Arch. Mech., 51, 5, pp. 633-641, Warszawa 1999

BRIEF NOTES

Electrification capillary stability of a hollow jet

A.E. RADWAN (!) and N.A. GAD (3)

() Mathematics Department, Faculty of Science,
Ain Shams University, Cairo, Eqypt

(*) Mathematics Department, Women’s University College,
Ain Shams University, Heliopolis, Cairo, Eqypt

THE PRESENT WORK extends Chandrasekhar’s theory CHANDRASEKHAR [2] of axi-
symmetric capillary instability of a hollow jet. Here the instability of this model is
investigated for all (non)-axisymmetric perturbation modes under the combined ef-
fect of the capillary and electrification forces. The electrification dispersion relation
has been derived, studied analytically and numerically, and the (un-) stable domains
are identified. Some reported results are recovered as limiting cases. The principle of
the exchange of instability is valid. The capillary instability of a hollow jet becomes
worse in the presence of the electrification forces.

1. Introduction

THE IDEA OF A HOLLOW JET model which is a gas cylinder (of zero inertia) submer-
ged in an infinite liquid, is due to RAYLEIGH [1]. CHANDRASEKHAR (2] reported
the capillary dispersion relation of such model for axisymmetric perturbation mo-
de m = 0 (m is the azimuthal wavenumber) only, see also DRAZIN and REID [3].
CHENG [4] analyzed the capillary instability of this model, taking into account
(or not) the gas inertia force. Concerning more detailed studies of pure hydrody-
namic stability for m = 0, we may refer to the complete analysis of LIN and LAIN
[5] and LEE and WANG [6]. The hydromagnetic stability of a hollow jet has been
developed by RADWAN [7]. The latter author in (8] has examined the rotating
forces effects on the capillary instability of a hollow jet. The model of a hollow
jet will describe the phenomena observed in nature, such as e.g. gas escaping
from below an oil layer or a jet formed up when gas is pumped into a fluid.

The purpose of the present paper is to examine the effect of the electrification
forces on the capillary instability of a hollow cylinder. This will be carried out for
general cylindrical wave propagation upon using the energy conservation principle
in the form different from that used in our previous papers.
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The most interesting issue in this work is that both the potential energy
of surface tension and that of electrification have the surface area of the gas-
liquid interface as an extensive variable, but the sign of intensive variables of
each potential energy are opposite. Hence, it is expected that the competition
between the capillary and the electrification instabilities may show a variety of
stability characteristics.

To our best knowledge, the present electrification problem has not been tre-
ated or even approached, up to now, in the literature.

2. Basic state

Consider a circular gas cylinder (of radius a) dispersed in an infinite liquid.
Following CHANDRASEKHAR [2] we assume that the liquid inertia force predomi-
nat over that of the gas cylinder, i.e. the gas motion could be ignored relative to
that of the liquid in the perturbed state. But at the same time we have to be
sure that the constant gas pressure in the unperturbed state is of considerable
value, otherwise the model will collapse and this is not our case, see Eq. (2.12)
below. The liquid could be water, water solutions containing salt or even glycerin
while the gas could be air, helium or freon 12, see KENDALL [9]. The liquid is
assumed to be non-viscous and incompressible. An electric potential Vj is applied
along the dielectric gas-liquid interface. We shall use the cylindrical polar coor-
dinates (r, ¢, z) with the z-axis coinciding with the axis of the gas cylinder. The
present model of a hollow jet is acting upon the capillary, pressure gradient and
electrification forces. The gravitation force effects are not considered here.

The basic equations required for investigating the stability of the present
problem (using the SI unit system) inside of the liquid are:

(2.1) o (G + (V) = —vp,
(2.2) V.-u=0,

(2.3) VW = D;

along the gas-liquid interface

(2.4) pe =T (r;' +13'),
(2.5) (ri'+13') =V n.

Here p,u and p are the liquid mass density, velocity vector and kinetic pressure,
Ps is the curvature pressure due to the capillary force, 71 and r; are the principal
radii of curvature, W is the electrification potential, D is the electric charge
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density term due to the electrification at the gas-liquid interface and will be zero
here, T" is the surface tension coefficient and n is a unit outward vector normal
to the gas-liquid interface, given by

..
(2.6) n= BT
where
(2.7) —f(r,¢,2;t) =0

is the equation of motion of the gas-liquid boundary surface.
The unperturbed state, characterized by u =0, 9/0¢ = 0 and 9/0z = 0, has
been studied. The unperturbed basic quantities are given by

(2.8) po = const,
(29) Pos = *-T/OL,
(2.10) Wy = Wp(Inr/Ina).

Upon applying the balance of the total pressures across the gas-liquid interface
at r = a, we obtain

(2.11) po = py + €0 (Vo/(alna))? - T/a,

where p, is the gas constant pressure in the unperturbed state.
For py > 0, it must be

(2.12) pg + €0 (Vo/(alna))® > T/a

otherwise the model under consideration will collapse towards a hollow jet of a
radius smaller than a.

3. Eigenvalue problem

For small departure from the initial unperturbed state, the perturbation equ-
ations describing the oscillation of the hollow jet model are obtained by solving
Eqgs. (2.1) - (2.5). The constants of integration are determined upon applying
appropriate boundary conditions across the perturbed interface. The kinetic and
potentials energies of the fluids are computed. Moreover, upon using the energy
conservation principle, the following dispersion relation is derived:

S go Vi@ zK7.(z) 2K, ()
(31) w?= (;{;(mz +a® — 1) + 70) (1 e m)) (m) '

Equation (3.1) is the desired stability criterion of the present model. It relates
the growth rate w with the longitudinal and azimuthal wavenumbers x and m,
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the second kind of the modified Bessel function K, (r) and its derivative of order
m, the permittivity 9 of the fluid medium and other parameters T',a, Vj and p
of the problem.

In absence of the electrification effects (Vp = 0) and simultaneously assu-
ming that the fluid disturbance is longitudinally axisymmetric m = 0, disper-
sion relation (3.1) reduces to that indicated by RAYLIEGH [1] and just given by
CHANDRASEKHAR |[2].

If we assume that the perturbation of the gas-liquid interface could be axi-
symmetric and non-axisymmetric m > 0, and at the same time Vy = 0, Eq. (3.1)
degenerates to RADWAN’S result [8] if the magnetic field effects were neglected in
reference [8].

It is recommended that all quantities can be expressed in dimensionless form
using the radius a of the jet, the surface tension coefficient T', the mass density
p of the liquid and the electrification potential Vj as scalar values. Taking into
account that the quantity (7'/pa®) as well as (soV{#/(pa’ Ina)) has a dimension
of (time)™2, we introduce

I
(3.2) = W,
o E[}V02
S ~ aT(lna)

so that the eigenvalue relation (3.1) can be written in the dimensionless form

wa w=wist-a (g n(i- ) (B

In the axisymmetric perturbation mode m = 0, the relation (3.4) reduces to

oo -1 (3580) o 1-3580) ().

4. Stability discussion

4.1. Hydrodynamic stability

This is the case in which the hollow fluid jet is uncharged. The stability
criterion which describes such a case is given in its general form, from Eq. (3.1)
at Vo = 0, by

(4.1) . (i‘;‘:ﬁg)) :
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with
2 w?

(4.1) = W:

Vo =D

In order to discuss the stability here and in other sections, it is found more
convenient to write down certain propertiess of I,,, and K, and their derivatives.

For each non-zero real value of  and m > 0, c¢f. ABRAMOWITZ and STEGUN
[11], we have

(4.2) I (z) > 0,
(4.3) Km(z) > 0,

where I,,(z) is always positive and monotonically increasing while K, () is mo-
notonic decreasing but never negative. The recurrence relations of the modified
Beesel functions are

(4-4) QI:“(:L‘) = m—l(I) +In?.+l($)s
(4.5) 2K (z) = —Km-1(z) — Km+1(2).

Using Eqgs. (4.4), (4.5) and (4.2), (4.3) we obtain

(4.6) I, (x) >0,
(4.7) K] (z) <0,

for each z # 0 and m > 0. In view of the inequalities (4.3) and (4.7), for  # 0
we obtain

(438) z (Kb (2)/ Km(2)) <0.

Now, let us return to the dispersion relation (3.5). By taking into account
the inequality (4.8), Eq. (3.5) yield that
(4.9) %<0 for m>=1 as z#0,

while for m = 0, we have

(4.10) >0 a8  —lT=zr=1
(4.11) I*<€0 a8 z>1 or a<-1.

This means that a hollow cylindrical jet is stable for all non-axisymmetric modes
m of all short and long wavelengths, and also for sausage mode m = 0 whose
wavelength A(= 27 /k) is shorter than the circumference 27a of the gas core jet.
The hollow jet is capillary unstable only for axisymmetric mode m = 0 whose
wavelength A is longer than 27wa where the case when A = 27a is that of marginal
stability.
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In order to verify the foregoing analytical results, the capillary dispersion
relation (3.5) is calculated numerically for the most unstable mode m = 0.

The values of the quadratic dimensionless temporal amplification L are ta-
bulated and presented graphically as a function of z, see Fig. 1. The data reveal
the following conclusions. The capillary unstable domain of the hollow jet is the
only interval 0 < z < 1. The maximum mode of instability occurs at z = 0.484.
The numerical values of L? increase rapidly for very small values of = and reach
the maximum at z = 0.50; then they are fastly decreasing and change the sign
at ¢ = 1. The values of L? are negative for all values of z > 1. The point z = 1
represents a transition from stable to unstable domains.
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4.2. Electrification stability

In this case we assume that the hollow jet is acting upon the electrification
force only and we neglect the capillary force influence. The dispersion relation
follows from the general characteristic Eq. (3.1) with "= 0 in the form

(e ()
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with
(4.12) M? = ggVE/(pa Ina).

Applying the inequality (4.8) to the relation (4.12) we find that M? is negative,
hence the electrification hollow jet is stable iff the inequality

oK (x)
(4.13) (1 + =L ) 20

Km(:r)
is satisfied, and vice versa where the equality in (4.13) corresponds to the neu-
tral stability states. From the viewpoint of the inequalities (4.3) and (4.7), the
condition (4.13) may be rewritten as

(4.14) Kui(z) 2 z| KT, (z)| .

It is difficult to identify analytically whether the condition (4.13) is satisfied or
not. However, in order to avoid these difficulties, it is recommended that we
should analyse (4.12) numerically.

In the axisymmetric sausage mode m = 0, it is found that the inequality
(4.13) is satisfied in the ranges 0 < 2 < 0.595088 and so as 0.59509 < z < oc.
Therefore the electrification force is stabilizing in the domain 0 < z < 0.595088
and destabilizing in the neughboring domains 0.59509 < z < oc. The point
at which z = 0.595088 is that of a transition from a stability state to one of
instability, see Fig. 1. In the non-axisymmetric perturbation mode m = 1, it is
found that the inequality (4.13) is not satisfied for all short and long wavelengths.
This means that the electrification force has a strong destabilizing influence on
the charged hollow jet.

4.3. Hydro-electrification stability discussions

In this general case the model of a hollow jet is acting upon the combined
effects of the electrification and capillary forces. The stability criterion required
for investigation of such a case is given by the characteristic Eq. (3.4) in its
general form. The latter could be discussed with the aid of the Subsec. (4.1) as
(T'# 0,V = 0) and (4.2) as (T = 0,V # 0). The first case of hydrodynamic
investigations reveal that the capillary stable domains are

(4.15) 1<z < o0, as m
m

0,
(4.16) 0-<z <60 as 1

v

while the only unstable domain is

(4.17) 02 <l as m = 0.
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The second case of electrification analysis indicates that the model is stable in
the domain

(4.18) 0<z<059452, as m=0,

while it is unstable in the domains
(4.19) 0.5945 < = < o0, as m =0,
(4.20) 0 <z < oo, as m 2> 1.

In the case of consideration of the combined effects of both the capillary and
electrification forces, it is found that the unstable results are not as it could be
expected.

The dispersion relation (3.4) as m = 0 has been investigated numerically for
different values of the dimensionless electrification factor
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R B e
(4.21) I= (pa“(lna)) /(pa3) B (Ta(lﬂﬂ))-

The numerical data are illustrated in the range 0 < = < 3.0 of short and long
wavelengths, see Fig. 2. It is found that the model is completely unstable for I' = 1
for all short and long wavelengths. As I' = 0.3, the model is unstable for small
values of z, i.e. for very long wavelengths as 0 < z < 1.1, while it is stable in the
neighboring domain 1.2 < z < 3.0. The latter domain increases with increasing
x values. For I' = 6.0 the situation has been reversed: the model is stable for
very long wavelengths as 0 < z < 0.4 while it is unstable for short wavelengths
0.5 € = < 3.0. This change is due to the influence of the electrification force.
This indicates that the principle of exchange of instability is valid in the present
case.
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