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Two-point Padé approximants to the effective heat
conduction coefficient of non-uniform media
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IN [3] THE TWO-POINT PADE APPROXIMANTS were used to obtain the lower and upper
bounds to the effective heat transfer coefficient in the composite with inclusions in
the form of densely packed cylinder array. The effective heat transfer coefficient fulfils
the Keller symmetry condition, however the asymptotic formula (McPHEDRAN el al.
[4]) used to build the approximants does not agree with this condition. By using the
Keller symmetry explicitly we transform the asymptotic formula to the symmetric
form and obtain better bounds than those in [3].

1. Introduction

ONE OF IMPORTANT PROBLEMS of the theory of dispersive media is the theoretical
determination of the effective transport coefficient of non-uniform media on the
basis of geometrical structure and physical properties of the media. In the paper
we consider the effective heat conduction coefficient A.¢ of two-component com-
posite with a regular square array of infinite circular cylinders immersed in an
infinite matrix. The coefficients of heat conduction of inclusions and matrix are
Ad and ), respectively, and the volume fraction of inclusions is . Our conside-
rations are not bounded to the heat conduction theory but may be applied to
other physical theories governed by the Laplace equation, such as the theory of
electric conduction, dielectric constant, etc.

In most methods of investigation of the effective transport coefficient, the in-
finite system of algebraic equations, known as the Rayleigh equations [1], is used
as the departure point. Upon truncation these equations can be solved numerical-
ly. Another method of solution is based on using the power series. However, the
solution is non-analytic for h = A4/\. tending to 0 or 0o and ¢ — Ymax = 7/4.
As a consequence, both methods lose their accuracy for nearly touching cylin-
ders, and large or small h — the power series converges very slowly in this range of
parameters. In fact, while using h — 1 or 1/(h — 1) as the power series argument,
one obtains the power series divergent in some part of the physical region. By
changing the power series argument to a = (1 — h)/(1 + k) one obtains the series
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that converges for |a| < 1, however the problem of slow convergence remains.
Some improvement may be achieved by using the rational approximations in the
form of continued fractions or Padé approximants [2]. This is due to the fact that
the solution of the problem is a Stieltjes function of A — 1 and has a set of singu-
larities (single poles) for real h < —1, outside the physically meaningful region of
parameters. The rational functions give better approximations to such functions.
However, for ¢ — max and h — oo an essential singularity appears and the abo-
ve method fails near this singular point. For such a case MCPHEDRAN et al. [4]
gave the asymptotic solution. There exists yet a certain gap between the solution
originating from the power series at o = 1 (and resulting from these power series
rational approximations) and the asymptotic solution. To fulfil this gap, a new
approach was developed using the two-point Padé approximants. These approxi-
mants, built from the power series at h = 1 and the asymptotic development for
h — oo were used in [3]. There is yet a certain drawback in the method applied
there. It is known [5] that the solution of our problem should fulfil the symmetry
condition

(1.1) Aef(1/h)Aes(h) = const

known as the Keller symmetry. Of course, the power series solution agree with
the Keller symmetry, however the asymptotic solution [4], found for h — oo (but
not for h — 0) fails in this respect. The same is true for the two-point Padé
approximants considered in [3] and based on this asymptotic solution. In the
present investigation we take into account the Keller symmetry as an additional
condition. Owing to this we obtain the correct asymptotic transition not only for
h — oo but also for h — 0; moreover, the approximants fulfilling the symmetry
condition give better bounds to the solution than those found in [3]. The influence
of analytical properties of functions, such as the Keller symmetry, on the bounds
of effective properties of materials was investigated in [10] for a more general class
of composites. However the type of bounds, considered in the present paper, and
based on the asymptotic solution, was not particularly treated there.

2. The problem formulation and the power series solution

We consider an infinite regular system of circular cylinders in the form of a
square array. Let the distance between the neighbouring cylinder axes be 1 and
the cylinder radius p. The temperature distribution in the medium is governed
by the Eq. (2.1)

(2.1) V- (Ae+ (Aa — Ae)82)VT =0,
where 64 is the characteristic function of cylinders. Besides the heat transfer
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equation one should take into account the conditions of continuity of temperature

and normal component of heat flux q = (A + (Ag — A:)04) VT on the cylinder
border

(2.2) T(p-) =T(p4+), alp-) -n=q(py)n,

where n is the unit normal vector, and the indices minus and plus correspond
to the internal and external side od cylinder surface, respectively. To determine
the effective heat transfer coefficient we introduce a constant external tempera-
ture gradient in the direction of the Or-axis. The temperature distribution in
the medium can be considered as the sum of the systematic 7(®) and periodic
T components: T = T 4 T®), In the problem the amplitude of 7(® is not
important, and without any loss of generality we may put 7@ = z. For the

periodic component T®) we consider the periodicity conditions on the border of
elementary cell

(2.3) n-VT® =0,

It is convenient to seek the solution of Eq. (2.1) with the boundary conditions
(2.2) and (2.3) in the functional basis derived from the Wigner potential (]2, 3,
9]). The elements of this basis fulfil the boundary conditions (2.3).

The effective heat transfer coefficient is defined as

(2'4) Ad = <()‘c ¥ (/\ = /\c)ed) —aaz>1

1]
where (...) = S~ [...dS means the average over the elementary cell. Expres-
sing the temperature in the referred basis, one can define a very simple algorithm
for finding the effective heat transfer coefficient as a power series of h— 1. The al-
gorithm was used in [3], and described in more details in [9]. Using this algorithm
one can determine numerically the coefficients of the power series (2.5):

Ae

(2.5) 5

=co+ci(h—1)+ca(h—1)%+....
3. Padé approximants and the Keller symmetry

The rational function

A0+Alz+...+AMzM
3.1 M), =
(3:4) e 14+ Byz+...4+ ByzM "’
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is the two-point Padé approximant to the Stieltjes function f(z) if f(z) can be
developed to the formal power series in 0 and infinity (convergence radius can be
equal to 0) and

1. The first n coefficients of the expansion of [M/M],, to the power series
of the argument 1/z are equal to the corresponding coefficients of the power
expansion of f(z) at infinity;

2. The 2M + 1 —n first coefficients of the expansion of [M /M|, to the power
series of z are equal to the corresponding coefficients of the power expansion of
f(z) at z =0.

For n even or odd, the approximants give a lower or upper bound of f(z),
respectively. In the following we shall only consider the approximants [M/M]s,.
They fulfil [11] the following inequality:

(3.2) [M/Mla < [M +1/M +1]2 < f(2)

for z > 0 and natural M. As a consequence of (3.2), the larger is M, the better
is the bound for f(z).

Using the algorithm mentioned in the previous section one can obtain Ay as
a power series of h — 1. On the other hand, the asymptotic formula given in [4]
makes it possible to find the first two coefficients of the asymptotic expansion of
Aey with the argument 1/h. Using merely the two first terms of the series one may
replace the argument 1/k in the asymptotic expansion by 1/(h — 1). The extra
terms introduced by this replacement of arguments, being of the order O(h™2),
are omitted in the given approximation. For the given approximants of both series
of arguments h — 1 and 1/(h — 1) one can obtain the Padé approximants using
for example the algorithm QD, described in [8]. Such a method, used in [3], has
yet a certain deficiency. It has the same fault as the asymptotic formula in [4] -
it does not agree with the Keller symmetry (1.1): it is valid for A — oo but not
for h — 0. To make use of the Keller symmetry, let us introduce a new argument
o instead of h

=

;=
3.3 =
S & I}

and new functions (3. and f3y, instead of Aes

-

& 1+/\ef//\c
Be = O"p—l—)\ef/,\d’
(3.4)
By sl _‘p)(l +a)def/Ac+ (1 —a)

(1+a)des/Ac—(1—a)’
Solving (3.4) with respect to Aes/Ac and Aep/Ag we obtain
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Aef »

=
(3.5)

Aef _

Ad

- 20
1+ ap + 8.’
20(1 — )

1—a(l-¢)+pBa

For 3. and 34 equal to 0 the formulae (3.5) transform to the Maxwell-Garnett
formula, independent of the geometrical structure of the composite. The whole
information about geometrical structure of the composite is comprised in 3. or
B4. 1t follows from (3.5) that the lower bound of 3. and 34 give the lower and

upper bounds of A¢s, respectively.

Using (1.1) and (3.4) one may easily check that

Bi(a) = Bi(—a) for i = ¢,d as a consequence of the Keller symmetry; therefore
Bi = Pi(a?). For 1/h < /1 —4p/m < 1 the asymptotic expression of Aey from

[4] simplifies to the form:

()
where
o =
(3.7) G =
o =

1+ qo+ % +0(h™2),

w(o —1),

—2mo(oc— 1) Ino,

1

P 4 e
™

Inserting (3.6) to (3.4) one founds the asymptotic expressions for 3. and Sy

B =
(3-8)
f3 =
where
20 (7 1
fea == T (2 i o—1
(3.9)

4 (a]ncr—~1
Cg = — | ——
T oc—1

Cc0

)
-5):

Ce1 =3
+ h + O(h™°),

cao+ 22 + O(k?),

h

Cdo = —,

cd1 =27(1 — ¢)(oc —1).

http://rcin.org.pl



64 S. May

The formulae (3.8) are valid for h — oo what corresponds to & — —1, and do
not fulfil the Keller symmetry. To transform (3.8) to the symmetric form let us
note that for h — oo the following relation 1 — a® = 4/h + O(h™?) results from
(3.3). Using this relation one can transform the asymptotic formula (3.8) to the
symmetrical form (3.10):

B2’ = co+ %Ccl(l -a®)+0 ((1 = 02)2) ;
(3.10)

B3 = cao + %cdl(l -a?)+0 ((1 - a2)2) b

Eqs. (3.10) give the first two terms of the asymptotic power series of the argument
1 — a®. They give correct asymptotic result for h — oo and for h — 0: in both
cases & — 1. For h — oo, Eqgs. (3.8) and (3.10) differ by the terms O(h~2). Upon
inserting the asymptotic expressions (3.10) to (3.6) we obtain the asymptotic
expression for the effective heat transfer coefficient, valid for both h — oo and
h — oo (more exactly: for h(1—4¢/7)1/2 — oo and h(1—4¢/7)/% — 0 because of
the limited region of applicability of the asymptotic formula (3.6)). The argument
a? has a certain disadvantage because the functions fB.(e?) and fB4(a?) are not
the Stieltjes functions — their poles corresponding to h < —1 are now located on
the positive semi-axis a® > 1 — while the formula (3.2) for the two-point Padé
approximants is valid for the Stieltjes functions. To obtain 3. and 34 as Stieltjes
functions, let us introduce a new argument ¢

1 4a?
3.11 t=h+-=-=2=—"_
S +h 1—a?’
hence
1
3.12 2=1- )
B °’ 1—t/4

The negative values of ¢ correspond to h < 1. Expressing a as a function of ¢t and
inserting it into (3.10) one obtains the following formulae for 3.(a?) and B4(a?):

‘Bg.l

Il

%+%+mﬂx
(3.13)
By = cao + E':—‘ +0(t™?).

To obtain the power expansion of 3. and 34 at t = 0, let us remark that

2a
3.14 o e B s
( ) i 1+a’
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as it follows from (3.3). Expanding the right-hand side of (3.14) into the power
series and inserting it into (2.4) one obtains Aes/A. as a power series of a. Upon
inserting this power series into (3.4) one finds . and 4 as power series of a.
As a consequence of the Keller symmetry, the coefficients of the odd powers of o
in the series are equal to 0. Now using (3.12) and expanding a? into the power
series of ¢, we obtain . and By as a power series of t

Be :004'01f+02t2 +...
(3.15)
By = bg+ byt +bot?+ ...

Taking as the departure point the power series (3.15) and using the algorithm FG
given in [8], we obtain the two-point Padé approximants [M /M|, (see (2.1)) of 3.
and 4. Because we take into account the even number of terms of the asymptotic
development (3.13) (namely two), the Padé approximants give accordingly to
(3.2) lower bounds of /3. and f34. Inserting these bounds to (3.5) we obtain upper
and lower bounds for Ay, respectively.

4. Numerical results

Numerical calculations were performed for nearly touching cylinders corre-
sponding to ¢ > 0.785. For smaller ¢ the one-point Padé approximants and the
continued fractions give satisfactory results. The region of ¢ for which the two-
point Padé approximants give good results is determined by the region in which
the asymptotic formula (3.6) is valid (i.e. for ¢max —¢ < 1). There is yet another
restraint: in the series (3.6) we consider two first terms only - it is difficult to
make this formula symmetric while using more terms (and it is doubtful whether
the further terms in the asymptotic expansion are correct). Therefore, although
we consider the values of ¢ near @« in some sense, there is no possibility of
the limit transition ¢ — @max because all derivatives of Aes/Ac with respect to
h tend to infinity for A — oo and ¢ — @nax, and the formula based on a finite
number of derivatives can not be a good approximant for ¢ too near to @max.The
asymptotic values of lower and upper bounds of Aey for h — 00 and ¢ < Ymax
are always correct and equal one to another — it follows from the nature of the
method. For ¢ very near to ¢max, there appears however an intermediate region
of large h in which the lower and upper bounds may considerably differ, and their
difference tends to infinity while ¢ — Y max(@max = 0.785398163...). On the other
hand, if ¢ is too small the method becomes unstable. Both these constraints de-
termine the limits within which the method is useful. The situation is analogous
to that in [3] but in our case the bounds for Aey are better.
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F1G. 1. The upper (dotted lines) and lower (solid lines) bounds to the effective heat
transfer coefficient for the square array of nearly touching cylinders obtained from the
two-point Padé approximants [4/4]; and [16/16],. For comparison, the asymptotic results

(McPHEDRAN et al. [6]) are shown by small solid squares.
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F1G. 2. The relative differences between the upper and lower bounds from Fig. 1 (solid
lines) as compared with the corresponding results calculated without using the Keller
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(67]
http://rcin.org.pl



68 S. May

In the Fig. 1 the lower and upper bounds of A¢y obtained from the Padé
approximants [4/4]z and [16/16]; are shown. It follows from the Keller symmetry
(1.1) that in the right-hand side of both equalities (4.1)

/\ef ’\d )‘c i ’\c

(1) b
appears the same function f. Because one of the ratios Ag/A. and \./Aq4 is equal
or larger than 1, the values less than 1 are not shown in the plot of f. The
asymptotic values from [4] are also shown in the figure. It may be easily seen
that the lower bounds are much more precise than the upper bounds (for h > 1).

To compare the presented results with those of [3], which disregard the Keller
symmetry, the relative difference (Amax — Amin)/(Amax + Amin) between the upper
and the lower bounds is shown in the Fig. 2. It is seen from the Fig. 2 that the
discrepancy between the lower and upper bounds is largest in some region of
large k, and increases with ¢. Of course, this discrepancy is much smaller for the
[16/16]2 approximants than for [4/4]2. The comparison of our results with those
from [3] shows that our bounds are more accurate. For the values of h not very
large, the difference may be even of one order of magnitude or more.
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