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A MATHEMATICAL FORMULATION for the hysteretic behaviour of a two-phase thermo-
elastic material undergoing stress-induced coherent martensitic phase transformations
is proposed. The hysteresis effects are taken into account by making use of the
second principle of thermomechanics and the postulate of realizability. The effective
free energy density of the two-phase system is a result of homogenization of the
piecewise quadratic potential adopted. The deformation process is formulated as
an evolution variational inequality, which is finally solved as a sequence of linear
complementarity problems. The answer to the question of existence and uniqueness
of a solution to the problem is established. Results of numerical simulations for
the shape-memory strips tested under uniaxial tension are included. The strips are
initially in an austenitic phase which under prescribed elongation transforms in a
martensitic phase and subsequently, after releasing, returns to the initial state. The
phase transformation occurs provided its driving force reaches some threshold value,
and is accompanied by the energy dissipation and inhomogeneous deformation. The
results show the influence of the phase transformation, strain and boundary conditions
on the propagation of the transformation front and the deformation mode of the
specimen.

1. Introduction

HYSTERESIS IS OBSERVED in many phenomena of physics, engineering mechanics
and biology, including ferromagnetism, ferroelectricity and plasticity [20]. In par-
ticular, hysteresis effects are induced by the reverse martensitic transformation
which is a first-order solid-to-solid phase change occurring in various crystalline
solids, e.g. in the pseudoelastic shape memory alloys. This special phenomenon
is attributed to discontinuous changes in the crystal lattice of the high temper-
ature phase, austenite, which possesses a higher symmetry and that of the low
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temperature phase, martensite, which may exist in many variants. The changes
in the crystal lattice can be described by homogeneous deformation. The result-
ing microstructure of shape memory alloys is usually reversible even if they are
subject to comparatively large strains.

It is well understood that a phase transformation in crystalline solids is a
complex process which takes place in grains at a microscale, [9, 15, 18]. To
get an understanding of the process and to tailor the special properties and
microstructure of the material, laboratory tests and crystallographic calculations
related to this scale are necessary. On the other hand, in order to be able to solve
boundary value problems encountered in engineering practice we need possibly
simple models which should, however, properly reflect the characteristic features
of material behaviour. These are usually phenomenological, macroscopic models
of continuum mechanics which are obtained by an averaging procedure. Yet,
the fundamental question here is how to find the proper parameters necessary in
describing the response of a mixture of phases. On the mathematical side, some
averaging procedures corresponding to the relaxation or homogenization of the
microscale relations have been studied, in which the notion of a weak solution
and the mathematical concepts of Young-measures and H-measures are employed,
e.g. [2, 3, 19, 31]. In the field of continuum mechanics, the phenomenological
models of phase transformation have been devised in which the microstructural
rearrangements are taken into account by means of a set of internal variables with
their evolution laws; here we shall cite [40, 13, 30, 11, 12]. The martensitic phase
transformation may be induced by temperature or stress. The local self-heating
and self-cooling of the material, respectively due to the exothermic character
of the austenite-martensite phase transformation and the endothermic character
of the reverse one, is the experimentally observed phenomenon [41]. Inclusion
of the temperature effects makes the deformation process rate-dependent and
highly nonlinear. This is because the stress (more generally, the driving force) of
phase transformation depends upon temperature and additionally, the location
of the moving heat source (phase front) is not known a priori. In this paper
we consider the isothermal problem, some numerical results for a nonisothermal
one-dimensional case are presented in [10, 8, 43, 23]. So, due to the isothermal
assumption our considerations here are related to slow deformation processes in
which there is "enough" time for the temperature in the specimen to reach a
homogeneous distribution with the value very close to that of the bath.

We propose a mathematically useful description of the hysteretic behaviour
which is typically shown by shape memory alloys, extending the approach [24]
to a three-dimensional case. It is generally agreed that the appearance of hys-
teresis in solids undergoing martensitic phase transformations is connected with
existence of a nonconvex energy function and some microscopic energetic barri-
ers. The model we use is capable of reproducing the hysteresis, which is mainly
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induced by frictional effects, through an additional term in the free energy ex-
pression, the so-called mixing energy and an extra discrete memory variable. The
thermomechanical model applied here was developed by many researchers who
contributed to its different aspects and generalizations, MULLER et al. [16, 33],
RANIECKI et al. (38, 36, 39, 35, 37|, LEVITAS et al. [27, 29]. The model is based
on quadratic free energies for the parent phase, W), and the product phase, Ws.
The free energy of the mixture W (per unit volume) is a weighted sum of the
component energies and the “mixing” energy

(1.1) W=(1-c)W, +cWs + Wnix,

wherein ¢ € [0,1] is the volume fraction of the martensitic phase. The final
form of (1.1) as given in (2.2) resembles the expression rigorously derived in a
mathematical way by KoHN [19] who uses a relaxation procedure at fixed volume
fractions, see also PIPKIN [34].

In this paper our aim is to formulate in a unifying manner the correspond-
ing rate boundary value problem for the experimentally observed hysteretic be-
haviour discussed in [16, 38, 27]. The proposed formulation takes the form of a
variational inequality of the first kind, cf. (3.8), which is defined on the product
set U x K where U is the space of kinematically admissible displacements, u € U,
and K is the convex set of admissible volume fractions, ¢ € K. The variational
inequality assures the satisfaction in a weak form of both the equilibrium condi-
tions and the phase transformation rules. Furthermore, the domain (in a special
case: boundary) between the region where the material is the pure austenite
phase and that where it is in the pure martensite state, which is the additional
unknown of the problem, is determined automatically as a sort of “by-product”
by solving the variational inequality. The rate boundary value problem is inte-
grated in time by an implicit scheme and for its space discretization the finite
element method is applied. Finally, the governing variational inequality is solved
as a sequence of linear complementarity problems.

2. Free energy and thermomechanical relations

The type of hysteretic behaviour we wish to describe is schematically illus-
trated in Fig. 1 which corresponds to the experimental results presented in [16],
for example. In fact, the stress-strain relations shown were obtained for a one-
dimensional bar made of a single crystal CuZnAl alloy, in which the ideal pseu-
doelastic flow without hardening is a conventional assumption. Our recent results
indicate that this hysteretic behaviour is very sensitive to any inhomogeneities,
what finally leads to differences between the local response at a material point
and the system behaviour [25].
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F1G. 1. Stress vs strain diagram of ideal pseudoelastic behaviour. Phase transformation
starts at the diagonal AD: (a) Yield and recovery: outer loop. (b) Internal yield and
internal recovery. (c) Internal loop. (d) Internal elasticity and history-dependence.

We consider the quasi-static evolution of a two-phase thermoelastic solid
which undergoes a martensitic transformation. The problem is treated in the
context of small deformations, under the assumption that the material prefers
two strain states: the parent phase (austenite), and the product phase (marten-
site). It may be noted that a two-phase model for martensitic phase transfor-
mations is a conceptual simplification as the martensite phase may, in general,
appear in many variants, e.g. six variants of martensite in a cubic to orthorombic
transformation [4, 5]. We consider the multi-phase problem in [21, 32|. In its
natural state at a temperature 6p (6 > A_f}), the body occupies an open region

2 c RY with d = 1,2,3. In a material point (particle) x € £ we postulate the
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Helmbholtz free energy Wi, 1 = 1,2 in the form
1
IV,(G,G) = § (e == dl) ' Ei (E = dil'] +wi(g)1

where, for simplicity, the same elasticity tensor Ey = Ey = E for each phase is
taken. By € = €(u) = %(Vu + (Vu)T) we denote the strain tensor, whereas
d; is the transformation strain (domain) of ith phase, and a dot - designates
the scalar product of tensors. Taking the austenite lattice as the reference state,
we may set d; = 0 and the transformation strain do = d. The function w;(8)
depends on temperature 6, treated here as a parameter, and we assumed w;(#) =
Cy(0 — 0y) — C,0n(0/6p) + € — 05? where €), s? are the energy and entropy
constants of ith phase, C, the common specific heat. So, the free energy function
is a two-well functional which is piecewise quadratic

(2.1) W (€) = min {W;(€), Wa(€)} .

But, it is known that if the free energy function of the elastic material is not
quasiconvex [2, 3, 31|, it is possible to find a boundary value problem for which
the energy functional has no minimizer. This mathematical property of the
phase transformation problem is connected with the “proclivity” of the material
to form a finer and finer microstructure, when minimizing the elastic energy.
Quasiconvexification of the phase transformation problem is a remedy used for
its regularization which leads to an energetically equivalent solution, that is still
of great importance. Denoting by ¢ the volume fraction of martensite we can
define the free energy of the mixture by

(2.2) Wi(e,c) = % (€ —cd)-E(€—cd)+[(1 - c)w + cwn] + %Bc(l - ).

Observe that the function W defined in (2.2) corresponds to the relaxation at
fixed volume fractions Q.W(€) derived by KOHN, see Eq. (3.11) in [19].
recall that for the function W specified in (2.1), its relaxation Q.W (€) at fixed
c € [0, 1] is defined as, cf. [19],

23) QW(e)=inf inf /[(1 IWi(€ + e(@)) + XWal€ + e(@))]

X ¢lav=0
where e(@) = (V@ + (V@)T) and y, being the characteristic function equal to

0 or 1, describes a partition of U into two phases, with the constraint that the
volume fraction of the second phase equals ¢,

1/_c
[ ===
u
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By @ we denote the test displacements with vanishing values at the boundary
AU of U. The minimization in (2.3) is carried out over the physical domain
U c R4, with respect to the displacements ¢ and the partitions of U into dis-
tinct phases described by distributions of x. The set U may be related to the
“representative volume element” in the theory of composites. Notice, however,
that the austenite-martensite mixture is a special kind of composites in which
the volume fractions of constituent phases (variants) are not given a priori, but
constitute the additional unknowns of the problem. It is not our purpose here
to address this aspect in more detail, we only remark that the minimization in
(2.3) does not depend upon the domain U. This is a more general result that
comes from the theory on quasiconvexification, see [19] for further discussion and
references to original sources. In deriving the expression for Q.W (€), Koun [19]
has used the relaxation via Fourier analysis with @ being periodic functions. The
relaxation of W, denoted by QW , can finally be determined by the minimization
of Q.W (€) with respect to ¢ over the interval [0, 1]; for a one-dimensional case it
is shown schematically in Fig. 2. The most useful property of QW is that it has
a minimizer with the corresponding minimal value equal to that of W as defined
in (2.1). In this work our point of departure is the function W by (2.2) which
corresponds to Kohn's relaxed energy at fixed volume fractions, Q. W(e). We
wish to stress the fundamental role which is played here by the term Wy In
the case of the free energy W of (2.2), Whix depends on the material parameter
B, but more general expressions are known in the literature, see [30, 36, 35].
According to [16], the value of B may be related to the area of hysteresis in the
elongation-force diagram, another expression for B is given in [19]. In the case
B = 0, the phase transformation proceeds at a constant stress (the Maxwell line)
determined by the “double tangent construction”, what in mathematical terms
amounts to the convexification of the energy W assigned in (2.1) and is illustrated
by the dotted bold line in Fig. 2.

In order to take into account the dissipation and hysteresis which are charac-
teristics of the phase transformation behaviour illustrated in Fig. 1, we minimize
the free energy W, defined in (2.2), with respect to ¢ under the requirements
imposed by the second principle of thermodynamics, supplemented with the pos-
tulate of realizability [28].

From the second law of thermodynamics it follows that the (mechanical)
dissipation must be non-negative,

(2.4) D= c-é—(ﬁ?+sé] > 0.

Furthermore, by the standard argument of constrained equilibrium [17, 40], we
arrive at the constitutive laws for entropy s = —dW /90 and stresses O,

(2.5) o= 0W /e = E(€ — cd),
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energy

strain

d
FiG. 2. Quasiconvexified energy function QW for a two-phase system with parabolic

energies W, and W5, and transformation strains d; = 0, d3 = d. The dotted bold line
corresponds to the convexification of W.

so that expression (2.4) reduces finally to the inequality
(2.6) D=Xe>10

wherein X is the driving force of phase transformation,

(2.7) X = —0W (8= -d — (ms — @1) — %B(l o

The condition X = () defines a plane in the space of stresses 0, parameterized
by the volume fraction ¢. In the one-dimensional case, X = 0 and ¢ € [0, 1] de-
scribe the diagonal AD in Fig. 1. When related to the one-dimensional situation,
the driving force X = X (0, ¢) is positive in the triangle ADB and negative in the
triangle ADE of Fig. 1. At this point the following observations can be made.

1. The equilibrium states on the diagonal AD are unstable. Condition (2.6)
shows that for X = 0 there is no dissipation.

2. As evidenced in Fig. 1, the phase transformation can proceed only if X
equals some threshold value and this process possesses some directive tendency
which can be controlled by the forward and reverse evolution of ¢.
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Thus, accounting for the dissipation and consequently for hysteresis effects,
we assume that phase transformation may take place only if its driving force X
reaches some threshold values k1,2 = K12(c,¢®) > 0 or ko317 = K1 (¢, %) < 0.
The thresholds k9 and k9_,; depend upon the current value of volume fraction ¢
and the additional internal variable ¢, which plays the role of a discrete memory.
In connection with the type of hysteretic loops shown in Fig. 1, it is reasonable

to adopt the following evolution law of the discrete memory ¢ at point x € £2,
&(x,t) =10, if X(x,t) #0,

(2.8)
A (x,1%) = ¢(x,1%), if X(x,t°) =0,

where #7 is the time during the process at which the state reaches the diagonal
AD in Fig. 1. For the thresholds we have adopted the simple linear expressions

(2.9) K12 = max {L(c — c"),0}, ka1 = min {L(c — °),0},

in which L is an additional material parameter.

Notice that the functions k19 and ko1 are a measure of the dissipated
energy in the course of the forward and the reverse phase transformation, respec-
tively. In fact, relations (2.9) can be derived from the dissipation potential @ of
the form

(2.10) ®(c, ) = %L(c S

which is a homogeneous quadratic function of the difference ¢ — ¢, Expression
(2.10) shows that the physical meaning of material parameter L > 0 is that of
the energy which is dissipated while transforming a unit volume of one phase into
the other. We assume that L > B, whereas the case L = B > 0 corresponds to
the ideal pseudoelastic flow shown in Fig. 1.

With these understandings, we have the following phase transformation con-
ditions:

if X = Ki-3(e, %) then ¢ >0,
(2.11) if X = ra1(c, ) then ¢<0,

if #.1(c,%) < X < K153(c,c®) then ¢é=0.

It is, perhaps, important to indicate some differences of the hysteretic re-
sponse pictured in Fig. 1 and a usual phase transformation problem [6]. These
are because of the condition (2.11)3, which says that there is no phase trans-
formation for some range of the driving force X, and due to the characteristic
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internal loops which we model by means of the discrete memory ¢°. Clearly, our
modelling of the very complex hysteresis loops by means of ¢® should be under-
stood as a first approximation of accounting for internal loops, which is based
rather on macroscopic observations. How a memory variable evolves in shape
memory alloys under cyclic loading is, however, a difficult and subtle question
which requires further research, for related discussions see [42, 1, 7|. In fact, there
is no general consensus on the issue what kind of process may proceed from a
given state in the upper triangle ABD of Fig. 1d under reloading after unloading:
for instance, MULLER and his co-workers assert that the reloading is a passive
(elastic) process till the previous flow stress, cf. Fig. 5d of [16], but RANIECKI
and his co-workers claim that this process is from its beginning an active phase
transformation flow, cf. the path ABEH in Fig. 4a of [38]. In this paper we have
adopted the simplifying assumption that ¢ is equal to the value of ¢ at the latest
state defined by the condition X = 0 (the diagonal AD in Fig. 1, for the one-
dimensional case). Our discrete memory ¢ may be treated simply as an extra
variable which is helpful to follow the internal loops in the diagrams of Fig. 1.
However, the use of ¢ is not essential to the approach we develop in this paper.
In the particular case we may stipulate that the phase transformation flow will
take place only along the interval AB (austenite-martensite phase transformation
with ¢ = 0) and the interval DE (martensite-austenite phase transformation with
¢® = 1). In that case the thresholds assigned in (2.9) become

(2.12) K12 = K1-2(c) = Le, ka1 = Ka1(e) = Le = 1).

Finally we recall the equilibrium equations, which for the stresses defined in
(2.5) take the form
(2.13) div[E(e(u) —cd)] + f =0,

where f is a body force per unit volume. For the rate boundary value problem
considered later on, Eq. (2.13) should be supplemented by appropriate initial and
boundary conditions. We assume that the latter are regular, i.e. they satisfy all
the relations defining the problem.

3. Mathematical formulation

3.1. Variational inequality
Referring to (2.11) we define the phase transformation functions
(3.1)  Fise(0,6,") =riu2— X 20, Fo1(0,6,6°) = X — ki1 20,

which correspond to the forward and the reverse phase transformation, and by
¢t and ¢~ we denote the positive and the negative part of the rate of volume
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fraction,
(3.2) ¢t = max{¢, 0}, ¢~ = max{—¢,0},
so that

f=ét—¢

Under these definitions we have the following result, cf. the equivalence lemma
in [26].

LEMMA 3.1. The phase transformation rules (2.11) are equivalent to the rate
variational inequality

(3.3) ce0,1  Fisae): (y+ —¢Y) + Foosile) - (y-—¢7) 20
for all y4, y- > 0.

Proof. We prove the assertion in the special case that ¢ € (0,1), for
the sake of simplicity !. First, assume the “if” part of (2.11)3 so that Fy_,, > 0
and Fy,; > 0, then (3.3) implies that ¢t = ¢~ = 0, because the existence
of a ¢* = p > 0 would lead to the contradiction: Fj_5(c) - (y+ —p) < 0 for all
Y+ < p. Further, if one of the phase transformation functions is equal to zero, say,
Fyy5 =0, i.e. the “if” part of (2.11);, then ¢ > 0 satisfies (3.3) (a degenerated
case ¢ = 0 is also covered). Note that by (3.1), Fi_2 = F»,; = 0 is possible
only for the states on the diagonal AD in Fig. 1 and if the thresholds are defined
as in (2.9); such a coincidence is not possible for thresholds assigned by (2.12).
Finally, by satisfying inequality (3.3) on the positive cone R, with ¢*,¢™ € Ry,
we enforce the conditions (3.1). This completes the proof.

Inequality (3.3) implicitly defines the evolution law of ¢, thereby the kinetics
of the strain induced by the phase transformation. Usually, the evolution law for
the volume fraction variable is written in the form of an equation for the active
phase transformation process which is the pivotal concern in the metallurgical
literature. However, from the standpoint of computational mechanics one of
the main difficulties lies in the determination of the domain in a body where
the forward and reverse phase transformations do take place, i.e. where the
evolution law(s) of ¢ with ¢ # 0 is in force, and the domain where the response
is elastic and a different constitutive law with ¢ = 0 holds. The variational
inequality encompasses both the “active” and the “passive” evolution of ¢, playing
the role of a switch. It may be remarked that the above formulation of the phase
transformation criteria is similar to that of the loading/unloading conditions in
the flow theory of plasticity [26]. Yet, one of the main differences is due to the

'The case ¢ = 0 or ¢ = 1 leads to the expression for X, cf. [24], which includes the subdif-
ferential of the indicator function, 8Ijp yj(c), so that (3.1) will hold for any ¢ € [0, 1].
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constraint ¢ € [0, 1] and that imposed on the plastic multiplier A which is bounded
only from below and whose rate must be non-negative, i.e. A > 0, with A20.

From the computational reasons, it is natural to express the functions (3.1)
in terms of displacements through the strain tensor. This leads to the new phase
transformation functions

—d-E€ + (d-Ed — B) ¢+ k152(c, )
+{w2 =T wl) + 8/21

Goi(€,¢,%) = d-Ee — (d-Ed — B) ¢ — k31(c, )
—(w2 — @) — B/2.

Gl—é?.(eaca CO)

(3.4)

The formulation discussed above constitutes a natural advantageous basis for
the numerical treatment of the problem. Toward this end, the finite-dimensional
counterpart of the variational inequality (3.3) in terms of the phase transforma-
tion functions (3.4) is obtained by the finite element method, and its evolution
in time is solved as a sequence of linear complementarity problems.

3.2. Incremental problem

For boundary value problems of practical significance it is necessary to solve
the evolution problem (3.3) in a weak form with respect to the space variable,
and incrementally in time. To this end, the relations (3.4) will be expressed in
displacements through the strain tensor and imposed to be valid for the body
2 as a whole. Doing this, from (2.6) we arrive at a reduced form of the global
Clausius-Duhem inequality [14]. Problem (3.3) is a free boundary problem in
which the boundary between the pure phase region in which ¢ =0or ¢=1 and
the phase transformation region in which ¢ € (0,1) is not known in advance.
Furthermore, the hysteresis loops depend also on the discrete memory variable
. Due to this kind of history dependence, we treat the stress-strain path as a
piecewise monotone one, making use of the monotone path rule [25]. We apply an
implicit time integration scheme, imposing the phase transformation conditions
(3.4) and the elastic equilibrium Eq. (2.13) at selected (process) times ¢, € [0, 7],
with =12« and T< oo,

Using the notations u, = u(-,t,), ¢cn = c(-,t,) for the displacement vector
and the volume fraction at time ¢t = ¢,, and the symbol A for finite increments,
we define

Au, = up — Uy,

Acp = ¢y —Cy-1.

Further, we split the function Ac, into its positive and negative part, cf. (3.2),
obtaining the decomposition
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Ac, = A¢f ~ Acg.

Let U(t,) designate the set of kinematically admissible displacements of the
body §2 at time t = t,,

Ulty) = {v € H'(2,RY)| v(x) = w(x,t,) for ae. x € an,,}

where H!(£2,R%) is a usual Hilbert space of vector-valued functions defined on
£2, i.e. the set of functions which, together with their first derivatives, are square-
integrable. By 02, we denote a part of the boundary 92 where displacements w
are prescribed (at time t,,), and let V' stand for the space of test functions, defined
by V = U(t,). The sets K (¢,—1) and K_(¢,—1) that impose constraints on the
finite, positive Ac; and negative Ac;, parts of increments of volume fraction take
the form

K(z) ={wel?R): 0<z+w<1,z€Z},
Ki(z) ={wel*2): w>0,z+w<1,z€Z},
(3.5) K (z2)={weLl*Q): w>0,z-w>0,2€ Z},
Z = {zel*@) 0L 2£1),

where L?(£2) is the space of square-integrable functions.

Before giving a weak formulation of the boundary value problem, we define
the following bilinear and linear forms which correspond to relations (3.4) and
(2.13),

a(w,v) = /EVw—Vvdx,
n

(3.6) glw,v) = /wEd-Vv dx,
?

h(w,v) = /(d—Ed + L — B)wv dx,
n
lnn-1(v) = /Afn-v dx + (terms on 982), n—1,
(3.7) %
bf_](cn_l,w) = /[B/Z + (g — w1) + Llcp—y — 2 _1 ) F]wdx
n

Fg(w,up—1) = hlcp_1,w).
http://rcin.org.pl
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With these notation we can define a typical time step t,—; = t, of the
incremental boundary value problem for the phase transformation process under
consideration as the variational inequality.

Find (Au,, Ac,) € U(t,) x K(cp-1) such that

a(Auy,v) — g(Acn,v) = lyn-1(V) VveV
(3.8)
Fo(z+ — AcE, Auy) £ h(Acy, 24 — AcE) > ZFb:*l(cn_I,zi — AcY)
Vz+ € Ki(cn-1)

Having solved (3.8) for increments Au, and Ac,, we can easily update the dis-
crete memory ¢\ _, to ¢} at the current time t = ¢, details are given in [25].

Under the usual assumptions including those of symmetry and pointwise sta-
bility of the elasticity tensor E, and provided that the set 0f2, has a positive
measure and excludes rigid motions of the body (2, the following result can be
proved, [21].

THEOREM 3.2. Let the material parameters L, B > 0 satisfy the inequality
L > B. Then the problem (3.8) possesses a solution. The solution is unique,
provided L > B.

The first equation of the system (3.8) is a weak form of the equilibrium condi-
tions (2.13), whilst (3.8)2 represents two variational inequalities which are a weak
form of the phase transformation rules (2.11) in virtue of the equivalence lemma
(3.1) and expressions (3.4). The system (3.8) can conveniently be discretized in
space by the finite element method and is solved finally as a standard form of
the linear complementarity problem, after some rearrangements due to the re-
stricted variations of the variables Ac;, Ac;, and the fact that changes Au,, of
the displacement vector are not restricted in sign.

3.3. Linear complementarity problem

Let pi(z) (1 <i < N) and 9(z) (1 < j < M) be the finite element bases we
use for the displacement u and phase fraction ¢ in H'(£2) and L%(£2). In partic-
ular, the field of displacement u can be approximated by a piecewise quadratic
polynomial, whereas for the function of phase fraction ¢ (and ¢%) a piecewise
linear approximation can be utilized. We remark that using of piecewise linear
basis functions 4; leads to the internal approximation of the sets K. in (3.5).
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The finite-dimensional counterpart of the weak formulation (3.8) may be
expressed as the following linear complementarity problem:

{3 9) Dxn 25 ¥n = bn,ﬂ—l
x;r: >0, y-}: =0,y 20, xXpyn = 0

in which D is a square matrix, x, is a vector of unknowns (nodal values of the
finite element approximations), y, denotes a vector of slack variables, and the
vector by, -1 is known at time ¢,. By x;, we denote the elements of the vector
Xn, excluding the subvector x} = Au, which is sign-unrestricted. The above
matrix and vectors have the following structure:

[ =K @ =@t 0 0 ] [ "Aa™)
a  =H H -I 0 Ac;t
D= | -G H -H 0 -I|,x,={ Ac; 3,
i | 0 r!
| 0 0 I 0 | =
" it ]
by,
b= £ 4 b
I —i€y1
O] )

Matrices K, G and H are generated by the bilinear forms (3.6),

K = [Kj;] = [a(pi,¢j)], dimK =N x N,
G = [Gij] = [9(%i,p;)], dimG =M x N,
H = [H;] = [h(¢i,95)], dimH =M x M,

and I is the M x M identity matrix corresponding to the vectors Ac;, Ac,
and their conjugates r), r2. The latter are Lagrange’s multipliers which are
induced by the constraint imposed on the volume fraction that ¢ € [0, 1], cf.

footnote 1 in LEMMA 3.1. Vectors by ., b, and b, are generated by

the linear forms (3.7). The matrices K (stiffness matrix) and H are symmetric
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and positive definite. For the solution of problem (3.9) we developed our own
computer program based on the algorithm presented in [22].

4, Numerical results

Our goal here is to check numerically the presented formulation and to see
the consequences of the assumptions taken. We have simulated the basic, uni-
axial tension test on a strip made from a two-phase material, as a plane stress
displacement-driven problem. The strip and the imposed boundary conditions
(4.1) are schematically displayed in Fig. 3. In the coordinate axis zy, let the dis-
placement vector u = (u, v) have the components u and v, and let the length and
width of the strip be a and b, respectively. We assumed the following boundary
conditions:

0,y)=0 0<y<hb,

on the left-hand side of the strip u(0,y) S
v(0,b/2) =0,

(4.1)

on the right-hand side of the strip { way) =wlt) 0<y<b
v(a,b/2) = 0.

The loading program w(t) is a bilinear hat function, increasing from zero to the

scaled maximum value of w(t')/a = 0.050833 at a time ¢ = #', and then decreasing

to zero.

For the field of displacements u(-,t) = (u(-,t), v(-,t)) we have used a 6-node
triangle finite element with quadratic shape functions (linear strain triangle),
whilst for the volume fraction ¢(-, ) a 3-node linear triangle. The uniform mesh
of (6 x 18) x 4 finite elements we employed is shown in Fig. 3. Due to the difficulty

y, V

1

]

g & e

A

A w(t)

¥ (RN

5

G #

A % 8
>

a

F1G. 3. The strip made of a material with two preferred states, of length a and width b
with a : b = 12 : 4, under uniaxial tension w(t).
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in finding all the needed parameters for a specific material, we have assumed
the following material parameters corresponding to a CuZnAl single crystal [16]:
E = 10000.00 MPa, B = 1.20 J/m3, L = 1.01B, v = 0.30, w, — w; = 3.756
J/m?, the thresholds #;_o and ks, by (2.9), and the transformation strain
corresponding to one variant of a CuAlNi alloy [5],

g [ 0045 0.020
= 10020 0045 |

Using the same material data, we have calculated the strip for two proportions
of its length to width: case 1 with @ : b= 12 mm : 4 mm, and case 2 with a : b=
24 mm : 4 mm, and the same thickness of 0.4 mm. In its initial state the strip
was in the austenite phase, and c¢(x,#9) = °(x,%9) = 0, x € 2 = [0,a] x [0,b].
The characteristic major hysteresis loop is shown in Fig. 4a. Displayed is the
relation between the force F' at the side (z = a,0 < y < b), divided by the initial
cross-sectional area Ag of the strip, versus the scaled elongation w(t)/a. On the
graph two pairs (A,A’) and (B,B’) of states corresponding to the same scaled
elongation but with different histories are marked. Figs. 4b and c, and Fig. 6

A0 Fiho (MPa) (a)
100+
A
801
601
A
40+
1 ' 4 5

w(t)/a (%)3
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FiG. 6. Case 2. The 24 x 4 strip under uniaxial extension program w(t). (a) and (b)
Distribution of ¢ at the states corresponding to A and A’ in Fig. 4.

reveal that the extension of the two-phase strip induces inhomogeneous fields
whose paths of evolution do not coincide during the loading and unloading stages,
even for this simple uniaxial loading program. Observe also that the initially
straight axis (0 < ¢ < a,y = b/2) of the strip does not remain straight in
the zy-plane in the course of the process, see Fig. 5¢ for the component v of
the displacement vector u. Finally, it is worthy to mention that the proposed
formulation allows us to determine the solution of this initially homogeneous
problem without introducing any disturbance to the system in order to initiate
the phase transformation.

5. Closing remarks

In the paper, a variational inequality approach to the hysteresis behaviour
of a two-phase system undergoing thermoelastic martensitic transformations is
developed. The starting point is a homogenized free energy for the mixture
of two phases, in the setting of linearized theory of elasticity with a parabolic
energy function for each phase. The mathematical model proposed is a weak
expression of the equilibrium conditions and the phase transformation rules. The
latter take into account the characteristic dissipative effects of friction type and
comply with the second principle of thermodynamics; they constitute an implicit
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form of the equation of kinetics of the phase transformation. To solve the rate
variational inequality, a computational algorithm is devised which comprises an
implicit time integration scheme and a mathematical programming procedure
(linear complementarity problem). The existence of a unique solution to the
problem considered is assured. The numerical results obtained for the tension
test on austenite-martensite strips show that, even in the two-phase system,
two corresponding states on the force-elongation diagram are connected with
different inhomogeneous states in the bulk of the sample. In future work we will
concentrate on the case of multi-phase systems. Also, accounting for the effects
of plasticity and temperature is desirable.
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