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Two ENTROPY PRINCIPLES that are commonly used are: (i) the Clausius-Duhem in-
equality with the procedure of exploitation due to Coleman-Noll (CD-CN), and (ii)
the entropy principle of Miiller-Liu (ML). CD-CN makes a priori postulates about
the entropy flux and entropy supply and assumes external source terms in (most)
balance laws. ML postulate the entropy flux to be a general constitutive variable and
treat all field equations as constraints for the exploitation of the entropy principle.
These and further differences are explained, and results are presented with the use of
both principles for (i) a granular solid with a scalar structure equation, and (ii) for a
saturated mixture of granular/fluid constituents with scalar structure equations for
each constituent. It is shown that the two entropy principles yield different results. It
is further indicated which theories are likely to be problematic when the CD-CN ap-
proach is used. These theories are then applied to analyses of steady fully-developed
gravity flows down an inclined plane.

Key words: entropy principle, granular flow, solid-fluid mixture, constitutive equ-
ations, gravitational flow.

1. Introduction

To SOME EXTENT, modern continuum thermodynamics amounts to a collection of
“thermodynamical theories” sharing common premises and common methodology.
There are the theories of elastic materials, of viscous materials, of materials with
memory, of mixtures, and so on. It is generally the case that, in the context of each
theory, one considers all processes (compatible with classical conservation laws)
that bodies composed of the prescribed material might admit. Moreover, there
exist for the theory some universal physical principles that have been abstracted
from experience. Therefore one can reduce the generality of the constitutive rela-
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tions of dependent material variables by relying upon these principles. The most
important of these principles is the second law of thermodynamics.

Mathematicians interested in continuum thermodynamics are generally not
aware of the differences in the various postulations of the second law of ther-
modynamics. Virtually the same is true for many continuum mechanicians; in
particular it is surprising how shallowly and mechanically many continuum me-
chanicians handle the second law. It appears that they have superfically learned
how Coleman-Noll apply the Clausius-Duhem inequality and use it as a machi-
ne to generate inferences with little contemplation whether the deduced results
make physically sense. In this paper we will make an attempt to explain how the
basic postulates of two forms of the entropy principle differ from one another and
then demonstrate that they yield different results. It is these results which allow
us to favour one set of basic postulates over the other. The two entropy principles
are the

(i) generalized Clausius-Duhem - Coleman-Noll approach (CD-CN),
(ii) Miiller-Liu entropy principle (ML).

We will make clear below what we mean by “generalized Clausius-Duhem appro-
ach”. Our demonstration of the essential steps in these two principles will include
only the most important mathematical steps and omit significant details that
would detract from the main ideas. The reader can fill in these details himself by
reading the pertinent literature.

In Section 2, we present the two approaches of the entropy principles accor-
ding to a set of generalized field equations and constitutive relations and compare
their differences. Section 3 is devoted to the representation of the constituti-
ve equations of both (i) a dry granular material and (ii) a multiphase mixture
from thermodynamic considerations of the Miiller-Liu approach. Furthermore,
these are compared with those of CD-CN. In order to assess the implications of
the theories, we consider in Sec. 4 a specific boundary-value problem, namely
gravity-flow down an inclined plane for the dry granular material and the solid-
fluid mixture. In Section 5, this paper is summarized.

2. On entropy principles

In this section we will explain how the two exploitations of the entropy prin-
ciple are made and what postulates are underlying them. We then demonstrate
how they differ from one another. The constitutive class for which this compa-
rison is implemented is a restricted one in which constitutive relations express
a dependent variable as a function of its independent variables (and not a func-
tional), or for which a constitutive relation may be expressed as a differential
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equation among some variables. The constitutive class fathomed by this assump-
tion is still very large and covers most solid, fluid and mixture theories including
many dealing with hereditary effects.

2.1. Basic equations with source terms

Consider a field theory for a number of field variables u = (u;,uy) defined
over the body. Let u; be the independent fields, i.e., those field variables for
which the theory provides field equations. Let, moreover, uy be the dependent
field variables which are functionally expressed in terms of the independent fields.
Let s, s° be source terms, arbitrary known functions defined over the body and
over time,

Any continuum mechanical field theory consists of the following statements:

e Balance laws

(2.1) F(uj,uy) —s=0, e (ui,ug) — s = 0.

These are for instance the balance laws of momentum, angular momentum
and energy, but in electromagneto-mechanical applications they can also inclu-
de some of the Maxwell equations. In (2.1) we have singled out one scalar-type
equation — the one with the superscript € — from the others; this is the energy equ-
ation. F and f denote functional differential operators involving differentiations
of space and time.

e Constraint relations and source-free balance laws

It is often so that the field variables are subjected to constraint conditions
which are either of kinematic or thermomechanical nature. These constraint con-
ditions are also expressible as functional relations between the field variables
(u;,uyg),

(2.2) €, uz) =0

For example, an incompressible material is kinematically constrained by the
equation det F = 1 where F is the deformation gradient or det C = 1, where
C = F’F. The corresponding Eq. (2.2) is

(2.3) tr(FF~)=0 o +4=0,

where 7 is the material mass density. Another example of a constraint condition
is the saturation condition in a porous mixture of a soild and a fluid. It states
that the water fills the entire pore space. If vy and v, are the fluid and solid
volume fractions, then the constraint condition requires vy +vs =1 or

(2.4) %(uf + ;) = 0.
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Source-free balance relations are also of the form expressed by Eq. (2.2). The
conservation equation of mass is of such a form, or the constituent balance laws
of mass in a mixture of a finite number of constituents. In these latter laws
production terms can enter due to phase changes or chemical reactions. These
are no source terms as their origin is within the body and not external.

It is often so that authors introduce external source terms in evolution equ-
ations of the type (2.2) to make them of type (2.1). In most situations the reason
is mathematical, but there is no justification on physical grounds to do so. For in-
stance, to add an arbitrary source term to a balance law of mass is physically not
justifiable. Neither can balance relations for hidden variables have such external
source terms simply because they express something about the microstructure of
the body which is entirely internal to the body. Equations like this are the equ-
ilibrated force balances in granular theories, the balance laws for configurational
forces used in connection with phase changes, the spin balances in polar theories
such as micropolar, micromorphic and liquid crystal theories etc.

e Constitutive relations

The constitutive relations are functional relations between the dependent
fields ug and the independent fields u;. When u, are expressed as functional
relations of u;, they read
(2.5) ug = M(u;).

It is for these relations that we have divided the field variables into u; and ug.
Examples are an equation of the stress tensor in terms of the strain tensor in
an elastic constitutive relation, or the heat flux expressed as being affine to the
temperature gradient.

In most continuum thermodynamic theories it is stipulated that the balance
laws and constitutive relations together define a well-posed problem; in other
words, with appropriate initial and boundary conditions these equations are sup-
posed to yield unique functions of space and time for the field variables, at least
for some finite non-zero interval of time. When constraint conditions are added,
additional variables enter the theory, which represent the constraint stresses or
forces that must be applied to guarantee the maintainance of the constraint con-
ditions. These additional fields are not contained in u; and uy of (2.5).

Combining (2.1), (2.2) and (2.5) yields

F(u;, M(u;)) —s =0, B
(26) fE(U,;,M(ui)) e U, } IF(U;) —g=0.

C(ll,;, M(u,-)) = 0.

These equations are called field equations. Any set of u; that satisfies the Eq. (2.6)
is called a thermodynamic process. In reality the constitutive functions (2.5) are
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not arbitrary, they should obey universal physical principles, i.e., one can reduce
the generality of these functions by relying upon these physical principles. The
most important of these principles is the second law of thermodynamics, which
we now introduce in the form of the entropy principle.

There exists an entropy density 7, entropy flux ¢, entropy production density
7' and entropy supply density s7, which obey a balance law. The second law of
thermodynamics requires that the following inequality is satisfied,

(2.7) 7wl i=H(n,¢) —s" > 0.

Now, any process which satifies (2.7) (via the constitutive relations) represents a
so-called physically admissible process. The entropy inequality, however, must not
hold for arbitray fields u;, but only for thermodynamic processes, i.e. solutions
of the field equations. The working principle is therefore that all thermodynamic
processes must satisfy (2.7) or all fields which satisfy (2.6) must in addition satisfy
(2.7). We must point out that as long as 7, ¢, s7 are not related to any of the
quantities in (2.6), the second law is an empty statement. Various second laws
differ by the method how this link is made. Here, we will shortly present two
evaluation methods of the second law.

2.2. Generalized Coleman-Noll evaluation of the Clausius-Duhem inequality

It is assumed that

e there exists an absolute temperature 6,

e there exist a priori postulates by which the entropy supply rate density s”
and the entropy flux ¢ are connected to some field variables of Egs. (2.1) and
(2.2). For instance, in the classical Clausius-Duhem inequality one postulates the
relations

E
(2.8) a=2

= s &M (u;) = %(Ui),

where s, q represent the energy supply density and energy flux density vector.
Most authors use (2.8) if they apply the CD-CN procedure for the exploitation
of the entropy inequality. In mixture theories, however, supporters of the CD-
approach generally recognize that entropy flux and heat flux need not necessarily
be collinear. In those instances entropy and energy balance statements are for-
mally written down for each constituent, and (2.8) is replaced by

€
(]

;_s b, = ¢;M(ut') = M, a e (1,...,N),

2 L=
29) o 3

where a is a counting index for the number of constituents. The second law of
thermodynamics is then here expressed as a statement concerning the entropy
balance as a whole; it requires its entropy production to be non-negative. We
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will encounter this example below. Finally, notice that in (2.9) we have assumed
each constituent to possess its own temperature. Of course we may also specialize
these relations to constituents having the same temperatures

e 7 is a constitutive quantity with constitutive relation

(.10 = M),

Combination of the energy Eq. (2.1)2 and the entropy inequality (2.7) by use of
the postulate (2.8) yields

(2.11) H (M (wi), M (w) ) - %f; (i, M(u;)) >0 or H(u;) >0,

-

IHIEL.)

which should be satisfied for all thermodynamic processes. This form of the en-
tropy inequality no longer contains any source terms.

A clear formulation of the fundamental approach to the exploitation of the
Second Law is due to COLEMAN and NoLL [1]. It is as follows: The “universe” is
such that there can always be found a neighbourhood of a material point such
that the sources s may have any value. In the CN-CD approach one assumes
all balance Eqs. (2.1) to contain free source terms, therefore only relations (2.2)
constrain the independent u; in the exploitation of the inequality (2.11). It has
been shown by Liu [7] that for constitutive relations of the class restricted above,
satisfaction of (2.11) for all fields constrained by (2.2) is equivalent to satisfying
the inequality
(2.12) H(u;) — Ac - €(u;, M(u;)) > 0, Vu;

for unconstrained fields u;, where A¢ represent the corresponding Lagrange multi-
pliers. When the constitutive Eqgs. (2.5) are introduced into inequality (2.12) and
all the indicated differentiations are performed, this inequality can be written in
the form

(2.13) a(u;) - (Dw;) + b(u;) > 0,

where Du; represent new emerging temporal and spatial derivatives of the inde-
pendent variables u; !, which are not included in the constitutive relations (2.5),
hence inequality (2.13) is linear in Du;. Since the inequality must hold for all
fields u; and the variables Du; can hence take any values, the inequality could
be violated unless

(2.14) a(u;) =0, b(u;) > 0.

') The variables Du; may and generally do arise in the balance laws (2.1), but since source
terms are present, these equations can always be fulfilled by selecting the external sources
accordingly. Thus these equations do not influence inequality (2.13).
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We recall that the main purpose of the entropy principle is to derive restrictions
upon the constitutive relation (2.5). With relations (2.14) the following results
can be obtained:

e reduced dependences of constitutive relations,

e thermostatic equilibrium relations for constitutive quantities,

e thermodynamic potential relations,

e (Gibbs relation.

In particular, entropy, internal energy and free energies depend in general only
on a reduced number of variables, always those of thermostatic equilibrium. Thus,
these variables have dependences in non-equilibrium as if the non-equilibrium sta-
tes would correspond to an equilibrium. This is a disadvantage and perhaps also
questionable, because statistical mechanics shows that the non-equilibrium entro-
py should depend on non-equilibrium variables, such as strain rate and tempera-
ture gradient, if the Enskog procedure is pushed to second iterates. Incidentally,
non-collinearity of the entropy flux to the heat flux is also shown by the same
Enskog procedure.

Some important points relating to the CD-CN approach should be made:

e When there are no constraints, only the energy equation has an influence
on the result (2.14).

e To preserve the property that all balance equations contain free source
terms, authors often invent source terms without physical motivation, e.g., for
mass balances, structure balance laws, etc. In such cases the results obtained
from the Coleman-Noll exploitation of the entropy inequality are dubious.

e When besides 6 also 6 is an independent constitutive variable in the consti-
tutive relations (2.5), this approach is a priori in doubt because the existence of
absolute temperature is questionable under those circumstances except in equili-
brium.

e When mixtures with distinct constituent temperatures are considered, the
method is equally in doubt.

2.3. Miiller-Liu’s entropy principle

In the CD-CN approach, the flux and the supply of entropy are related a
priori to the flux and supply of heat. And, free sources are assumed for all balance
equations except perhaps the balance of mass. In order to relax these assumptions,
MULLER [9] proposed an entropy principle in which the entropy and its flux are
both a priori unrestricted constitutive quantities. Liu [7] introduced Lagrange
multipliers to consider the influences of all balance laws on the entropy inequality,
by which the exploitation of the general entropy inequality is much facilitated.

It is assumed that

e {is an empirical temperature,
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e the entropy density 7 and the entropy flux ¢ are general constitutive rela-
tions and no a priori postulates are introduced,

(2.15) n=r(w), &=¢Mu),

e source terms do not affect the material behaviour.
To satisfy the entropy inequality (2.7) for all thermodynamic processes, all
field Eqgs. (2.6) serve as constraints for the inequality (2.7). It follows that

(216) M (7™ (), @™ (w)) — A TF(u;) - Ac - Clui, M(w)) + (A5 = s7) >0,

where A = (A, A®), A¢ represent Lagrange multipliers. The above third assump-
tion requires
(2.17) s"=A"s,

so that the entropy supply s" is known as soon as A is determined. By evalu-
ation of the entropy inequality (2.16) for a given constitutive class, the following
variables or relations can be obtained:

e Lagrange multipliers A, A¢,

e reduced dependences of constitutive relations,

e thermostatic equilibrium relations for constitutive quantities,

e GGibbs relation,

e thermodynamic potential relations.

It is important to emphasize that these results differ from those of the classical
evaluation of the entropy inequality of Coleman-Noll in the following respects:

e This second law holds for open and for closed systems.

e Results are in many cases the same as for the CD-CN approach, but not
when the theories are complex. As a rule: Differences are likely to occur when
structural variables enter the formulation such as for the Cosserat continua, liquid
crystals, gradient theories, porous media.

e Experience shows that when results between the two entropy principles
differ, those obtained by the Miiller-Liu principle are generally physically better
founded.

In particular we note that entropy, internal and free energies may depend on
non-equilibrium variables yielding a different Gibbs relation than that obtained
with the CD-CN approach. As a rule, the differences occur primarily in thermo-
dynamic non-equilibrium, but not exclusively. For instance, in the theory of liquid
crystals the orientation field of the rodlike molecules in equilibrium is determined
by the entropy flux contribution that is not collinear with the heat flux vector. If
the Clausius-Duhem inequality were true, the orientation field in thermodynamic
equilibrium would be arbitrary, and hence chaotic. We would never be able to
read on our laptop screen what we write if the screen is a liquid crystal display.
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In granular media of elongated particles (rice) the situation must be very much
the same.

3. Consequences of the entropy principles

In this section, results are presented that are obtained with the use of the
entropy principle of Miiller-Liu and compared with those of the classical evalu-
ation of the entropy inequality of Coleman-Noll for a granular solid with a scalar
structure equation, and a saturated mixture of granular/fluid constituents with
scalar structure equations for each constituent.

The necessary thermal and mechanical field variables are introduced as primi-
tive quantities. Specifically, there exists a kinematic variable, the volume fraction
or volume distribution function v (see e.g. GOODMAN and COwIN [4], WANG
and HUTTER [17] for a granular material and PASSMAN et al. [13], WANG and
HuTTER [18] for a solid-fluid mixture). It is complemented by the distributed
mass density (true mass density) 7, the stress tensor T, body force b, specific
internal energy e, heat flux vector q and heat supply r. In addition, to account
for the energy flux and energy supply associated with the time rate of change of
the volume distribution, a higher order stress and body force were introduced by
GoobpMAN and COWIN [4]. An equilibrated inertia k, equilibrated stress vector h
and intrinsic equilibrated body force f are introduced. For a solid-fluid mixture,
the above listed variables should be denoted with an added subscript a for each
constituent a, with a = s for the solid and a = f for the fluid, respectively.

3.1. Granular material

For a granular material, the distributed solid body must satisfy the basic laws
of motion of continuum mechanics. Accordingly, the following balance equations
must be satisfied:

R = 70+ qvdivv = 0,
yv — div T — yvb = 0,
ki —divh—qvf =0,

Il

(3.1)

=
i

E =ywe—-T-D—h-gradv+ywvfr+divg—yuvr =0,
where m indicates the material time derivative. The balance Eqgs. (3.1);2 are
analogous to the classical balance equations of mass and linear momentum. The
third equation is a scalar structure equation, which describes the balance of equ-
ilibrated force (see GOODMAN and COWIN, [4]). The conservation of energy (3.1)4
differs from the traditional statements by considering the works of equilibrated
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force. (3.1)1,3 are source-free equations and thus belong to the class (2.2); (3.1)2,4
do have source terms, b and r. We also point out that GoobpMAN and CowIN
[4] and PASSMAN et al. [13] also introduce a source term in (3.1)s, thus making
this equation to have no influence in the CD-CN entropy principle.

For the granular material, the following independent constitutive variables
are postulated:
(3.2) ¢ = C(v, grad v, i, 7,0, grad §, D)
for the dependent constitutive variables C = {¢,n,T,h, f,q,¢}. The forms of
these constitutive relations are reduced by the entropy inequality (2.7), which
here can be written as

(3.3) Il = yvn + divd — yvs > 0.

According to Miiller-Liu's entropy principle, the following inequality must be
satified for all physical processes

(34) I =pi+dive —ps—1/0 {XNR+A"-M+ NN} - X€ >0,

in which the balance relations (3.1) appear as constraints on the entropy inequali-
ty, where AV, A, AF and A® represent the Lagrange multipliers. For convenience,
a factor 1/0 has been extracted above from A, A” and A¥.

Substituting (3.2) into (3.4) and assuming material isotropy, the correspon-
ding restrictions on forms such as (3.2) have been obtained elsewhere (WaANG
and HUTTER, [17]). By assumptions that the inner free energy, which is defined
by ¥ = £ — 0, does not depend on », ¥ # (e, ), and supposing the Lagrange
multiplier for the energy equation to be A* = 1/6 2, we can obtain the expressions
for the Lagrange multipliers

(3.5) M=a, F=0, MW=y
o
and the reduced constitutive relations
W =P(v, gradv - gradv,7,0), = q/b,
(3.6) p o
h=~vwy—"F— = ad ritl =2 .
s grad v SREE T ‘w@( gradv - grad v)

In thermodynamic equilibrium, which is defined by (&, grad §, D) = 0 and deno-
ted by the superscript F, the stress T, the heat flux q and the intrinsic equili-
brated body force f can be expressed as

p—p5

(3.7) TE = —upl — Agrad v ® grad v, qf =0, fF= i

%) This assumption is not reasonable in cases when # should also be an independent consti-
tutive variable. Since we will not include such a dependence, the a priori assignment \* = 1/8
is justifiable on the basis that Miiller and Liu have proved it in Liu and MULLER (8].
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where p represents the thermodynamic pressure and 3 the configuration pressure,

, 0
(3.8) p=7"’£1 ﬁ=w%-

For incompressible granular grains v = const, so p is an independent field variable
and can no longer be determined by the free energy % as expressed in (3.8)1.
One can prove this point by means of two different methods. One is: We return
to the constitutive assumptions (3.2) and note that, in view of the restriction
v = const, the list of variables appearing in (3.2) is no longer independent. We
delete v from the constitutive equations and repeat the above analysis. The other
method is based on the method of Lagrange multipliers. We begin with the same
constitutive postulates (3.2), but consider ¥ = 0 as a new constraint, which can
be combined to the entropy inequality (3.4) with a new Lagrange multiplier, and
then repeat the above evaluation of the entropy inequality. The two approaches
yield the same results.

Some results are summarized in the following points:

e The entropy flux ¢ is in general not collinear with the heat flux with (1/6)
as a factor. Only when the Helmholtz free energy is assumed to be not a function
of i [ # t(e,’) — note the rule of equipresence may be violated in this case],
the classical result ¢ = q/@ does hold.

o If a free source term in the equilibrated force balance would have been
permitted, one would have proved ¢ = q/# under all circumstances.

o A # 0 gives rise to Mohr-Coulomb yield stresses in thermodynamic equili-
brium provided the volume fraction is non-uniform.

e CD-CN and M-L yield different results under dynamic, but not static con-
ditions.

3.2. Granular-fluid mixture theory

Similar to the process in Subsec. 3.1 for a granular material, we can obtain
reduced constitutive relations for a saturated solid-fluid mixture. Details can be
found in WANG and HUTTER [18]. The corresponding balance equations are

Ra = pa + padivv, =0,
M, = paVq — divT, — pob, — m} =0,
Na = pokala — divhe — pafo =0,
£ = pé+divgq—T -D—3 h, - gradvp+ Y pafala —pr =0
for the solid pixa.se (@ = 1 = s) and the fluid phase (a =2 = f ), respectively.
Here, fo = 0f /0t+ (grad f,)-va = fa+(grad fo)-u, (ug = v4-v) is the material
http://rcin.org.pl
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time derivative with respect to vq, while f, = 8f /9t +(grad f,)-v is the material
time derivative with respect to the mixture velocity, v -m is internal growth of
linear momentum of the constituent a with the condition my + m}r = 0. It
assumed that the energy exchange between the fluid and the solid constituents
is so efficient that the mixture can be characterized by a single temperature 6,
and we need then work only with the energy balance of the mixture (3.9)4 and
the entropy inequality of the mixture

(3.10) II=pn+ dive — ps > 0.

The constituent and mixture fields and fluxes are connected by the sum relations

1
P=2Pa. V=Z£avm 5:5f+§EEaua'um T=Z£a’ra,
(3.11) N=YéaMa 8= asa, D=0, T=3(Ta—patla®ua),

1
& =3 (da+paflatta), 9=1 {qa = [Ta — Pa(€a + Fla- ua)I] ua}

2
with Z = Z and &, = pa/p.
a=1

A physical process must simultaneously satisfy (3.9) and (3.10) as well as
other possible additional constraint relations, such as that of saturation

(3.12) vs+rvp=1 — 8:=3 (Vg —u,- grady,) =0.

According to the Miiller-Liu approach of the entropy inequality, one can account
for all these requirements by requesting

(313) T =pi+dive — ps — 1/0 { S NiRa + TAL- My + L MN, + ns}
— XESD.

This entropy inequality (3.13) applies to the general class of two-phase media.
Each class is characterized by particular constitutive postulates. For the fluid-
saturated granular material, the following independent constitutive variables are
postulated

(314) Co=Ci(Ss),  Cr=Cy(Sp),  m =m(F,Fy)=-mj

for Ca € {€a; May Ta, ha, Qa, $a}, as well as the mechanical interactions my,

with
(3.15)

Sa = (Va, grad va, Vg, Ya, grad ., 0, grad 6, D,),

Fo = (Va, grad v, Vs, Ya, grad e, 0, grad 8,u,, Dg, W,),
http://rcin.org.pl
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where W, is the skew-symmetric part of grad v,, W, the difference W, = W, —
W, with W = skw ( grad v), respectively. Here, the principles of phase separation
and material objectivity have been assumed.

Substituting (3.14) into (3.13) and assuming material isotropy, the correspon-
ding; restrictions on the constitutive relations (3.14) have been obtained elsewhere
(WANG and HUTTER, [18]. They are expressions for the constituent entropy flux
¢, and the equilibrated stress vector h, as well as the dependence of the consti-
tuemwt inner specific free energy 1,, which is defined by v, = g, — 07, viz.,

®o = qQa/b, Ya = Ya(Va, grad v, - grad va, ¥a, ),
(3.16) N

h — p awﬂ
2 “ 9 grad v,

d(grad v, - grad v,)

= A, grad v,, with A, = 2p,

and the expressions for the heat flux q, the intrinsic equilibrated body force f,, the
stress T, and internal growths of linear momentum m; in thermodynamic equili-
brium (denoted by the superscript E, defined by (7, V¢, grad 8, v, vy, Dg, Dy) =
0)

B E_Pa=fa_ 7
Rl 0, fﬂ 5 YaVa 'TaVa!
(3.17) TE = v (pa +Ya(W1 — %)) I — Aagrad v, ® grad vg,
+E

my " = wgradvs + (Yr — ¥s)(1 — &) grad (vs7s)

(%1 — p)€y grad (vpyy) = —m}
where 11 = s + €7y is the mixture inner free energy. The variables m, 3,
and p, all have the meaning of pressure. As the Lagrange multiplier associated
with the saturation constraint = is called the saturation pressure, which is a new
independent variable for a saturation mixture. 3, is the configuration pressure
and p, the thermodynamic pressure, respectively, which can be expressed as

e 8’¢'n . 2811()&
(318) [J‘a = pa au,, ¥ pﬂ L ’yn 6"((1 ]

where the expression for p, is only suitable for compressible constituents; otherwi-
se, for incompressible constituents, i.e. constituents whose true mass density does
not change, p, is an independent field variable and can no longer be determined
by the free energy 1, as expressed in (3.18)s.

It is important to emphasize that these results differ from those obtained
by evaluation of the entropy inequality using the Coleman-Noll approach for a
solid-fluid mixture (PASSMAN et al., [13]).
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e The partial entropy flux ¢, is in general not collinear with the heat flux
with (1/6) as a prefactor. Only in the case the Helmholtz free energy is assumed
not to be a function of ¥,, Va, the result ¢, = q,/@ is obtained. But even then

& #q/b, as

_a_ 1 - _Pa
b = P {pawnua (Ta 5 (u, ua)l) ua}-

e If the CD-CN approach is used with a source term in the equilibrated force
balances, ¢, = q,/f would have been obtained even with 2, as independent
constitutive variables. This has been done so by PASSMANN et al. [13].

e If the same theory is developed using the CD-CN approach, i.e. by a priori
setting ¢, = q,/f and introducing a source term in the balance of equilibrated
forces, then the equilibrium results are

1
E_9 B _ T
(3.19) q‘ e R =y W e =, B
TE = —y,p, 1 — A, grad v, ® grad v,, m:{E = mgrad vs = +m}L .

and they are different from (3.17).

® When 4, =0, Ya € (1,..., N), no shear stresses can be supported in equili-
brium. Therefore, volume fraction gradients as independent constitutive variables
are important.

e Formally, for A, = 0, Va € (1,...,N), the above formulas for the stresses
and the interaction forces do not agree with the corresponding formulas obtained
by SVENDSEN and HUTTER [16], even though with h, = 0 and 7, = 0, Va €
(1,...,N), the two formulations are the same.

This result is no surprise: It says that “the limit of a theory need not be the
theory of the limit”.

Finally it should be stated that the reduced entropy production rate is inde-
pendent of the saturation pressure. So, the constraint variable does not produce
entropy, as it should for physical reasons, for details see WANG and HUTTER [18].

4. Application in inclined gravity-flow problem

In Sec. 3 we derived the equilibrium expressions of the stresses, heat fluxes and
intrinsic equilibrated body forces by the restrictions of the entropy principle on
the constitutive equations. We assumed that these quantities may be decomposed
into the thermodynamic equilibrium parts (denoted by the superscript F) and
the dynamic parts (denoted by the superscript D). Furthermore, for the dynamic
parts a linear theory is considered, in which the dynamic parts of these quantities
are linear in the dynamic variables. By substituting these expressions into the
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field equations we can obtain a system of the field equations to analyse the cases
of steady isothermal flows of a layer of uniform thickness L of a granular material,
as well as a granular-fluid mixture down a rough plate inclined at an angle 6 to
the horizontal (in our computations we take # = 40°), as shown in Fig. 1.

F1G. 1. Inclined gravity-flow and coordinate system.

4.1. Granular materials
Under the assumptions
(4.1) T=T4 T8 ' q=q"4a", ' F=7"4+1"
and a linear theory for the dynamic parts
(42) qP = —kgradd, TP =gl + AtrD)I+2uD,  fP = —¢v—6trD,
we obtain with the use of (3.7), (4.2) in (4.1) the constitutive equations

T = [—p+ AMrD + &)1 — Agradv ® grad v + 2uD,

q = —kgradf, f:ﬂ—ﬁwétrD—-CD.
w v

(4.3)

Substituting (4.3) into the field Eq. (3.1), using the expressions for the inner free
energy 1 (PASSMAN et al., [12]) and the viscosity u (PASSMAN et al., [12, 14];
SAVAGE, [15]),

2
) grad v - grad v,

e s
==t Voo — v/ '

(4.4) i = ap(v — ve)? + ag (u b

= -
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where v, is the volume fraction corresponding to the densest possible packing of
the material, and v, is the critical volume fraction (GOODMAN and COWIN, [3]),
assuming v = [u(y),0,0] and introducing the following dimensionless variables

. )\2
agp Ho

where A is an internal length scale

=y

I

>|
e~ 1]

Il
i

(a7
(4.6) A=l
ag
we can conveniently formulate the granular flow problem down an inclined plane
in terms of the dimensionless equations

d [ v, 2 rdv\?
4.7 — |vp - — Scosbv =0,
(4.7) pr _Up+2(uw—v) (dg) + Scos Qv
d [ Ve 1 da
4. — - — ind =0
(4.8) pE _(um—r/) pr + vsin :
d [ Ve 2 dv o
(4.9) 52 @]“’

_é [(v— ve)? — (vc:c_ U)2 (3:__::") (%)2] =0

with the non-dimensional boundary conditions

dv - au , - -
" — T — —_ =uU, — = 0' 7 L — 01
@10) w0 =w, 50 =0, F(L)=0; F(L)=0; L)
where the dimensionless parameter S represents the grain size, and L the dimen-
sionless flow thickness, defined as
b = L
: S=— L==
(4.11) o N
respectively. Evidently, the problem is characterized by five dimensionless para-
meters 1y, Vso, Ve, S and L. The variation of the first three is rather narrow and
will not be studied here, but the remaining two typify the grain size and the flow

depth in terms of the internal length scale. We choose

(4.12) Voo = 0.644, v, =0.555, o= 0.5,
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values as given by SAVAGE [15], appropriate to natural angular beach sand with
diameters of particles from 0.318 mm to 0.414 mm. Some typical results calculated
for the volume distribution, dimensionless velocity for this gravity-flow problem,
are shown in Figs. 2, 3 for various values of the dimensionless granular flow
thickness L and the parameter S, indicating the grain size, respectively.

From Figs. 2, 3 the following results can be deduced:

e The granular velocity and the volume fraction depend strongly on the flow
layer thickness and the grain size.

e For a fixed grain size (a fixed S), if the layer thickness is small, the shear can
extend from the bottom to the free surface, which behaves much like an incom-
pressible fluid, and the volume fraction has only a small change across the depth,
whereas for thicker grain flow the flow structure is far from an incompressible
fluid, in which in a large region near the free surface of the grain flow is similar
to that of a plug flow, with a nearly constant velocity and less changed volume
fraction, the shear layers close to the bottom, where dilatation has occurred, may
be very thin.

e For a fixed L 3, indicating the ratio of the flow thickness to the grain size,
fine grains (small values of S) show a velocity profile similar to that of a fluid.
Increasing the grain size increases the manifestation of the granular character
of the material, a plug flow near the free surface and a large shear with large
dilatation near the bottom.

e The granular velocity increases with increasing flow thickness.

4.2. Granular-fluid mixture

Similarly, we assume that T,, f, and m} may be decomposed according to
. E D E D E D
4.1 Bi=T7+9%, Fi= TS0, my =ml " +mr,
where TE, fE and m;z"E represent the thermodynamic equilibrium parts, as
displayed in (3.17), while T?, £P and mjD are their dynamic contributions. For
the dynamic parts, scalar-, vector-, and tensor-valued quantities are assumed to
depend explicitly and linearly on scalar-, vector-, and tensor-valued independent
dynamic variables, respectively, by the forms

4.14) TP=24,D,, fP=X\0p, m

where jt,, Aq, mp are the functions (PASSMAN et al., [14]; WANG and HUTTER,
[18])

D D
P = —mp(vs —vy) = ~m}”,

4
I,
(4.15) fs = fls (;U) . wg=viis, mp=vyl—vs)D

Voo —

%) Here, a fixed L means, if the grain size varies, that the flow thickness should be changed
accordingly.
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with fis, iy and D being positive constants. To obtain the explicit expressions of
T,., m} and f,, a representation for the specific free energy 1, for each consti-
tuent a is needed. Following PAsSMAN et al. [14], we choose the expressions

2
(4.16) VsYsWs = sl — Ve|® + @s (u Vi ) (grad vs - grad vs),

oo — Vs

vty = aglvy = (1= ve))?.
For the steady motion down the inclined plate, by assuming

Vg — [us(y),D,O], vf =[Uf{y)u0:0], VSZVR(y)! szuf(y}a
(4.17)
ps = ps(¥), pr=psly), T=mn(y),
b, = by = [bsinf, —bcosd, 0]

and introducing the following dimensionless variables:

- ) - Ps e Pr = Bs 5 By
i) 2 N 8, Ps a;’ Bs ag By ag

AN A2
ﬁzi, ﬁs:u_s/ ji_'?i_.ﬁ :ﬂf:uf/ 'Ys:(}s ’
ay Is Hs

where A is an internal length scale of grains

(4.19) iy

we can obtain the following dimensionless governing differential equations:

(4.20) vet+up=1,

(28 1) b= o (57)
e ([, @l

i'/sCa 9 B 1 dzb"s st
[(vfg, Ty 1) (vs — ve) e (@2 )] } i + Svycosf =0,
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: d ot vy VsGa 1 d2V3
(422) d_@r {Ufpf + Esv—sc'y [(E — 1) (Us —= VC)2 2 (Vm = Us):z (dg?. )]}

p {ﬂ_ 4 (5)2" ) C’Y&?){f l(vsca i 1) (Vs o Vc)2

Vs vfCy

! d‘ZVs dv
—(Uoo‘_Vs)Q (de)l} d.-.f +C'7SUJFCOS'9 0

(4.23) E—[( i )40!%} Duy(1 — vs) (s — i) + vssind =0,

dy [\ ve —vs/) dy
F d 2dﬂf = = 3 3
(4.24) pr {C”de_g}} + Duvg(1 — vg) (ks — @g) + vy singd = 0,

(4.25) ﬁ':ﬁf—ﬁf,

. = 2 ¥ % d
(4.26) Bs — By —Ps—P_H—d—g

2( Ve )2‘1_”13}
Um = V‘g dy

with the expressions for the dimensionless configuration pressures B, and Bf as
follows:

3vs — v drg\? -
— 2 e Y [P = 2 .2
vsBs = (v} VH'(m-u) (dg) v veBr = Calvs — ),
where the dimensionless parameters S, L, D, ¢,, Cu and (, are defined as

- YO - L - /( s) .03
4.2( S = 5 L = -, D = D T I Ty
( ) s As /\3 C,Y Vs

B . af

C}J ﬁs ] Cﬂ. as H]

respectively. Together with vy, V., Vx these are nine dimensionless quantities.

Here S represents a dimensionless scale of the grain size, L the dimensionless

flow thickness, D the dimensionless drag coefficient, ¢y the ratio of the fluid

material density to that of the solid grain, {, the ratio of the viscosities and (,

the ratio of the “energy storage capacities” of two constituents. (4.20) — (4.27) is

a system of seven equations with seven unknowns v, vy, 7, ps, Py, s, iy, which
will be solved subjected to the boundary conditions

vs(0) = wy, vi(0) =1 — uy, iis(0) =0, uy(0) =0,
(4.28) dv, Bus

T duf
715(1') = 0, (L}

(L) 5 (L) =0,

ps(L)=0,  pg(L)=0.
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We choose to investigate the case with estimated parameters corresponding to a
mixture of water with natural beach sand with the given non-dimensional para-
meters listed in Table 1 (see SAVAGE, [15]; PASSMAN et al., [14]).

Table 1. Values of non-dimensional parameters arising in the field equations

C*r Ca Cp D Voo Ve Vg

0.45 1.0 0.01 20 0.644 0.555 0.51

Profiles of the solid volume fraction s and the solid, fluid velocities are
illustrated in Figs. 4, 5 for various values of the two remaining dimensionless
quantities: the non-dimensional flow thickness L and the parameter S. These
figures illustrate the following behaviour of the solid-fluid mixture flow:

e The solid, fluid velocities and the solid volume fraction are strongly depen-
dent on the flow layer thickness and the grain size.

e A relatively thin layer thickness shows a marked variation of the solid
volume fraction v, across the whole depth, while thicker flow shows an increasing
tendency of v, to increase quickly to an asymptotic value toward the free surface.
In a relatively narrow zone near the bottom, where the shear is the largest,
dilatation occurs. But the absolute thickness of this dilatation layer seems to be
less dependent on the flow thickness.

o For small flow thickness and small grain size the shear can extend to the
whole flow region. As L increases or S increases (at a fixed L, this means that
both the grain size and the flow layer thickness increase), there is an increasing
tendency that the shear is limited to a narrow layer near the bottom with high
dilatancy; above the layer the velocity can be regarded as constant. In this case
for such a granular solid-fluid mixture flow down an inclined plane, one can often
assume that only a portion of the flow which is close to the base is fluidized,
while the upper portion is passively moving with the speed of the particles at the
upper edge of this fluidized layer.

e In Table 2 the dimensionless solid and fluid velocities in the mixture and
the solid velocities in the dry granular material at the free surface (e.g. maximum
velocities) are displayed. Evidently, in the solid-fluid mixture, if the thickness is
relatively small, the surface velocities increase by increasing the flow thickness,
while for sufficiently large stream thickness, they depend only slightly on the
stream thickness. On the contrary, in the dry granular solid, the solid velocity
increases monotonously by increasing the flow thickness.

e Comparison of Figs. 2 — 5 shows that in the solid-fluid mixture the fluid
velocity is always much larger than that of the solid; here the fluid is pulling the
solid via the drag force interacting between them. Furthermore, this solid velocity
in the mixture is always larger than that in a dry granular flow. These properties
can be more easily inferred from Table 2.
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FiG. 5. Non-dimensional solid, fluid velocity profiles (a) (b), normalized solid, fluid
velocity profiles (¢) (d) and volume fraction profiles (e) for a fixed value of L = 20 and
various values of S: S = 0.01(A); 0.05(B); 0.1(C) and 0.3 (D).

Table 2. Non-dimensional granular velocities in a dry granular flow, granular
and fluid velocities in a granular-fluid mixture at the free surface for various
values of the non-dimensional flow thickness L

L 5 10 20 30

In a granular flow | Granular velocity u = 1.05 2.10 2.70 3.36

In a granular-fluid | Granular velocity 5. 1.95 4.11 5.09 5.16

mixture Fluid velocity iy 4.72 6.75 7.57 T7.55
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e [t might be mentioned that for the drag coefficient D = 0 (the corresponding
results are not displayed in this paper) the fluid phase behaves very similar to a
viscous fluid; the shear of the fluid can extend to the whole flow region. On the
other hand, the dominant shear of the solid flow may still be mainly restricted
to the regions near the bottom.

5. Concluding remarks

In this paper we attempted to explain how the basic postulates of two forms
of the entropy principle: (i) the generalized Clausius-Duhem - Coleman-Noll ap-
proach and (ii) the Miiller-Liu entropy principle differ from one another. CD-CN
makes a priori postulates about the entropy flux and entropy supply and assumes
external source terms in (most) balance laws. ML postulate the entropy flux to be
a general constitutive variable and treat all field equations as constraints for the
exploitation of the entropy principle. It was demonstrated that they yielded dif-
ferent constitutive relations for the granular material with/without fluid. Results
were presented with the use of both principles for a granular solid with a scalar
structure equation and a saturated mixture of granular/fluid constituents with
scalar structure equations for each constituent. These results allow us to favour
one set of basic postulates over the other. These theories were then applied to the
analysis of steady fully-developed gravity flows down an inclined plane. A series
of non-dimensional field equations were derived. Numerical results show that for
a large thickness of the flow and large grain sizes, dilatant shearing layers exist
only near the bottom. In the zones far away from the bottom the shearing nearly
vanishes, where each constituent moves as an entire body in a plug-flow manner,
while for small thickness of the granular flow and fine grains, the behaviour of
the granular flows is similar to that of a viscous fluid, the shear can extend from
the bottom to the free surface.

Finally, some points should be emphasized:

o HUTTER et al. [5] demonstrated that the emerging solutions of a constitutive
mixture theory, if it is obtained by the CD-CN exploitation of the entropy princi-
ple (EHLERS, [2]), are extremely restricted. There exists no solution for a simple
gravity-driven shearing flow of viscous constituents. However, in this case, if the
mixture theory is derived from the Miiller-Liu approach of the entropy principle
(SVENDSEN and HUTTER, [16]), this nonexistence of the solution can be avoided.
This is tempting to favour the Miiller-Liu approach of the entropy principle over
the CD-CN on another account, not just according to basic postulates.

e Different authors do not unanimously agree upon the form of the scalar
structure equations to describe the constituent volume fractions v,. SVENDSEN
and HUTTER [16], HUTTER et al. [16] treated the solid volume fraction as an
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internal variable and write an evolution equation balancing its time rate of change
with its production 7, in the form

Y=

A disadvantage of this form is that if the constituents are incompressible, this
equation is no longer independent. In this case, it is the same as the mass balance.
WiLMANSKI [19], on the other hand, using statistical arguments on the microscale
demonstrated that the Svendsen-Hutter equation needed to be complemented by
a flux term, thus arriving at a complete balance law

Dﬂ = div ha + Ta-

The two different entropy principles applied to the different granular mixture mo-
dels give different results. Differences between these models should to be studied.

e CD-CN should be abandoned in the following classes of models: Polar con-
tinua (solids, anisotropic fluids, liquid crystals) because the spin balance has no
free source terms; Structured continua; Miztures (as is long known); Coupled field
theories, etc.

e Many of these theories suffer from the necessity of formulating the boundary
conditions which are physically not transparent.
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