 9. Development of a macrocrack (black domains).
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the analysis of the damage processes. The character of variation of the porosity
parameter §grow is in good agreement with the solution presented in Section 2 for
finite deformations.

)

F1G. 10. Deformed configuration for final fracture of the plate, ty =18 ms.

0.25

0.15]
0.1

0.05]

'] 25 5 1.5 10 125 15
1 [ms]

F1G. 11. Variation in time of the porosity parameter £gow at the midpoint of the plate.

The variation in time of the normal stress ¢¥Y at the midpoint of the plate
is presented in Fig. 12. This curve illustrates the character of changes of the local
stress-carrying capacity. The local material softening is seen in the behaviour of
inelastic strains. This softening effect depends on the deformation (geometrical
softening), as well as on the porosity evolution (physical softening). It can be seen
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that the physical softening effect dominates in the last phase of deformations. A

complete loss of stress-carrying capacity is equivalent to the local fracture of the
material.

175

gm 10 \

0 25 5 75 10 125 15
t [ms]

F1G. 12. Variation in time of the normal stress oYY at the midpoint of the plate.

5. Conclusions

On the basis of the hollow sphere model, the void growth equation has been
derived for inelastic finite deformation. This equation has a simple form without
singular points. These properties have practical significance in numerical appli-
cations. From the viewpoint of the analysis of fracture processes, the proposed
evolution equation makes possible a more accurate estimation of fracture course
and time for structural elements.
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