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A SIMPLE, UNIFIED PROCEDURE is applied to derive irreducible nonpolynomial represen-
tations for scalar-, vector-, skewsymmetric and symmetric second order tensor-valued
anisotropic constitutive equations involving any finite number of vector variables and
second order tensor variables. In the paper consisting of three parts, we consider all
kinds of material symmetry groups as subgroups of the cylindrical group D.j. This
paper, together with a previous work, covers all kinds of material symmetric groups
of solids, except for the five cubic crystal classes and the two icosahedral quasicrystal
classes. In this part, our concern is with all crystal classes and quasicrystal classes
Damn, Dam and Cam, for all integers m 2 2.

1. Introduction

ANISOTROPIC SOLIDS, such as crystals, quasicrystals, composite materials and te-
xtured materials etc., manifest their macroscopic mechanical and physical beha-
viours in complicated and varied manners, e.g., elasticity, elastoplasticity, visco-
elasticity, viscoplasticity, creep, damage, yielding, etc., as well as heat conducti-
vity, electric and magnetic permeativity, piezoelectricity, electro- and magneto-
strictions, photoelasticity, electromagnetic elasticity, etc. In continuum physics,
such complicated and varied material behaviours are mathematically modelled
by various forms of scalar-, vector- , skewsymmetric and symmetric second order
tensor-valued functions of scalar and vector and second order tensor variables,
which are commonly known as material constitutive equations, such as yield func-
tions, elastic stored-energy functions and Helmholz free energy functions; Ohm’s
law of electric conduction, Fourier’s law of heat conduction; electric field-stress
relation, stress-electric field relation; stress-deformation relation, stress-strain ra-
te relation, stress rate-strain rate relation, and evolution equations of internal
state variables, etc. (see, e.g., NYE [18] for classical linear cases and TRUESDELL
and NoLL [38] and ERINGEN and MAUGIN [12] for general cases). The principle of
material objectivity and material symmetry require that constitutive equations
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of a solid obey a combined invariance restriction under the material symmetry
group of this solid. As a rational basis of consistent mathematical modelling
of complicated and varied material behaviours, it is desirable to obtain gene-
ral reduced forms or representations of material constitutive equations under the
Jjust-stated invariance restriction. In the past decades, this aspect was extensively
studied. Earlier, attention was concentrated on polynomzial representations main-
ly for scalar-valued functions and for vector-valued and tensor-valued functions
in some cases (see, e.g., the monographs by TRUESDELL and Noll [38], SPENCER
[33], KIRAL and ERINGEN [14], BETTEN [4] and SmiTH [26] for many related
results). Nonpolynomaal representations in a general sense were considered later
for isotropic functions by WANG [40], SMITH [24], BOEHLER [6] and PENNISI and
TROVATO [19] et al. and for anisotropic functions by LOKHIN and SEDOV [17],
BOEHLER and RACLIN [10], BOEHLER [7 - 9] and Liu [16], et al., and develo-
ped recently by RYCHLEWSKI [22], ZHANG and RYCHLEWSKI [54], ZHENG and
SPENCER [59], as well as one of these authors (see X1A0 [43 - 44, 47, 52]). Some
results on polynomial representations can be found in the foregoing monographs
and in ADKINS [1 - 2], SMITH and RIVLIN [28 - 29], PIPKIN and RIVLIN [20],
SPENCER and RIVLIN [34 — 37], SPENCER [31 - 32], SMITH, SMITH and RIVLIN
[30], SmMITH and KiRAL [27], KIRAL and SMITH [15], SMITH [25], et al. Some
recent results on nonpolynomial representations are given in ZHENG [55 — 56],
ZHENG and BOEHLER [58], BISCHOFF-BEIERMANN and BRUHNS [5], JEMIOLO
and TELEGA [13], X1A0 [42, 45 - 46, 48, 49 - 51|, BRUHNS, XIAO and MEYERS
[11], X1A0, BRUHNS and MEYERS [53]. Here it is not our intent to reproduce the
huge body of literature. For details, refer to the monographs mentioned before
and the recent reviews by BETTEN (3], RYCHLEWSKI and ZHANG [23] and ZHENG
[57], as well as the relevant references therein.

Representations for material constitutive equations should be made as com-
pact as possible. As compared with polynomial representations, nonpolynomial
representations are not only more general both in notion and in scope, but may
furnish more compact forms of reduced constitutive equations, as noted by WANG
[40] for isotropic cases and by BOEHLER [7 — 10] for anisotropic cases. Although
now many results in many cases are available, general aspects of tensor function
representations, especially nonpolynomial representations, are still under investi-
gation, which are concerned with any finite number of vector variables and tensor
variables and all kinds of material symmetry groups including the 32 crystal clas-
ses and all denumerably infinitely many quasicrystal classes. In fact, except the
well-known results for isotropic functions, until recently general results on irre-
ducible nonpolynomial representations have been available only for such simple
material symmetry groups as transverse isotropy groups and triclinic, monoclinic
and rhombic (orthotropic) groups etc. (see ZHENG [55] and ZHENG and BOEHLER
[58], JEMIOLO and TELEGA [13]). General results for all kinds of material sym-
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[RREDUCIBLE REPRESENTATIONS FOR CONSTITUTIVE EQUATIONS. I. 561

metry groups as subgroups of the transverse isotropy group Cup, as well as some
other particular results have been derived very recently by one of the authors
(see the related references given before).

In a series of works, we aim to provide irreducible nonpolynomial represen-
tations for scalar-, vector-, skewsymmetric and symmetric second order tensor-
valued anisotropic constitutive equations of any finite number of vector variables
and second order tensor variables relative to all crystal and quasicrystal classes
pertaining to the cylindrical group D.p. The results for all crystal and quasi-
crystal classes as subgroups of the transverse isotropy group C. are available
in X1A0 [50 - 51], as mentioned before. In a succeeding work consisting of three
parts, we are concerned with all other crystal and quasicrystal classes. In the
present part, we consider the crystal and quasicrystal classes Do,p, Doy and
Comy for all integers m > 2, which will be given at suitable places respectively.
In the other two parts that will appear, we shall treat the crystal and quasicry-
stal classes Doyt1d, Dom+1, Coms1vs Domitn and Do,y for all integers m > 1,
respectively. This series of works cover all kinds of anisotropic solids except cu-
bic crystals and icosahedral quasicrystals. Throughout, we use the Schoenflies
symbol to represent crystal and quasicrystal classes. For a detailed account of
them, refer to, e.g., SPENCER [33] for crystal classes and VAINSHTEIN [39] for
both crystal and quasicrystal classes,

2. Notations and prelimineries

Throughout, u, v, r, etc.; W, H, @, etc.; and A, B ,C, etc., are used to
designate vectors, skewsymmetric second order tensors and symmetric second
order tensors over a 3-dimensinal inner product space, respectively. R, V, Skw
and Sym are used to denote the reals and the sets of all vectors, all skewsym-
metric second order tensors and all symmetric second order tensors, respectively.
Moreover, Orth (Orth™) is used to represent the full (proper) orthogonal groups
consisting of all orthogonal (proper orthogonal) tensors. The scalar product of
two second order tensors F and G is denoted by trFGT = F : G = Fi;G;;. For
any two vectors u, ve V, the notations u-v, u x v and u® v are used to denote
the scalar product, the vector product and the tensor product of the vectors u
and v, respectively; the mixed product of three vectors u, v and r is signified by
[u,v,r], i.e.

(2.1) wvrj=(uxv):r=(vxr)-u=(rxu) v;
and, finally, the notations uAv and uVv are used to stand for the skewsymmetric
and symmetric tensors defined by
{ UAv=-vAu=u®v-vQRu,
(2.2)
uVv=vVu=u®v+vReu.
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2.1. Functional bases, generating sets and their irreducibility

Let g be a material symmetry group of solid materials, i.e. a subgroup of Orth.
Scalar-valued function f(u;, W,,Ap), vector-valued function h(u;, W, Ay) and
skewsymmetric or symmetric second order tensor-valued function F(u;, Wy, Ap)
of the a vector variables u; € V|, the b skewsymmetric tensor variables W, € Skw
and the ¢ symmetric tensor variables Ay € Sym are said to be invariant (for f)
or form-invariant (for h and F) under the group g C Orth if they, respectively,
fulfil the invariance requirements

£(Qu;,QW,Q",QALQT) = f(ui, Wo,AL),
h(Qu;, QW,Q",QA.LQ") = Qh(u;, W,.AL),
F(Qu;,QW,Q",QA.Q") = QF (w;, W,,A.)Q",

for any orthogonal tensor Q € g and for any (u;, W,,Ar) € V¢ x Skw® x Sym®.
In each scalar-valued function f(u;, W,,Ar) and each vector-valued or tensor-
valued functivon h(u;, W,,Ap) or F(u;, W,, Ay) fulfilling the above invariance
requirement will be called an invariant of (u;, W,, A1) under the group ¢ and a
form-invariant vector-valued or tensor-valued function under the group g, sepa-
rately. In particular, the commonly-known isotropic functions refer to the case
when g = Orth. Every other case results in anisotropic functions.

The foregoing invariance requirements place restrictions on the forms of the
tensor functions f(u;, Ws,Ap), h(u;, W, Ay ) and F(u;, W,, Ay ). Finding gene-
ral reduced forms or representations of tensor functions under such restrictions
constitutes the central topic in the theory of representations for tensor functions
as applied to material constitutive modelling. One of the main general facts in
this field is as follows (see PIPKIN and WINEMAN [21, 41]; see also SPENCER [33]):
There is a finite set of invariants under the group g C Orth, {I;,---, I}, such
that every invariant under g is expressible as a single-valued function of this set
of invariants. A set of invariants with the just-mentioned property is known as a
functional basis for the invariants under the group g. On the other hand, there
is a finite set of form-invariant vector-valued or second order tensor-valued func-
tions under the group g C Orth, {4,---,%,}, such that every form-invariant
vector-valued or second order tensor-valued function % is expressible as a linear
combination of this set of form-invariant vector-valued or second order tensor-
valued functions with scalar coeflicients that are invariants under g. A set of
form-invariant vector-valued or tensor-valued functions with the just-mentioned
property is known as a generating set for the form-invariant vector-valued or
tensor-valued functions under the group g, each element of which is accordingly
called a vector generator or a tensor generator.
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Thus, finding general reduced forms or representations of the invariant f and
the form-invariant vector-valued and tensor-valued functions h and F under a
given material symmetry group g C Orth is equivalent to determining a functio-
nal basis (for f) and a generating set (for h and F separately) under the group
g. Moreover, both functional bases and generating sets to be employed are fur-
ther required to be irreducible in order to arrive at compact representations. A
functional basis (resp. a generating set) under the group g C Orth is said to
be irreducible if none of its proper subsets is again a functional basis (resp. a
generating set) under the group g.

Let X be a set of vectors and second order tensors and let M be one of the
spaces V, Skw and Sym. We use the notation I'(X) to denote the intersection
of the symmetry groups of all vectors and second order tensors in the set X,
called the symmetry group of X. Moreover, we use the notation M(g), where
g € Orth is an orthogonal subgroup, to designate the set of all vectors or tensors
in M, each of which is invariant under the action of the group g. The former is
a subgroup of Orth, while the latter is a g-invariant subspace of M. A criterion
for generating sets is as follows (see X1A0 [44]).

CRITERION 1. The form-invariant vector-valued or tensor-valued functions
under the group g € Orth, Gy(X), -+, Gs(X), where the variables X pertain
to a g-invariant domain D C V* x Skw® x Sym¢, form a generating set for the
form-invariant vector-valued or tensor-valued functions under g defined on D if
and only if the inequality

(2.3) rank{G;(X), -, G.(X)} = dimM(g N I'(X))

is satisfied for each X € D, where M = V, Skw, Sym, respectively, when the
vector-valued, skewsymmetric tensor-valued and symmetric tensor-valued func-
tions are involved, respectively.

A useful property for generating sets is: Let G(X) = {G1(X), --,G.(X)} be
any given generating set for form-invariant vector-valued or tensor-valued func-
tions under the group g C Orth, where the variables X pertain to a g-invariant
domain D C V® x Skw® x Sym®. Then the set G(X) generates the admissible
range subspace M(I'(X) N g) at each point X € D, i.e.

(2.4) spanG(X) = M(I'(X)Ng) for each X € D,

where M is the range of the tensor function in question. The above formula can
be derived from THEOREMS 2.2 — 2.3 in X1AO [44].

Moreover, the following criterion for functional bases is well-known [21,
41, 33].
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CRITERION 2. A set I(X) of invariants of the variables X € D under the
group g C Orth is a functional basis for the invariants of the variables X € D
under the group g C Orth iff the variables X € D is determined to within an
orthogonal tensor pertaining to g by this set, i.e. the condition I(X') = I(X)
for X, X’ € D implies that X and X' pertain to the same g-orbit: X' = Q » X,
Qeg.

In the above, the symbols rankS and dimS, where S and S are a set of vectors
or tensors and a vector or a tensor subspace, are used to designate the number
of linearly independent elements in the set S and the dimension of the subspace
S, respectively.

We shall apply the aforementioned criterion to verify that a given set of
vector-valued or tensor-valued functions defined on a given domain is a generating
set required and, moreover, to check the irreducibility of this generating set.
Towards the latter goal, it suffices to show that if each vector or tensor generator
Gy is removed from a generating set S in question, then the proper subset S\{Go}
fails to fulfil the presented criterion at a point Xo. We shall call a generator Gy € S
to be irreducible if it has the property just indicated. Evidently, a generating set
§ is irreducible iff every generator Gg € S is irreducible.

2.2. Symmetry groups of vectors and second order tensors

To apply the criterion given before, we need to evaluate symmetry groups of
various kinds of sets of vectors and/or second order tensors and the values of the
dimension dimM (g) for M = V, Skw, Sym and for all subgroups g C Dyy. In
this subsection, we shall provide some basic facts and results for future use.

Henceforth, the notation Rﬂ will be used to represent the right-handed rota-
tion through the angle @ about an axis in the direction of the vector u # 0.

The symmetry group of vector 0 # u € V and tensors O # W € Skw and
A € Sym are as follows:

(2.5) P(u) = {R%,—RT |0 € R;a#0, a-u=0}=Cuxy(u).
(26) I'(W)= {£R% |6c R} =Coun(w), w=E:W.
Orth if A =271,
(2.7) I'A) = Dxn(a)if30#acV: A=zl+ya®a, y#0,
Dy, (a;,ag,a3) otherwise .

In the last expression, a;, as and ag are used to denote three orthonormal
eigenvectors of A. From (2.7) it follows:

http://rcin.org.pl
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(2.8) Cop(a) = {2, £R]} C I'(A) <= a
is an eigenvector of the symmetric tensor A .
Throughout, E is used to denote Levi-Civita tensor, i.e. the third order per-
mutation tensor, and (E : W); = E;;xWj is the axial vector of W. Besides, I

is used to denote the second order identity tensor, Dop(a) the cylindrical group
with the preferred axis a, i.e.

(2.9) Doon(a) =I'(a®a) = {+R%,+R] |0 € R; 1#0, 1-a= 0},

and moreover

(2.10) Dgh(a],az 3.3 = {:|:I ﬂ:Ral,zl:R:Q,iR;ra} ¥
Besides the above groups, the following groups will be used:
(2.11) Coo(n) = Coon(n) NOrtht = {R? | 6 € R},

(212)  Ds(a1,az,a3) = Dyy(a1,a2,a3) N Orth* = {I,RT ,RT,RT },
(2‘13J 021;(33-,3],32) = {I~— ai? R:‘,'aR?r } S"Z = {:tl}‘ Cl = {I}'

(2.14) Con(r) = {£L, =R}, Co(r) = {LRT}, Cunlr)={L—RJ}.

Henceforth, we shall cite these subgroups with their defining vector(s) dropped,
if no confusion arises.

Next, for all subgroups ¢ € D, we provide the values of the dimension
dimM (g) for M = V', Skw, Sym respectively, by the following tables.

Table 1. M = V and g, = { All subgroups of C.. except C; and Cy}

g Ci Cin  geow others
dimM(g) 3 2 1 0

Table 2. M = Skw and g, = {All subgroups of C.. except Cy and S3}

g C:1 82 goon others
dimM(g) 3 3 1 0

Table 3. M = Sym

9 C, S2 C2 Ciw C; Dy Ca Dzx others
dimM(g) 6 6 4 4 4 3 3 3 2

2.3. Doop-invariant decompositions of a vector and a second order tensor

Let n and e be two given orthonormal vectors. For vector u € V' and skew-
symmetric and symmetric tensors W € Skw and A € Sym, the following decom-
position formulas hold:
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u= (u-n)n+u

(2.15)
U=u-—(u-n)n;
1
N = §(trWN)N —nAWn,
(2.16)
N = En;
0
A =A+Ap,
(2.17) 7 T
Ay = %(Bn +An —trA)n®n + %(trA —n-An)l.
Let Dy, ---, Dy be the four traceless tensors given by

(2.18) Di=e®e—-e¢'®e, Dy=eVve; D3=nVe, Dy=nVve,

where
(2.19) € =nxe,

i.e., the triplet (e,e’,n) constitutes a right-handed orthonormal system. Then
each symmetric tensor A € Sym has the further decomposition

(2.20) A=RAgt+AatBay

where the three tensors Ag, A, and A, are mutually orthogonal and take forms

Il

(2.21) A = nV vl | A n|(D3cos ¢p(A) + Dysinp(A)),
(2.22) A. = |q(A)|(Dycosy(A) + Dysin(A)).

Here and henceforth, |u| = y/u - u is used to denote the norm of the vector u, and
q(A) to represent a vector depending on A, defined by

(2.23) a(A) = %((trADl)e + (trAD,)e) .

Moreover, ¢(A) and ¥(A) are used to designate the two angles formed by the two

0
vectors An and e and by the two vectors q(A) and e respectively, i.e.,

(2.24) #(A) = (Ane), ¥(A)={(q(A)e).
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The decomposition formula (2.20) with (2.17)2 and (2.21) - (2.22), which is
invariant under the cylindrical group Dy, (n), is a slight variant of that intro-
duced by BiISCHOFF-BEIERMANN and BRUHNS [5] (see also BRUHNS, XIAO and
MEYERS [11] and X1A0 [48 - 49]).

Finally, for each integer r and each vector z in the n-plane we define two
scalar functions «,.(z) and (,(z), a vector-valued function 7,(z) and a symmetric
tensor-valued function ®,.(z) by

(2.25) ar(z) = |z|" cosr(z,e), Br(z) = |z|" sinr(z,e),
(2.26) n.(2) = ar(z)e — B, (z)e’,
(2.27) ®,(z) = ar(z)Dy — 5,(2)D2 .

The following formulas are useful:

N,(2) = Br_1(2)2 = |a|~*(ar11(2)2 — Bria (2)(n x 7)),
(228) “?‘(z) = nr—l(z) “Z,
ﬁr'(z) = ‘[“|3-"?r-—1(3)]-

For A € Sym, J(A) is used to denote a Cxp(n)-invariant given by

(229)  J(A) = [n,An,A 2n] = | A n%|q(A)|sin(26(A) — %(A)).

A useful fact concerning J(A) is as follows:

0
(2.30) J(A) =0 <= nx A nis an eigenvector of A.

It should be noted that the two orthonormal vectors n and e will always be
arranged to be in the directions of the principal symmetry axis and a two-fold
symmetry axis of the material symmetry group g € Doop(n) concerned.

3. A unified procedure for constructing both functional bases and
generating sets

Usually, it is not easy to derive representations for anisotropic functions of
vectors and tensors, even for the case when only one vector or one tensor variable
is involved, except for some simple anisotropy groups. This situation may be
improved by recent results obtained by one of the authors. It has been proved (see
X1AO [44, 52]) that irreducible generating sets for arbitrary-order tensor-valued
anisotropic and isotropic functions of any finite number of vector variables and
second order tensor variables, can be formed by union of generating sets for the
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same type of anisotropic or isotropic functions of certain subsets of not more
than three variables. Therefore, the representation problem for the former may
be reduced to that for the latter. Moreover, by developing the isotropic extention
method for anisotropic functions by LOKHIN and SEDOV [17], BOEHLER et al. |7
—10], L1u [16] and RYCHLEWSKI1 [22], et al., it has been shown (see X1A0 [43, 47])
that any type of rth-order tensor-valued anisotropic function of a set of vector
variables and second order tensor variables for » = 0, 1, 2, may be presented
as an rth-order tensor-valued isotropic function of an extended set of vector
variables and second order tensor variables. Hence, complete representations for
the former are obtainable from those for the latter by applying the well-known
results for isotropic functions of vectors and second order tensors. Further, a
unified procedure for constructing both functional bases and generating sets has
been established recently by incorporating these facts and others (see X1a0 [50
— 51]). For any given subgroup g C Dy, this unified procedure is outlined as
follows.

STEP 1: Representations involving single variables x = u, W, A. Deter-
mine irreducible representations (functional basis and generating sets) for in-
variants and form-invariant vector-valued and skewsymmetric and symmetric
tensor-valued functions of each variable x € {u,W,A} under the subgroup
g. Then, form the scalar products r - h.(x) and H : 9 ,(x) = trHa,(x) and
C : Fi(x) = trCF¢(x) of a vector variable r € V and each presented vector
generator h,(x), of a skewsymmetric tensor variable H € Skw and each presen-
ted skewsymmetric tensor generator ¥ 4(x), and of a symmetric tensor variable
C € Sym and each presented symmetric tensor generator F;(x), respectively;

STEP 2: Representations involving g-irreducible sets of two variables, (x,y) =
(u,v), (u,W), (u,A), (W,82), (W,A), (A,B). The process is the same as Step
1, except for the fact that the single variable x therein is replaced by the two
variables (x,y) here. By a g-irreducible set of two variables (x,y) we mean a set
(x,y) with the property

(3.1) Fx,y)ng#Pix)ng, x=x y;

The above condition and a similar condition below will be explained shortly.

STEP 3: Representations involving g-irreducible sets of three variables,
+(x,y,2) =(u,v,W), (u,v,A), (u,v,r), (u,W,2), (u,W,A) and (u,A,B). The
process is the same as STEP 1, except for the fact that the single variable x the-
rein is replaced by the set (x,y,z) of three variables here. By a g-irreducible set
of three variables (x,y,z) we mean a set (x,y,z) with the property

(3.2) I'(x,y,z)Ng# C(x',y)Ng forany x|y € {x,y,z}.
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STEP 4. Collect all invariants and generators obtained in STEP 1 -
STEP 3 and let each variable involved run over the general set of variables,
(ug, -, uq, Wy, -, Wy, A1,---,A.) € V° X Skw?® x Sym®. Then finally we ob-
tain the desired general representations for invariants and form-invariant vector-
valued and skewsymmetric and symmetric tensor-valued functions of any finite
number of vector variables and second order tensor variables under the subgro-
up g.

The introduction of the g-irreducibility conditions (3.1) and (3.2) is mainly
based on the fact that is given below. Consider any given symmetry group g and
any given set of two variables of interest, (x,y). For the case when there is one
of x and y, i.e. X' € {x,y}, such that

gNI'(x)=gNIxy),
we have (see CRITERION 1 in Sec. 2)
rankG(x') > dimM (g N I'(x’)) = dimM (g N I'(x,y))

for a generating set G(x') for the g-form-invariant tensor functions of a single
variable x’ taking values in a g-invariant domain M. If a generating set G(x') for
a single variable x, given at STEP 1, is incorporated into a generating set G(x,y)
for two variables (x,y), i.e. G(x") C G(x,y), then using the foregoing inequality
we infer

rankG(x,y) > rankG(x') > dimM (g N I'(x,y)).

This shows that for the foregoing case concerning the two variables (x,y), a
generating set for the single variable x or y is already sufficient in order to fulfil
CRITERION 1, and no generators dependent on both x and y are needed. Thus, in
constructing a generating set for two variables (x,y), the case indicated before is
trivial and can be ignored, and hence it is enough to consider the case specified
by (3.1). Similarly, in constructing a generating set for three variables (x,y,z), it
is enough to consider the case specified by (3.2).

It will be seen that the g-irreducibility conditions (3.1) and (3.2), which specify
particular forms of sets of two or three variables, may result in a considerable
simplification of fulfilling the related steps, as has been shown in X1a0 [50 - 51].
In contrast with this, it seems difficult to deal directly with the sets of two or
three variables that are set free.

Moreover, when forming the scalar products of each variable z € {r,H,C} and
the presented generators, some reduction can be made. Let Xy be a g-irreducible
set of two variables considered in the second step in the foregoing unified proce-
dure, and let zp € Xo and z € {r,H, C}. Then (z,2) is also a set of two variables.
If this set has been covered in fulfilling step 2, then z may be treated as being
subjected to the condition:
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(3.3) I'(z) D I'(Xo) Ny, I'(20,2) N g # I'(Xp,2) N Q.

The reason is as follows. The unified procedure is mainly based on the fact: The
general domain D = V¢ x Skw” x Sym® can be decomposed into union of certain
g-symmetry-reduced subdomains: D = Dy U ---U Dy (see Theorem 3.1 in XI1AO
[44] and the related results in X1A0 [52]). Each D, has the property: for each set
X € D, of vector and second order tensor variables, there is a subset Zy € X with
not more than three variables, such that I'(Zy) Ng = I'(X)Ng. Thus, generating
sets for X € D, are given by those for Zy. At the same time, a functional basis
for X € D, is given by

(34)  I(X)=1I(Zo) U (r-V(Zo)) U (H: Skw(Zp)) U(C : Sym(Z)),

where r, H and C are three generic variables running over all vectors, all skewsym-
metric tensors and all symmetric tensors in the set X\ Zp, respectively; I(Zp),
V(Zy), Skw(Zy) and Sym(Zp) are, respectively, a functional basis and vector,
skewsymmetric tensor and symmetric tensor generating sets for Zg under the
group g; and r- V(Zp), H: Skw(Zy) and C : Sym(Zp) are three sets of the inva-
riants formed by the inner products between the forgoing generic variables and
the generators in the foregoing three generating sets, respectively. As step 4 in-
dicates, the results for all subdomains D, collectively supply the desired general
results for the whole domain D. Now we explain the reduction indicated before.
In the just-mentioned process, let Zy = Xy C X be a set of two variables. Then
(3.3)1 is evidently true for each z € X. Suppose that (3.3), is not true. Then, by
using I'(Xp) Ng = I'(X) N g we infer

I'(z0,2z) Ng=TI'(X)Ng,

where zg € Xo and z € {r,H,C} C X. As a result, by replacing Zy with (zo,z) in
(3.4) we obtain a functional basis for X € D,. Thus, if the set (zo,2) has been
covered, the just-mentioned basis makes the basis I(X) given by (3.4) redundant.
It is the just-shown fact that results in the reduction condition (3.3).

It should be pointed out that the reduction condition (3.3) is not necessa-
ry for the aforementioned unified procedure. However, for some of the sets of
two variables, taking this condition into consideration will be helpful to remove
some redundant invariants from the scalar products, as will be seen (e.g., see
Sec. 4.2(vi)).

Applying the aforementioned unified procedure, in this part and the other
two parts we shall derive irreducible nonpolynomial representations for scalar-,
vector-, skewsymmetric and symmetric tensor-valued anisotropic functions of
any finite number of vector variables and second order tensor variables under
all crystal and quasicrystal classes as subgroups of the cylindrical group D.p.
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It should be pointed out that the generating sets thus obtained are irreducible,
while the functional bases thus obtained need not be so. The irreducibility of the
latter will be examined elsewhere.

Here, we confine ourselves to material symmetries of solids, which are cha-
racterized by finite and continuously infinite subgroups of the 3-dimensional full
orthogonal group. Other kinds of material symmetries are possible, such as those
of liquid crystals etc., which are characterized by subgroups of the 3-dimensional
unimodular group U(3). The above procedure based upon the notion of isotropic
extension may be extended to cover the latter kinds of material symmetry groups.
The main basis in this more general aspect has been laid down by RYCHLEWSKI
[22], in which the existence and reality of isotropic extension in the most gene-
ral form has been proved with an arbitrary group acting on an arbitrary set,
not necessarilly restricted to the subgroups of the 3-dimensional full orthogonal
group.

4. Crystal and quasicrystal classes D,,,;, for m > 2

The classes Do, are of the form
(4.1)  Dgmn(n,e) = {£R2"/2m LRT |], = RE"/2™e, k=0,1,---,2m —1}.

These classes include the crystal classes Dyj, and Dgy, as the particular cases when
m = 2, 3. For the sake of simplicity, henceforth we shall use 1 to represent one of
the two-fold azis vectors lp,1j, - - ,lo;m—1. The latter constitute an equipartition
of a unit circle on the n-plane.

4.1. Single variables

(i) A single vector u

Each anisotropic function of the vector variable u under D,,,;, may be exten-
ded as an isotropic function of the extended set of three variables, (u, ‘I’Qm_z(ﬁ),
n®n) (see THEOREM 2 in X1A0 [47]). Applying this fact and the related results
for isotropic functions and following the unified procedure in Sec. 3, we construct
the following table.

Vo {(u-n)n, 8, 0y (@)} (= Vam(u)).
Skw  {Bam (N, (u-n)nA 0, (u-n)n A 9,1 (1)} (= Skwam (u)).

Sym {I,n®n,u® U, Pop_s(11), (u-n)nv u, (u-n)nv Nom—1 (1)}
(= Symy,, (u)).
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R (r-m)(u-n), 0,7 9y, (0);

(trHN) By, (1), (u - n) 0 -Hn, (u - 0)nq,,,_1 (1) - Hn;

trC,n - Cn, 1 - Elﬁ, tr(OJ ng_g(ﬁ ,(u-n) u- (QJ n,
o 0

(u-n)ny,_;(u) Cn;

{(u-0)2, [0 [%, azn()} (= Tom(u)).

Throughout Parts I-III, we replace the scalar product r -1 and trC(g, where
3 and G are a vector generator and a symmetric tensor generator, with r -2 and
4]

trC G respectively, if the invariant (r-n)n - and the two invariants n - Gn and
trG are redundant. In fact, by using the decomposition formula (2.15) and (2.17)
we have

r-p=f-+@-mn-4, trCG = trC G + p1(C)n - Gn+ pa(C)trG,

1 :
where p; 2(C) = a(trC 4+ n - Cn) are two Dgp(n)-invariants of C.

We need to show that the presented sets Va,,(u), Skwo,,(u), Syma,,(u) and
Im(u) furnish the desired generating sets and functional basis. In fact, by apply-
ing the related results for isotropic functions, we derive complete representations
for vector-, 2nd order tensor- and scalar-valued isotropic functions of the extended
set of variables, (u, ‘I’gm_g(ﬂ), n ® n), as follows:

u, (n @ n)u, ng_g(ﬁ)u;
uA(n®n)u, uA (@gm_g(ﬁ)u), ng_g(ﬁ)u A (n®&n)u;
L n®n, ®, (1), uV(@m_2(W)u), u®u, uV (n®n)u;
u?, u-(m®n)u, u- Sy, _o(u)u
In deriving the above results, many obviously redundant generators and invariants
have been removed by using the facts

m®n)?=n®n, &3, o) = |1 [ *(I-n®n), $sn_2(2)n=0.
By using the formulas (2.15) and (2.28), from the results given above one may
easily derive the results listed in the aforementioned table.
It can readily be proved that the functional basis given is irreducible. Mo-

reover, it is evident that the three presented generating sets are irreducible. In
fact, each of them is minimal.

(ii) A single skewsymmetric tensor W

Every vector-valued anisotropic function of the variable W € Skw under Do,
vanishes. Each scalar-valued or second order tensor-valued anisotropic function of
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W under Dj,,, may be extended as a scalar-valued or second order tensor-valued
isotropic function of the extended set of variables, (W, ®2,,_2(Wn),n ® n) (see
Theorem 2 in XI1A0O [47]). Applying this fact and the related results for isotropic
functions, we construct the following table.

Skw {W,nAng,_1(Wn), ®on_o(Wn)W? — W2d,,,, »(Wn)}
(= Skwom(W)).
Sym {Ln®n,nVWn, W2 &3, 5(Wn), ®5,,_2(Wn)W — Wy,,,_o(Wn)}

(= Symam(W)).
R trtHW,n,,,_o(Wn) - Hn, trHW?®,,, _»(Wn);

trC,n - Cn, ((03 n) - (Wn), tré Wz,tré P9, —2(Wn),

trC Wgym_o(Wn);
{(t('WN)2, [Wnl2, agm(Wn), (6rWN)Bam (W)} (= Tom(W)).

We show that the sets I, (W), Skwo,,(W) and Syms,,(W) provide the de-
sired functional basis and generating sets. First, we consider the skewsymmetric
tensor-valued function. Suppose Wn = 0. Then the symmetry group I'(W) is
given by Copn(n) if W # O or by Orth if W = O. From Table 2 given in Sec. 2,
it is evident that the presented set Skwa,,(W) obeys the criterion (2.3). Suppose
Wn # 0. Then we have I'(®2,,-2(Wn)) € Dyn(n), and hence

(W, ®3mn_2(Wn),n®@n) = I'(W, Bapu_o(Wn)).

From the latter and the criterion (2.3), we infer that a generating set for the
two variables (W, ®o,,_2(Wn)) offers a generating set for the three variables
(W, ®@5,,_2(Wn),n ® n). By using the related result for isotropic functions we
know that the former is just given by the set Skwa,,(W).

Next, we consider the scalar-valued function. By using the related result
for isotropic functions, we know that a functional basis for the three variables
(W, ®9,,_2(Wn),n®n) is given by [Wn|?, trW?, trW2®, trW2d?, (rd’W2ew
with ® = ®,,,_o(Wn). In deriving the above results, many obviously redundant
invariants have been removed by using

(Il ® n)2 =n®n, q’?m—?(wn)n =0, q’?m-—?(wn)2

= |Wn|/*"4(I-n®n).
Again by using the above facts and the formula (2.28) and the identity (see (2.16))

1
(4.2) w? = —z—(trWN)n V(nx Wn) —Wn® Wn — |Wn|’n®n
= %(trWN)2(I —n®n),
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we further deduce that, of the five invariants given before, the first three yield
the three invariant [Wn|?, (trWN}2 and oy, (Wn), the fourth is redundant, and
the last yields the invariant (trWN)S2,,,(Wn).

Finally, we prove that the set Syms,,,(W) is a desired generating set by sho-
wing that this set obeys the criterion (2.3). It can easily be proved that the set
Syma,,, (W) obeys (2.3) when Wn = 0. In what follows we suppose Wn # 0. Then
the three vectors
(4.3) n, e = Wn, e =n x Wn,

form an orthogonalized basis of the space V, and hence the six symmetric tensors
n®n,I-n®n,nVe;,Ci=nVey, Cs =e;Veaand C3 = e; Ve; —e2 @ e
form an orthogonalized basis of the space Sym. Of the six generators in the
set Syma,, (W), the first three yield the first three tensors in the just-mentioned
basis. Now consider the latter three generators in the set Syma,, (W), denoted by
Gy = ®opm_2(W), Go = W2, Gy = WPy, 2(W) — B2, —2(W)W. We have

trG;C; trGCe trG;Cy
A = [trGaC; trGseCsy trGoCy
trG3C; trG3Cy trGsCs

0 —2Bom (Wn) 200m (Wn)

Iy2 0 et ud L

2Bm 2x00m (wn) 2-7:.32:1‘: (Wn)

ie., A=4y*(z?y?™ 2 + (Bom(Wn))?) with z = trWN and y = |Wn|. Hence, we

infer
4if A=0,

rankSyms,, (W) =
y’_’m( ) {6if:ﬂ#0,

for Wn # 0. From the latter and
A=0= W =cEl, = I'( W) N Dapn(n,e) = Con(lx),

as well as from Table 3 given in Sec. 2, we conclude that the set Symsy,, (W) obeys
the criterion (2.3) when Wn # 0.

Both the generating sets Skwa,,, (W) and Syms,,(W) are minimal and hence
irreducible.

(iii) A single symmetric tensor A

Skw  {Bm(q(A))N,nA A 1,0 A 7g_ (A 0) + | A n[2"=4J(A)N,
| & n[2"20A A 20 + Bom(A 0)N} (= Skwam(A)).

0 0

0 (¢] (4]
Sym {ILn®n,A, $, 2(An),An® AnnVn,, (An),

B,,_1(a(A)), 0V AeTigm_1 (A 1)} (= Symy,, (A)).
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R (trHN)B,(q(A)), (Hn)- A n, 75,1 (A n) - Hn

—| A n2m~4(trHN)J(A),

Q

| A n[2™=2(Hn)- A %n — (trHN)Byn(A n);
{n-An,trA, | A 2, |a(A)[%, azm(A n), am(a(A)),n- A *n,
trA2®,,_1(q(A))} (= Lam(A)).

In the above table and in the tables given in (iv)-(xiv), we do not supply the
invariants depending on two or three symmetric tensors that are derived from
the scalar products of the symmetric tensor variable C € Sym and the presented
symmetric tensor generators. In the final general result that will be given by
Theorem 1 we shall directly quote the result established by Theorem 1 in X1A0,
BRrUHNS and MEYERS [53], which is simpler and more compact than the foregoing
invariants from the scalar products.

It is known (see X1A0 [48 —~ 49]) that the sets Symo,,,(A) and I3, (A) given
above are an irreducible generating set and an irreducible functional basis for
symmetric tensor-valued and scalar-valued anisotropic functions of a symmetric
tensor A under Day,,y, for each m > 2. Hence, in what follows we only need to prove
that the set Skwao,,(A) given is an irreducible generating set for skewsymmetric
tensor-valued functions of A under Dy, i.e. it obeys the criterion (2.3). In fact,
by using (2.28) - (2.29) we derive the equalities

Gi = —|z[?Bom(z)n A (n x 2) + |2 J(A)N + |2| 2 azm(z)n Az,

0 . (4]
Gy = |2/ J(A)n A (n x z) + BomN + |2/ 4(n- A*n)nAz, z=An.

Here and below, G; and Gy are used to denote the last two generators in the
set Skwa,, (A), respectively. Observing that the coefficient determinant of the
two generators with respect to the two tensors N and n A (n X z) is given by
A = J(A)?|z|48 + |2|72(Bam (2))?, we deduce

[ rank{n Az, G, G2}
=rank{N,nAz,nA(n X z)} =3
if A#£0,
4. { m 2 ¥
(4) e Bluigmiaton rank{n Az} =1 if A=0, 5£0,
rank{G,(a(A))N} =1 if 2 =0, Bn(a(A)) #0,
[ 0 if |z] = B (a(A)) =0
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Con (1) if A=0, 2#£0,
ie. Pom(z) =J(A)=0,z#0,
e SRR s T if z=0, fm(a(4)) #0,

Dop(n,lg,n x Ig) if  |z| = Bn(q(A)) = 0.

In deriving (4.5)1, (2.30) is used. Thus, from (4.4) — (4.5) and Table 2 in Sec. 2 we
infer that the set Skwa,,(A) obeys (2.3). Further, by considering A = nV (e+1;)
and Ay = e V1, we deduce that the last three generators (for A;) and the first
generator (for As) in the set Skws,,,(A) are irreducible.

4.2. D, p-irreducible sets of two variables
(iv) The Daypp-irreducible set (u,v) of two vectors
V. Von(u) U Vop(v) .
Skw  Skwam (u) U Skwam(v) U {u A v, [ul*™2uA 0y, (3)
+[V[2"2v A 1131 ()} (= Skwam (1, v)).
Sym  Symam(u) USymy,,(v) U {u Vv, [u™ 2uV 5y, _;(¥)
HV2 V 1 ()} (= Symam(u,v)) -
R r-Van,(z),H : Skwo,(z),C : Sym,,,(2),z =u, v;

u-Hv, [u?"2q,, (V) - Hu+ |[v[>*™2n,,,_,(2) Hv;

=]

9 - 0 . 0
u- C v, |u|2m 2"’?271';—1 (V} Cu+ |v|2m 2"?21*?1—1 (u)

o

v

H

Lo () U Topn (v) U {(u - m)(v - ), 8 - V, 0 g (V), V gy )}

To prove the above results, we first work out the Dy,,-irreducible set (u,v),
which is specified by (see (3.1)) I'(u,v) N Doy # I'(z2) N Dopppy, 2 = u, V.
Evidently, I'(z) N Dypp(n,e) # Cy,  i.e. rankVa,(z) # 3 for z = u, v. Hence,
we have (z - n)f,(2) = 0. The latter produces the following three disjoint cases

for z:
(4.6) an, a #0; ae+be', a®>+b>£0; an+bl, ab#0.

Considering the combinations of the above forms and excluding the cases
u=an, v=bn;u=en, v=an+blju=cl,v=an-+bl;

u=ae+be, v=ce+de, fon(z) #0, z=uorz =v;
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which violate the Day,-irreducibility condition for (u,v), we derive the following
four cases for the Da,,p-irreducible set (u,v):

(cl) u = an, v=ce+de’, a(c® +d?) #0;
(e2)n'=ae, v=u, 1£e ac#0;

(c3) u = ae+ be’, v=cn+ de, bed # 0;

(c4) u = an+ be, v=cn+dl, 1# e, abed # 0.

For most cases for g-irreducible sets considered here and later, there will be
one or two unit vectors that can be chosen among the two-fold axis vectors of the
group g. For the sake of simplicity and without losing generality we can fix one
of them as we wish. For instance, in cases (c2)-(c4) above, one of the two-fold

axis vectors involved is fixed as e (= lp).
For case (cl), we have

I'(,v) N Doy = Ch(1) if Bom (V) = 0,

rank{u, v, Dym_1(V)} =3 if Bom (V) #0,

rank(ng(u) U ng(\f)) > v} o
rank{u, v} = 2 if Bom(v) =0,

] rank{N,u A v,uA 9y, ,(V)} =3
rank Skwom(u,v) > ¢ if Bom(V) #0,
| rank{uAv}=1 if ﬁg,,;($) =1,

( rank{I,n®n,v ® v, 5, _o(V),

UV v,uV 0y, 1 (V)} =6 if Bom (V) #0,
rauk{I,n@n‘g ®3,u\/v} =4
L if Bam (V) = 0.

rank Symg,,(u,v) > ¢

For case (c2) we have I'(u,v) N Doy, = Cip(n) and
rank(Va, (u) U Var (v)) > rank{u,v} = 2,
rank Skwgm,(u,v) > rank{uAv} =1,

rank Symy,,(u,v) > rank{,n®n,u @ n,uV v} =4.
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For case (c3)-(c4) we have
rank(Vam(u) U Vap(v)) > rank{u, v, (v - n)n} = 3,
rank Skwo,(u,v) > rank{(v-n)nA v,uA v,uAny,_,(V)} = 3,
rank Syms,,,(u,v) > rank{I,n- nve v, (v-n)nv v,uVv,
uV 7,1 (V)} = 6.

From the above results and Tables 1 — 3 in Sec. 2, we infer that the three
presented sets of generators obey the criterion (2.3), and therefore they provide
the desired vector, skewsymmetric tensor and symmetric tensor generating sets.
Moreover, by means of case (cl1)-(c4) it can easily be proved that the presented
set fo;,(u,v) is a functional basis for the Dy,,,-irreducible set (u,v).

Finally, by considering the pair ug = n and vp = e + 1; we deduce that the
respective last two generators in the two sets Skwg,,(u, v) and Syms.,(u,v) are
irreducible.

(v) The Dopp-irreducible set (W, £2) of two skewsymmetric tensors
Skw  {W,Q, WQ — QW} (= Skwa, (W, ) .
Sym Symg, (W) U Sym,,, (2) U {WQ + QW,
|trQN|(trQ2N)Wn V NWn + |tr WN|(trWN)Qn v Nn}
(E S}'Ill?m(w, Q))
(4]
R ttHW, trHQ, trHWS2; C : Symo,,(W),C : Syma,,(§2), trC W,
(4]
|tr2N| (¢r2N)[n, Wn, C Wn] + [trWN|(trWN)[n, @n, C Qn);
Iy (W) U I (2) U {trWS} (= 1o (W, £2)).
To prove the above results, we first work out the Ds,,;-irreducible set (W, ),
which is specified by (see (3.1)) I'(W, Q)N Doy # I'(2) N Doy, 2z =W, Q. It is
evident that I'(z) N Damyp # Sz for z = W, Q. The latter implies that either R

or R{ pertains to the symmetry group I'(z). Hence, the skewsymmetric tensor
z € {W,Q} takes one of the forms:

(4.7) aEn, a #0,; aEl a#0.

Considering the combinations of the above forms, we derive the following two
cases for the Dy,,-irreducible set (W, Q2):

(c1) W = aEn, 2 = bEe, ab # 0;
(c2) W = aEe, 2 = bEl, 1# e, ab # 0.
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For the above two cases, it may easily be understood that the variables (W, )
can be determined to within an orthogonal tensor Q € Dy,,;, by the presented
set Io2,,(W,§2), and hence the latter is a desired functional basis. Moreover, for
the sets (W, ) at issue, we have I'(W,Q2) N Doy, = I'(W,82) = Ss. Hence,
a generating set for skewsymmetric tensor-valued isotropic functions of (W, 2)
offers a desired generating set. The former is just the presented set Skwa,, (W, £2).
This set is obviously irreducible.

We show that the presented set Syms,, (W, 2) supplies a desired symmetric
tensor generating set. In fact, we have

rank Symy,,(W,€) > rank{I,n ®n, 2% nVv On, WQ + QW,

Qn VvV NQn} = 6,

rank Sym,,,(W, ) > rank{,n ®n, W, nV Wn,n V On,
WQ + QW} = 6,
for cases (cl) and (c2) separately. Since dim Sym = 6, these indicate that the

set Syma,, (W, £2) obeys the criterion (2.3). Further, by considering case (cl), we
deduce that the last two generators in the set Symsy,, (W, £2) are irreducible.

(vi) The Dg,p-irreducible set (W, A) of a skewsymmetric tensor and a sym-
metric tensor

Skw {W,AW+WA,AW2—W2A} (= Skwam(W, A)).

Sym  Symg,,,(W) U Syms,,, (A) U {X W-W K, (trWN) AnVNA n}
- (= Sym (W, A))
R trHW;C : Syms,,, (W), trCA W, (trWN)[n, A n, CA n];

Tom(W) U Imn(A) U {(Wn) - (A n), trA W2,
| A nj2™-2(Wn)- A %n — (ttWN)Bam(A 0)} (= Lom(W, A)) .

In the above table, the skewsymmetric tensor variable H is regarded as being
subjected to the condition: H = ¢W. In fact, from cases (c1)-(c3) derived later
and the condition (see (3.3))

F(W, H) N Dth # F(w| Aa H) N Dth (= 52)1

we derive H = ¢W. The other case for H has been covered by (v).
The proof for the presented results is as follows. First, we work out the Dy, -
irreducible set (W, A), which is specified by (see (3.1)) I'(W,A)N Daoyp # I'(2)N
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Do, 2 =W, A. It is evident that I'(z) N Doyp # S2, z = W, A. Thelatter
implies that either R} or R] pertains to the symmetry group I'(z) for each
z € {W,A}. Hence, the skewsymmetric tensor W takes one of the forms given by

0
(4.7), and A takes one of the forms:
(4.8) aDy +bDs, a®> +02#0; a(l®1-I@l)+bnVvl, b#0.

Here and henceforth, for each vector u, the notation u’ is used to represent a
vector given by
/!
i =mnxu.

Considering the combinations of the forms given by (4.7) and (4.8) and exduding
the cases

W = cEn, A= aD; + bDy, Bim(q(A)) # 0;
W = cEl, A=a(1®1-1 ®);
W = cEl, A=a(l®1-V@l)+bVI;

which violate the Dg,,,-irreducibility condition for (W, A), we derive the folowing
four cases for the Dy, ,-irreducible set (W, A):

(cl) W = fEn, A= aDy, fa #0;

(c2) W = fEn, A= aD; + bDy, fb+#0;

(¢3) W = fBe, A= aDy + bDa, fb+0;

(cd) W = fEe, A=a(1®1—V @)+ bnVY, 1£e, fb#0.

For cases (c1)—(c4), we have I'(W, A) N Do,y = I'(W, 3)‘ From this fact and
the criterion (2.3) it follows that generating sets for tensor-valued anisotropic
functions of the Ds,,p-irreducible set (W, A) are obtainable from those for tensor-
valued isotropic functions of (W,R} As a result, by applying the related result
for isotropic functions we know that the presented set Skws,,,(W, A) supplies a
desired irreducible skewsymmetric tensor generating set.

Now we show that the presented set Syms,, (W, A) obeys the criterior (2.3).
Case (c1) can be treated easily. For case (c2) we have

rank Syms,,,(W,A) > rank{I,n ® n,i, ‘i’gm_g(f& n),
AW-WA,AnVvNAn) =6,
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and for cases (c3)—(c4) we have

rank Symy,,(W,A) > rank{I,n ® n, W2, n v Wn,
0o 0 (¢]
A/ AW-WA}=6.

Thus, we infer that the presented set Syms,,(W,A) obeys the criterion
(2.3), and hence it provides a desired symmetric tensor generating set. More-
over, by considering case (c2) we deduce that the last two generators in the set
Syma,, (W, A) are irreducible.

Next, we are concerned with the presented set I, (W.A) of invariants. Let

(¢] i g
I'(W,A) = {(trWN)?, [Wn|?, trA,n - An,| A n|?,n- A ®n, |q(A)|?,

(Wn) - (f& n), tri W2, (Wn)- f\ n}.

We shall prove that the latter offers a functional basis of the Dyy,j,-irreducible set
(W, A) under the group Dyp(n) and this basis is determined by the presented
set Io;m (W, A). In fact, the just-mentioned basis is obtainable from an isotropic

(o]
functional basis of (W,A,n ® n) (see BOEHLER |[8]), plus the two invariants trA
and n - An. Applying the related result for isotropic functions we know that the
just-mentioned isotropic functional basis is given by

(¢] p (] 0 9 . ; o, [¥]
trA W2, (Wn)- A n, (Wn)- A n, trA 2W2 trW? A ?W A,
9 [¢]

trW= A W(n®n),

as well as by the invariants of a single variable W or A in I'(W, A). Each of the
latter has been covered or can be determined by the bases Iz, (W) or Iom(A).
The first three invariants above yield the last three invariants in the set I'(W, A).
The last three invariants above are redundant. In fact, the just-mentioned fact
can be proved easily for cases (c1)-(c3). For case (c4) we have

(4]

I=(Wn) An=fb(l-e), trA 2W? = —I? — f2(a2 + b?),
o]
trW2 A Wh ®n) = — 21,
(W2 A 2W A = b=2(b? — 2a2)(F2 - I?)],

with 2 = |[Wn|?, a® = |q(A)|?, b° = | A n|? and fb # 0. Then, we deduce that
the foregoing fact is also true for case (c4).
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Hence, we conclude that the set I'(W, A) given before is a functional basis of
the Dy, p-irreducible set (W, A) under the cylindrical group Dyx(n). Moreover,
for the Da,,p-irreducible set (W, A), the last invariant in the basis I'(W,A) is
given by the last invariant in the set Is,,(W,A) (note here that (trWN)3s,

o
(A n)=0).
Then, applying the just-proved fact, for two Dayy-irreducible sets (W, A)
and (W', A’) we deduce

L (WL AY = Lo (W, A) = (W, ") = I'(W,A)
— 3Q € Don(n) : W =QWQ"', A’ =QAQ".
Moreover, we have
L (W, A") = Iy (W, A) => Loy (W') = Ipn(W), Iom(A") = Iam(A),
= 3R, Ry € Dops, : W =R;WRT, A’ = RoAR] .
From these facts we derive
RTQ € I'(W) N Dyop(n), R3Q € I'(A) N Doop(n).
From the latter and the facts: I'(A) N Doop(n) = Dap(n,e,e’) and
I'(A) N Dooh(n) = Con(e),  I'(W) N Doon(n) = Can(e),
I'(W) N Deop(n) = Cax(1),

for cases (c1)—(c4) respectively, we infer that Q € Dy, for cases (c1)-(c4).
Thus, we conclude that Is,,(W,A) is a functional basis of the Dy,,p-
irreducible (W, A) under the group Dayup.

REMARK. The above procedure can be used to deal with functional bases
for other kinds of g-irreducible sets (x,y) of two variables in future. Accordingly,
henceforth for each similar case we need only to show that a presented set of
invariants for a g-irreducible set (x,y) determines a functional basis of (x.y)
under the transverse isotropy group Caou(n) (for ¢ C Caoy(n)) or Dp(n) (for
other g).

(vii) The Dy,p-irreducible set (A, B) of two symmetric tensors

Skw Skwam(A) U Skwam(B) U {AB — BA,

(8] 00 (8] 00
B nA AB n, A nA BA n} (= Skwan (A, B)).
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00 00
Sym Syma,(A)USym,,,(B)U{AB + BA} (= Symgm(A B)).

R Iym(A) U Ipm(B) U {trAyBy, trA.Be ,trA 2 B, trB 2 A}
(= ILbm(A,B)) .

In the above table, the scalar product between each presented skewsymmetric
tensor generator and the skewsymmetric tensor variable H has been omitted.
In fact, for any O # H € Skw and any A, B € Sym we have I'(zg,H) =
I'(A,B,H), zy € {A,B}, which violates the condition (3.3) with Xy = (A,B)
and z = H and g = Dyp,;,. The case when H # O has been covered by (vi).

To prove the presented results, we first work out the Do, -irreducible set
(A,B), specified by (see (3.1)) I'(A,B) N Doy # I'(z) N Doy, 2z = A, B.
It is evident that I'(z) N Doy # So. The latter implies that each symmetric
tensor z € {A,B} take one of the forms given by (4.8). Thus, considering the
combinations of the forms given by (4.8) and excluding the cases

4]

(4]
A = aD; + bDy, B=cD; + dDsy, Bn(q(z)) #0, z= A or z = B;

A=al®l-I@l), B=c1®l-1®l)+dnVI;
which violate the Ds,,;,-irreducibility condition for (A, B), we derive the following
three disjoint cases for the Dj,,p-irreducible set (A, B):
(cl), A = gDy, B= 1 @I—T @), 1de, ¢ ab£0;
(c2) A = aDy+bDa, B= cD; + dDy, ibd 2 0:
(c3) A = aD; +bDy, B=c(1®1-V @) +dn VT, 1#e, bd#£0.
Then, for case (c1) we have I'(A,B) N Dy, = Cap(n) and
rank Skwom(A,B) > rank{AB — BA} = 1,
rank Sym,,,(A,B) > rank{I,n ®n, A B} =4
For case (c2) we have
rank Skwo, (A, B) > rank{nA B n, AR BA BnA AB n} =23
rank Syms,,,(A,B) > rank{I,n ® n, A, B, A n® A n,AB E BA} =G
For case (c3), we have

rank Skwgn,(A,B) > rank{nA A n, nA B n, A nA BA n,
AB - ﬁf&} _3,

o 0 00

rank Syms,,,(A,B) > rank{I,n ® n, X n® A n,A,B,AB - BA} =6.
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From the above results and Tables 2-3 in Sec. 2, we infer that the two sets
Skwa,, (A, B) and Symg,, (A, B) obey the criterion (2.3). Further, by c01151dtr1n;,

0 0
the pmr A; Dl and B, = n V1; we infer that the generators AB — BA,
B nA AB n and AB + BA are irreducible. Moreover, by c‘onsxdermg the pair

As = n Al and By = Dy we deduce that the generator A nA BA n is also
irreducible.

Next, we show that the presented set I5,,(A,B) of invariants determines a
functional basis of (A, B) under the cylindrical group Dsop(n). Indeed, the latter
is obtainable from the four invariants trC, n- Cn, with C = A, B, as well as an

o 0
isotropic functional basis of (A, B,n ® n) (see, e.g., BOEHLER [8]). By applying
the related result for isotropic functions we know that the latter basis is given by
00 00 0 9 0 00 2 0 2 0 2
trAB, trAB (n®n), trA “ B, trAB “, trA “B “,

as well as certain invariants of a single tensor A or B. Each of the latter is covered
or determined by the basis I5,,(A) or Io,,(B). The first four invariants above yield
the last four invariants in the set I5,,(A,B). Moreover, it is readily verified that

0 [¢]
the invariant trA 2 B 2 is redundant for each of cases (c1)—(c3).

(viii) The Dy, s-irreducible set (u, W) of a vector and a skewsymmetric tensor

V' Vam(u) U{Wu, W, (u-0)n3,, (W) + (8 75,1 (Wn))n}
(= Vo (u, W)).
Skw  Skway, (1) U {W,u A Wu,u A W2u}.
Sym  Symay,(u) U Sym,,, (W)U {uV Wu, (trWN) u V(nx u)}.
R 1 Vap(u);H : Skwap (u); C : Symy,, (u), C : Symy,, (A);
r- Wu,r- W?u, (u-n) r “Nam—1(Wn) + (r - n) u “Nom—1(Wn);
trHW, u - HWu, u - HW?u; u- (QJ Wu, (trWN)[n,ﬁ, (q)ﬁ];

L) U Lo (W)U {(u - n) u-Wn,u- qu}

Since 2rth-order tensor-valued anisotropic functions of the variables (u, W)
under the group D, are equivalent to those of the variables (W,u ® u) under
the same group, where » > 0, in the above table the results except those for the
vector generators and their related invariants, can be derived by setting A = u®u
in the table for the variables (W, A) in (vi). In what follows we need only to show
that the presented set Vi, (u, W) supplies a desired vector generating set.

The Dapp-irreducibility condition for (u, W) is given by (see (3.1)):

F(ua W) n D?mh :/é F(Z) n D?.mhe z=u, W.
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It is evident that u # 0 and W # O, and, moreover, I'(u) N Dopmn # Ci. The
latter yields (u-n)Bam (1) = 0. Three cases will be discussed.

First, let u-n = 0 and ﬁgm(ﬂ} # 0. Then u =ﬁ, and the two vectors u and
nzm,l(ﬁ) are linearly independent. Hence, we have

rankVa,, (u, W) > rank{Q, 15,,_1 (1), Wu, (1 -9g,,,_;(Wn))n} = 3.

In the above, we have Wn # 0. The case when Wn = 0 violates the Dayp-
irreducibility condition for (u, W) (see (3.1)) and hence is excluded.
Second, let 62,,,(1?1) =0 and (u-n)| u | #0, i.e. u= an+ be with ab # 0, and
let
W=zxeAe +yeAn+ze An, 22 +22 #0.

Then we have
rank Vo, (u,A) > {(u-n)n,u, Wu, W2y, (u-n)n,,,_(Wn)
+(1 “7o,,_;(Wn))n} = rank{n, e, (az — bz)e’, y(bz + az)e/,
Bam—-1(Wn)e'} =3

for

az — bx # 0 or y(bz + ax) # 0 or Bay;—1(Wn) # 0.

In the above, the case az — bz = y(bz+ ax) = Bom—1(Wn) = 0 has been excluded,
since this case yields x = z = 0 and y # 0, i.e. W = ye A n, which violates the
Damn-irreducibility condition for (u, W).

Third, let = 0, i.e. u = an # 0. According to Theorem 2 in XIAO
[47], we know that an isotropic vector generating set of the extended variables
(u, W, @2, 2(Wn),n ® n) offers a desired anisotropic vector generating set of
(u, W). Applying this fact and the related result for isotropic functions we infer
that the former is included in the set Vo, (u, W).

Finally, let u-n = 62,,;(1?1) =0 and ﬁaé 0,i.e. u=ae#0, and let
W==zxeAe +yeAn+ze An, 2%+ y> + 22 # 0.
Then we have (note 2% + 3% + 2% # 0)
rank Va,, (u) > rank{u, Wu, W2u, (u - n)ns,,,_;(Wn)
+ (U 7gyn_;(Wn))n} = rank{e, agy,_1(Wn)n, z¢’ + yn, zye’ — 2zn}
3if2(z2 +4y?) #Oor2=0, zy #£0,

= 2if z=y=00rz=2=0,

lifz=9y=0,
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and
Cin(e)ifz=2=0, y#0,

F(usw)mDthz Clh(n) le:‘y:U, 2’.'?50,
Cale)ifz=y=0, 2z#0.

From the above facts and Table 1 in Sec 2, we conclude that the set Vo, (u, W)

is a desired vector generating set. Further, by considering the two pairs: u; = e

and Wy = N+nAe€e', us =n+e and Wy = E(n + e), we infer the last three
generators in Vs, (u, W) are irreducible.

(ix) The Dgpp-irreducible set (u, A) of a vector and a symmetric tensor

o

V' Vam(u)U{A u,A 2u, (u- )7, (A 1), (A Som_2(B)
+®9m_o(1) A)u} (= Vam(u,A)).
Skw  Skwam(u) U Skwam(A) U {uA A 0,8 A A%, (& An) & A A n).

Sym Symgn,(u) U Symam,(A) U {uv A u}.
R r-Von(u);H: Skwo,,(u), H : Skwa,,(A); C : Syms,,, (u);
e A u,r A 2u,(u-n) T -ngm_l(fok n)+ (r-n)u -?;2?,,__1(.1 n),

o 0 o
) (A q’?m—?(u) Ef= q"Zm-—?(u) A)u
o 00

0 o (‘]0 o (8] 0
u-HAuu-HAu,(u-An)u-HAnju CAu;

0 o

Lm(0) Ulam(A) U8 - A8, (u-n) & - An,8. A28).

Since 2rth-order tensor-valued anisotropic functions of the variables (u, A)
under the group D, are equivalent to those of the variables (A,u ® u) under
the same group, where r > 0, in the above table the results except those for the
vector generators and their related invariants are derived by setting B=u®u in
the table for the variables (A,B) in (vii). In deriving the functional basis in the
above table, some redundant invariants have been removed.

In what follows we prove that the presented set Vi, (u, A) supplies a desired
vector generating set.

For 10179 0 we have

Cia(n) if u-n =0, Bom (W) #0,
Coy(lmyn x1)ifu=al, a#0,
Cip() ifu=an+bnx1, ab#0,

C, if (u-n)fom (lt.)l) #0.
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Hence, for U 0 we infer
(4, A) N Dy = (I'(w) N D) N T(A) = I'(u, ®am_2(8), A).

From the latter equality and the criterion (2.3) we know that, when u# 0,

]
isotropic generating sets for the variables (u, i'gm_g(ﬁ),A) provide anisotro-
pic generating sets for the variables (u,A) under the group Da,,,. Moreover,

0 ; . : : : 2
when u= 0, i.e. u = an, isotropic generating sets for the variables (u, A, ®o,,_2

(fl n),®,,_1(q(A)),n @ n) supply anisotropic generating sets for the variables
(1, A) under Dy, (see Theorem 2 in X1A0 [47]). As a result, by applying the
related result for isotropic functions, when ﬁ;é 0, we know that the desired
vector generating set is formed by the generators in the set V,,(u,A) except

4]
(u-n)ny,_1(A n). When u= 0, i.e. u = an, the desired vector generating set
o o ., 0
is formed by the five generators (u-n)n, A u, A %u, (u-n)n,,_,(A n) and

¢(u,A) = (u-n)®,,—1(q(A)) Ek n. The first four generators are included in the
presented set Va,,(u, A).

4]
We show that the generator ¢(u, A) is redundant. In fact, when A n # 0, the
a (4]

three vectors (u-n)n, A u and r = nx A u constitute an orthogonalized basis
of V' (note u = an # 0). The components of the last three of the foregoing five
generators with respect to u are of the forms

i & 2u = az?ysin(2(A) — ¥(A)), @ - Tpm_1(A 0)
= Bz sin2me(A),

- p(u,A) = ye?y™ " sin(2(A) + (m — 1)y (A)).

0
Here z = | A n|, y = |q(A)| and @, B and 7 are nonvanishing. From these and
the identity

sin(2¢(A) + (m — 1)y (A)) = sin2me¢(A) cos(m — 1)(2¢(A)
—9(A)) — cos2m¢(A) sin(m — 1)(26(A) — ¥(A)) ,

we deduce that the last one of the foregoing three components is determined by
the other two. Hence, the generator ¢(u, A) is redundant.

Thus, we conclude that the presented set Va,,(u,A) is a desired generating
set. Moreover, from the property of this set concerning ﬁaé 0 and u= 0, indicated

o
in the above proof, we know that the invariant (u-n)r-n,,,_;(A n) given by the
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0
scalar product of the variable r € V and the generator (u:n)ns,,,_,(A n), may
be replaced by the third invariant at line 6 in the table given before.
Finally, from the criterion (2.3) and the facts
u=mn, A=D;+D3: Vo,(u) = {n}, u=0
0 8]
Au= (l.l i n)""??m—l(A n) =e;
u=e, A=Dy+Ds: (u-n)ny, (1) =0,
A u = 2e, Vou(u) = {e};

o .
u=mn A=nV(e+1):u=0, A’%n=n, Von,(u) = {n},
where F(u &) (Y Doy, = 01 for each pair (u,A) given, we deduce that the ge-

nerator A 24, the generator A u, the last generator in the set V3,,(u,A) and the
generator (u - n)mg, (u), are irreducible, respectively.

4.3. D3y, p-irreducible sets of three variables

(x) The Dag,,p-irreducible set (u,v, W) of two vectors and a skewsymmetric
tensor

vV {(u-n)n,u,(v-n)n,v, Wu, Wy} (= V(a,v,W)).
Skw  {uAv,W,uA Wv+vAWu} (= Skw(u,v,W)).

Sym {I‘n®n,8®ﬁ,%®%,u\/v,quu,vav,uvWv+v\/Wu}
(= Sym(u,v,W)).
R r-V(uv,W);u-Hv,trHW,u.- (HW — WH)v;

trC,n-Cn,l(.)l . (q)ﬁ,u‘ 6Wu,3 . (933,v- &Wv,u- ((03 W —W(OB)V;
{(u : u)?j [ {)l |2,(V < II)Q, | % F2} (_:_ -{(“ava W))

The proof for the above results is as follows. From the condition (3.2) with
x=u,y=vandz=A and g = Dy, it is evident that the two vectors u and v
are linearly independent and W # O, and I'(u, v)NDgy,p, # C1, I'(z, W)NDgpp #
C1, z = u, v. From the first expression above and I'(u,v) = Cjx(u x v), we infer
that the vector u x v must be in the direction of one of the symmetry axis vectors
n and lj,- - -, lop. Since the set (u, v) should be a Doy, p-irreducible set, we further
deduce that the two vectors u and v must be in directions of two of the symmetry
axis vectors n and g, k = 0,1,---,2m — 1. In what follows we shall prove that u
and v are orthogonal and either Wu = 0 or Wy = 0 holds.
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In fact, the second expression for (z, W) given before implies that for each
vector z € {u, v}, the axis vector w = E : W of W must be either normal to or
in the direction of z. This fact leads to the two possibilitie for (u,v,W): (a) The
vector E : W is orthogonal to one of the vectors u and v and in the direction of
the other, and (b) the vector E : W is orthogonal to both u and v. The latter
is excluded, since it results in I'(u,v, W) = I'(u,v) = Cjx(u x v), which violates
the condition (3.2). Hence, we conclude that the fact stated before is true.

Thus, the Djy,p-irreducible set (u, v, W) is given by

(cl) u = an, v = be, W = cN, abe # 0;
(c2) u = an, v="be, W =cn A€, abe #0;
(c3) u = ae, v=">be', W=-cnAe, abc # 0.

With the above cases one may readily verify that the four sets V(u,v, W),
Skw(u,v, W), Sym(u,v,W) and I(u,v, W) providet desired generating sets and
a functional basis for the Dy,,p-irreducible set (u,v, W) under the group Dopp.
Further, by considering the set (u,v, W) given by case (cl), we infer that the two
tensor generators u A Wv + v A Wu and uV Wv + v vV Wu are irreducible.

(xi) The Dy,p-irreducible set (u,v,A) of two vectors and a symmetric tensor

0] 4]
V. {(u-n)n,u,(v-n)n,v,AuA v} (= V(u,v,A)).
0
Skw {u/\v,u/\xu,v/\ﬁv,u/\iv+v/\Au} (= Skw(u,v,A)).
0 O] Y 9 o
Sym {I,n@n,u@u,v@v,u\/\ruVAquAv
uv A v+ vy A u} (= Sym(u,v,A)).
R r-V(u,v,A);u-Hv,u- HAuv Hv,v - HAv
u-(HK—KH)v;
o 00 00 0 00 oo a o oo
trC,n-Cn,u - Cu,u- CAu,v-Cv,v- CAv,u- (CA — AC)yv;
(4]
{(w-n? |0 (v-m)%| v [°n- An,trA, | A % [q(A)P?,

8,V AV} (= I(u,v,A)).

o

To prove the above results, we work out the Dypp-irreducible set (u,v,A)
specified by the condition (3.2) with (x,y,z) = (u,v,A) and ¢ = Damy. The
latter yields
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(4.9) I'(u,A) N Domp # C1, T(v,A) N Dy # C11 .

According to the first half of the proof in (x), the vectors u and v are in
directions of two of the symmetry axis vectors n and 1. Moreover, if one of the
symmetric axis vectors is an eigenvector of the symmetric tensor A, say a, then
u and v can not be normal to a simultaneously, since otherwise we would have
I'(u,v,A) = I'(u,v) N Dyynp = Cin(a).

Consider the symmetric tensor A. Since the centrosymmetric subgroups of
the group I'(A) N Dyy,p are given by Sa, Cop(a), Dop(n,ag,az) and Doy, where
a; and ap are two mutually orthogonal two-fold axis vectors of the group Do,
and a is one of the symmetry axis vectors 1 and n. It is evident that the following
two cases for the symmetric tensor A can be excluded: I'(A) N Doy = S2, Do
Hence, there are two cases for A left, which are discussed below.

Let I'(A)NDayn = Can(a), a € {n,1y,--+,la,, }. Then the two conditions given
by (4.9) imply that either of the vectors u and v is normal to a or in the direction
of a, since the nontrivial proper subgroups of the group Ca;(a) are merely Cy;(a)
and Cy(a). From this fact and the foregoing fact concerning u and v we derive
the three cases: (a) a=1, u=aland v=bn; (b)a=1,u=al and v = bn x I; and
(¢)a=mn, u=an and v = bl. Here and henceforth, ab # 0 and 1 € {l;,--,l3;, }.

Let F(A) N Domn = Dg;,(n‘al,ag), ay, as € {11, Viris ,lgm}. Then, from (2.5)
and the two conditions given by (4.9) we deduce that either of the vectors u and
v is normal to or in the direction of one of the vectors n, a; and as. From this fact
and the aforementioned fact concerning u and v, we derive the only one case: (d)
u=anand v=>5l withl1xa; #0,i =1, 2.

From the above analysis, we know that the Ds,,;-irreducible set (u,v,A) is
specified by the four cases (a)-(d) for A above. Without loss of generality, we set
1 = e in these cases. Then we have

(cl) u=ae, v=bn, A =Dy +yD4, aby # 0;

(c2) =ae, v=be', ab# 0, A= zD; + yDy, aby # 0;
[}

(c3) u=an, v=be, ab# 0, A= zD; + yDs, aby # 0.

In the above, we would mention that the cases (c) and (d) derived before have
been combined into case (c3).

With cases (c1)—(¢3), one may readily verify that the four sets V(u,v,A),
Skw(u,v,A), Sym(u,v,A) and I(u, v, A) provide the desired generating sets and a
functional basis for the Dy, -irreducible set (u, v, A). Further, by conmdermg the

set (u,v A) iven by case (cl), we infer that the tensor generators uA A v+vA A u

and uVv A v+vV A u are irreducible.
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(xii) The Dg,,p-irreducible set (u,v,w) of three vectors

If the three vectors (u,v,w) are linearly dependent, i.e. they lie on the same
plane, then there are two of them, say u and v, such that I'(u,v,w) = I'(u,v),
which violates the g-irreducibility condition (3.2) with (x,y,2z) = (u, v, w) and any
given subgroup g C Orth. Thus, we deduce that the three vectors u, v and w are
linearly independent for each g-irreducible set (u,v,w) with any given subgroup
g € Orth. Hence we construct the following table.

V  {u,v,w}(=V(uv,w)).
Skw  {uAv,vAw,wAu} (= Skw(u,v,w).
Sym {u®u,v@v,w@w,uVv,vVw,wVu} (= Sym(u,v,w)).

R r-V(u,v,w);H:Skw(u,v,w);C : Sym(u,v,w);
{luk?", Fvlgr |w|2s IV VW W u} (E I(u, v, W))

Evidently, each invariant and each generator in the four presented sets
M (u,v,w), where M = I,V, Skw, Sym, are isotropic and involve not more than
two vector variables, and therefore they are determined by the functional ba-
sis and the generating sets for one and two vector variables under the group
g € Orth. As a result, for any given subgroup g C Orth, the isotropic vector
generating set V' (u,v,w) can be omitted. Further, if the set (u,v) of two vector
variables has been covered before, as is the case treated here, all the isotropic
invariants and generators listed in the above table can be omitted.

(xiii) The Dy, p-irreducible sets (u, W, §2) and (u, W, A)

According to Theorem 3.2 in X1A0 [52], it suffices to supply generating sets
for vector-valued functions for the above two sets of variables and the set of
variables given later. The desired results are given as follows.

V. {u, Wu, Qu, Wu, Q%u, (WQ — QW)u}.
V Ay, Wu,f,l u, qu,i 2u, (W =X Wu}.
The proof is as follows. Let X be either of the two sets (u, W,2) and
(u, W, A). We first prove

(410) F(XU) N Domp = F(XO) 3

In fact, if I'(Xo) = C}, then it is evident that (4.10) holds. The other case, i.e.
I'(Xop) # C1, implies that there is a unit vector a such that either Cy,(a) C I'( X))
or Cz(a) C I'(Xp) holds. If Cy;(a) C I'(Xp), then from (2.5) — (2.6) we deduce
that u is normal to a and Wa = 0. Hence we have I'(Xy) = I'(u, W) = Cy,(a),
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which violates the condition (3.2) and should be excluded. On the other hand,
if Cy(a) C I'(Xp), then again from (2.5) and (2.6) we deduce that u x a = 0
and Wa = 0. Hence we have I'(Xy) C I'(u, W) = C(a). Since the symmetry
group of any vector or second-order tensor has nothing but 2-fold and oo-fold
symmetry axes, we infer that I'(Xp) = I'(u, W) = Cus(a) or I'(Xp) = Ca(a). The
former violates the condition (3.2) and is excluded. For the latter, we infer that
(4.10) holds, if a is a symmetry axis vector of the group Dg,s. If the latter is not
true, then we have I'(Xo) N Dapp = I'(u, W) N Dy, = €y, which violates the
condition (3.2) and is excluded.

Thus, we infer that (4.10) holds. Then, from (4.10) and criterion (2.3) it
follows that a generating set for vector-valued isotropic functions of each Dyyp-
irreducible set Xp supplies a generating set for vector-valued form-invariant func-
tions of Xo under Dy,. The former can be derived by applying the related re-
sults for isotropic functions, as given before. Moreover, the irreducibility of the
generators (WQ — QW)u and (W R - EL W)u can be deduced by considering:
u=n, Wog=En, Qy=nAeand ug=¢, Wo=En, Ap=nVe.

(xiv) The Dypp-irreducible set (u, A, B) of a vector and two symmetric tensors

A desired generating set for vector-valued functions is given by

V  Vom(u,A) U Vam(u, B) U {(AB — BA)u}.

The proof is as follows. From the condition (3.2) with (x,y,z) = (u, A, B) and
9 = Do I'(0) N Doy, # Ch, it is evident that I'(u) N Doy # C1y Doy and

(4.11) I'(u,C) N Do # C1, C=A, B.

From the former and (2.5) we infer that u is normal to one of the symmetry axis
vectors of the group Da,p. Hence we derive the three cases for u: (a) u = ca # 0
with a € {n,lg,---,lom-1}, (b) u = an + bl with ab # 0, and (c) u-n = 0 with
uxlp #0,k=1,---,2m. For the latter two cases we have I'(u) N Dy, = Cyx(a)
with a =n x 1 and a = n, respectively. Hence we deduce

C, = F(ll, A, B) & Dth
if a is not an eigenvector of A,
Cin(a) = I'(u) N Damp

if a is an eigenvector A.

I'(u,C) N Doy, = Crp(a) N I'(A) =

From the above we know that the condition (3.2) is violated and hence the case
at issue is excluded.
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In what follows we are concerned with case (a) for u indicated before. From
(4.11) and I'(u,C) N Doy, € I'(u) N Dy, we derive

F{u‘A) N D2m.h = Clh(a;)r C'z(a) g F(urA) N DQm.h:
I'(u,B) N Doy = C1p(a"), Ca(a) € I'(u,B) N Do,

where a’ and a” are symmetry axis vectors of Dy, normal to u = ca. Evidently,
a’ and a” are not coincident, or else the condition (3.2) will be violated. Then,
we derive the three cases:

(c1) Ca(a) € I'(w,C), C=A, B;
(c2) I'(u,A) N Doy, = C14(a’), I'(u,B) N Do, = Cyp(a”), @’ x a" #0;
(¢3) I'(a,A) N Dapp, = Cyp(a’), C2(a) € I'(u, B) N Doy

For case (cl), we have Ca(a) C I'(u,A,B) N Dy, and u = ca # 0, it is easy
to show that the subset V5, (u) obeys the criterion (2.3).
For case (c2), using the formula (2.4) we have

rank(Vam (u,A) U Vo (u, B))
= rank(V (I'(u,A) N Dayp) U V(L (u, B) N Daap))
= rank(V(Cyx(a’)) UV (Cpa(a")))
= rank{a,a x a,a xa"} = 3.

For case (c3), u = ca is an eigenvector of B (see (2.8)). Moreover, (a,a’,r =
axa’) is an orthonormal basis of V. In terms of this basis, we have the expressions

Au=oca+fr,B=za®a+ya' ®a +2r@r+wa' vr, Bz #0.

For the former, the following facts are used: the vector Au € V(C)j(a)) is normal
to a, and a is not an eigenvector of A (hence z # 0). Moreover, w = 0 has been
excluded, since otherwise we have Cy,(a’) C I'(B) and hence

F('LI, Aﬁ B) N D2ml’l = F(u: A) N D?mh = Clh(aJJa
which violates the condition (3.2). Thus, for case (c3) we have
00 00
rank (Vo (u, A) U {(AB — BA)u}) = rank{a,r, fwa’} = 3.

From the above we conclude that the set of vector generators offers a desired

o0 00
generating set. The irreducibility of the generator (AB — BA)u can be deduced
by considering

uw=n, Ag=nVe, Bp=nVve'
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4.4 The general results

THEOREM 1. The four sets given by

0

Iy (0); Lo (W); Lo (A); (w-m)(v -n),u - 3{1 ‘Wzm—l(g)sg’ ‘nzm_l({)l);

trWS, 95,1 (Wn) - Qn, 19,1 (2n) - Wn, trWQ2®,,,,_o(n),
trnwz ¢27r'a—? (wn)!

4] 0 0 (4] 00
(A n)- B n,trA B, trA 2 B, trAB 2, trA.®,,_;(q(B)),

(4] (8] 4]
trApBn®om—2(A n), trAe®o,,—2(B n), trBe P9, 2(A n);

o]

(An)-Wn, trR w2, tri Py, 2(Wn), trﬁ W®,,,_2(Wn),
(trWN)Bm(q(A)).

o o
Nom—1(A n) - Wn — | A n|*"~4(trWN).J(A),
| A n2™=2(Wn)- A 2n — (trWN)Bam(A n);

(U 8 n) ﬁ -Wn, i w2u, {t-rWN).BQm(B)! (u : n)n2m—-l (ﬂ) L Wn;

04 o} o, 0 3 0
U- Al (u-n)u-Anu-A2ua trA &, o(1), (u-n)ne, (1) An;

000 o] 0o

trWQH; trABC; trAB W, (¢rWN)[n, A n, BA ),
Q o0
(trWN)[n,B n, AB nJ;
18]
trA WS, [trN|(trQN)[n, Wn, A Wn] + [trWN]|(¢rWN)[n, 20, A Qn);
u- Wy, u- W2y, (u-n) v “Nom—1(Wn) + (v-n) u Nom—1(Wn),

022151 (V) - Wt + [V]27 215,y (0) - W;

0 (4] 0

wAv,u A2y, (un) ¥y, (An)+ (vn) & 0y, (An),

4]

o 0 oo o 0 0
u- (A @, 2(u) + Po—2(u) A)v,u- (A D9, _2(V) + Pop—2(v) A)v,

(=]

Z ol g i o
[u]?™ 205, 1 (V) Au+ |[v[*™2ny,_(u)- A v;

9 9 00 0 o Qg
u-WQu,u- WQu,u- W*Qu;u- AB u;u- A Wu, (trWN)[n, u, Aul,
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u- (WQ - QW)v;u- (W A — A W)v;u- (AB — BA)v;

and
Vzm(l.l); wur Wgus (I.l i n)an—l (wn) =t ({jI ‘n2'nl—l(wn))n;
0 0 0 (o] o o (8]
A u, A %u, (u-n)ny,_1(An), (A Bop_2(u) + Pom_o(u) A)u;
(WS — QW)u; (W A +W A)u; (AB — BA)u;
and

Skwo, (U), Skw?m(w)a Skwom, (A):

= 0 = [¢]
uA v, [u2u A ngp 1 (V) + [V[2™2 A gy (0);

(o] o

WQ-QW:AW+WA AW2—W2 A,

(=]

(ws -]

o o0 Qo0 L] (4]
A, AnABAnBnA A

3

e

00
AB — n;

>0

(4] Q 4]
u/\Wu,u/\qu;u/\Au,ﬁ/\Aﬂ,(ﬁ-An)ﬂ/\ n;

(o] (4]
uAWv+vAWUwuA Av+vA A

and
S.‘.”I”'EIT? (ll). S}’ngm (W). Synlﬁm(A);

uVvyv,u2uv ”I*zm—l(%’) + [v[*™=2v V gy (ﬁ)i
wQ + OQW,
[trQN|(trQN)Wn V NWn + [trWN|(trWN)Qn vV NQn;

0 4] [4] (4] o0 00
AW-WA (trWN)AnVvNAnR;AB + BA;
uV Wu, (trWN) u V(nx ﬁ);

(o] (o] [e]

uV Auw;uVWv+vvV Wu,uV Av+vVAu,

where (u,v) = (u;,u;), (W,Q,H) = (W,, W,,Wy), (A,B,C) = (AL, Apm,AN),
49 s4=Lwsal>r g =120 N>M=L =16 oG
functional basis and irreducible generating sets for scalar-, vector-, skewsymmetric
and symmetric tensor-valued anisotropic functions of the a vectors uy,---,u,,
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the b skewsymmetric tensors Wy, -+, Wy, and the ¢ symmetric tensors Ay, ---, A¢
under the group Doy, for each m > 2. In the presented result, n and e are two
orthonormal vectors in the directions of the principal azis and a two-fold azis of
the group Doy, .

In the above theorem, the nine invariants of two or three symmetric tensors
are quoted from the established results ( see Theorem 1 in X1A0, BRUHNS and
MEYERS [53]).

5. Crystal and quasicrystal classes D, for m > 2

The classes at issue take forms
(5.1) Do (n,€) = Domn(n,e) N Orth™ = {RE™/™ R | 1
=R"2me, k=1,...,2m}.

They include the crystal classes Dy and Dg as particular cases when m = 2,3.
Let IO(Hy, - ,Ho; Wi, -+, Wiy Ay, -+, Ac), Skw?(Hy, -+ Hg; Wy, oo Wy Ay,

-+, A.) and Sym°®(Hy,--- ,Ha; Wy, -+, Wy; Ay,---,A.) be, respectively, an ir-
reducible functional basis and irreducible generating sets for scalar-valued,
skewsymmetric and symmetric tensor-valued anisotropic functions of (a + b)
skewsymmetric tensor variables and ¢ symmetric tensor variables under a
centrosymmetrical orthogonal subgroup ¢ containing the central inversion —IL.
Then, according to Theorems 2.1-2.2 in X1A0 [43], the four sets

I°(Buy, -, Bug; Wy, -+, Wy Ay, -+, Ag),

E: Skw®(Euy, -, Bug; Wy, -+, Wy Ay, ---,Ac),
Skw’(Euy, -+, Bug; Wy, -+, Wy Ay, -+, Ap),
Sym°(Euy, -, Bug; Wy, -+ Wy Ay, -+ Ap),

supply, respectively, an irreducible functional basis and irreducible generating
sets for scalar-, vector-, skewsymmetric and symmetric tensor-valued anisotropic
functions of a vector variables, b skewsymmetric tensor variables and ¢ symme-
tric tensor variables under the rotation subgroup of g, i.e. ¢ N Orth™. Here, the
second set above is obtained by forming the double dot product between each
skewsymmetric tensor generator and the third order Levi-Civita tensor E.

From the above facts and Theorem 1, we obtain the following result.

THEOREM 2. The four sets given by

Iom(u), (u - 0)Bam (0); Iom (W); Iz (A); Lom (W, Q,H, A, B, C);
http://rcin.org.pl
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u-v, {}l ‘MNoam—1 (g)s 3 Mam-1 (ﬂ)| [ll, Vi Nom—1 (8)]: [V, U, Mom—1 (ﬁ)]‘ [I.l, v, l’];
trW (Eu), [0, 1, 795,y (W), [0, Wi, 293, (1),
Nom—1 (1) - Wu, tr(Eu)W2®,,,_o(Wn);
0 [¢] 4] (4] 0 [#] o
n,u, A n|,u- A u,trA ®,,,, _5(u), trA (Eu)®y,,_2(u), (u-n)sn(q(A)),
e A Y 2m—4
[Il, u, 7?211:.—1{A n)] = | A Il| (ll : n)J(A)'
(o] o
[ & n|>"=2[n, 4, A 2n] — (u- n)B2ym (A n);
o o %0 0 Lo
u-Wv;u- Av,|v-n|(v-n)[n,u,Au] + |u-n|(u-n)n,v, Av];

L8]

tr(Eu)WS2; tr(Eu) AB,

00 0 00

(u- n)[n,.:f&l n,BA n, (u-n)[n, B n,AB nj;

o
tr(Eu)W A, [u-n|(u-n)n, Wn, A Wn] — [trWN|(trWN)|[n, u, Aul;

and
U, Ny 1 (W), U X Dy (0);E : Skworm (W); E : Skwom(A);
u X V;Wu;ﬁ U, ux K uE: (WQ - QW);
(4] [4] 9 9 0]
A(E:W),E: (AW"—-W*°A);
00 00 4] 00 [4] 00
E: (AB — BA),A nx BA n,Bnx AB n;
and
Eu, Eny_; (1), 0 A 791 (0); Skwapn (W); Skwan, (A);
(4] (4]
uAv;E(Wu);E(A u),un A u;
(4] (] (4] (4]
WO - QW AW+WA AW?2-W2A4A;
00 00 O 00 4] 00
AB — BA,AnA BAn,BnA AB n;
and

Symy,, (Eu); Syms,,, (W); Syms,,,, (A);
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uVv,|v-n|(v-n)uV(nx a)+ [u-n/(u-n) v V(nx u);
W+ QW, [trIN|(trQN)Wn vV NWn
+[trWN|(trWN)Qn v NQn;

00 0

AW—W A, (trWN) AnVN A n; AB + BA;
(Eu)W + W(Eu), |u- n|(u-n)Wn Vv NWn

O 2]

+|trWN|[(trWN) u V(nx u);
R(Eu) — (Eu) K,(u-n) EnVNRn;

where (u,v,r) = (u,uj,u), (W,QH) = (W, W, Wy, (A,B,C) =
(A A AN, k> i >i=1 88> >e=1:+§ N>M>
L=1,--- ¢ supply a functional basis and irreducible generating sets for scalar-,
vector-, skewsymmetric and symmetric tensor-valued anisotropic functions of the
a vectors uy,-- -, u,, the b skewsymmetric tensors Wy, ---, Wy, and the ¢ symme-
tric tensors Ay,---, A, under the group Ds,, for each m > 2. In the presented
result, n and e are two orthonormal vectors in the directions of the principal azis
and a two-fold azis of the group Da,,.

Here and henceforth, I5,,(W,Q,H, A, B, C) is used to represent the invariants
of two or three second order tensors given in THEOREM 1.

6. Crystal and quasicrystal classes Cy,,, for m > 2

The classes at issue are of the form
(6.1) Comu(n,e) = {REF/™ —RT |l = RE™/2me |k =1,... 2m}.

They include the crystal classes Cy, and Cj, as particular cases when m = 2, 3.

For anisotropic functions under any subgroup g C Cu,, the general cases
involving any number of vector variables and tensor variables may be reduced to
the cases involving not more than two variables (see THEOREM 2.2 in X1A0 [52]).
As aresult, the third step in the procedure outlined in Sec. 3 can be omitted. Fur-
ther reduction is possible. Let X represent any of the five sets of variables, W, A,
(W.€), (W,A) and (A, B). Then each scalar-valued or tensor-valued anisotropic
function of Xy under the group Can,(n, e) is a scalar-valued or tensor-valued ani-
sotropic function of Xy under the larger group Da,p(n,e) (D Comy(n,e)). Thus,
in the general results for the group Cap,, (THEOREM 3 below), we can directly
cite the invariants and the tensor generators depending on skewsymmetric and/or
symmetric tensor variables in THEOREM 1. Moreover, let Yj be any set of a single

http://rcin.org.pl



IRREDUCIBLE REPRESENTATIONS FOR CONSTITUTIVE EQUATIONS. 1. 599

variable or two variables. Then each anisotropic function of Yy under the group
Cmy is an anisotropic function of (Y, n) under the larger group Doyn (2 Comy)-
Thus, for all sets of variables, (u), (u, W), (u,A) and (u,v), the desired results
for the group Coy,, can be obtained by setting v = n in the tables given in Sec. 4
(iv), (x), (xi) and setting w = n in the table given in Sec. 4 (xii), respectively.
In addition, for each of the sets W, A, (W,£2), (W,A) and (A,B), the desired
vector generating set under the group Ca,,, and the invariants from the scalar
products related to this generating set can be derived by taking u = n in the
corresponding results in the tables given in Sec. 4 (viii), (ix), (xiii), (xiv), respec-
tively. Combining these facts, we arrive at the general result for the group Copmy
as follows.

THEOREM 3. The four sets given by

u-n, | |2 @z (0); Iom (W); Tom(A); Iom (W, 2, H, A, B, C);

0 00 0y O O,
u-v,u ’an_—-I(v)av ‘W?m—l(“)'

u -Wn,{i -WQH, (tl’WN)ﬁQm(ﬁ)s M2m—1 (ﬂ) i Wn,ﬁ “Nom—1(Wn);

L¢] Le]

0 o 9o o 0 0
-An,u-A®nu- Au, trA ®9,,_2(1), 79, (1) A n,

(={=]

u‘Wv:u-Kv;u-(WQ—QW)n;u-

and

0 0
n,u, 79,1 (ll); Wn: wzn: Mom—1 (Wn);
0

0 o 5 95
A n, A n,ny, (A n); W u; Au;

00 00 (4] (4]
(W2 - QW)n; (AB — BA)n; (WA — A W)n;
and

DA U0 A 731 (8), Bom (0)N; Skwaym (W); Skwar (A);

0 0 0 : 0
UAV:WQ - OW; AW+ WA AW2-W2A;

00 00 0 00 (o] 00
AB — BA, A nA BA n, B nA AB n;

o] [¢] [¢]
nAWu+uAWnuA AunAAu+uh An;
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and
Ln®n,u®u,nVu, sz_g(ﬁ), nvV ngm_l(ﬁ);
Symy,, (W); Syma,, (A);
uVv;,WQ+ QW [trQN|(trQN)Wn vV NWn
+|trWN|(trWN)n vV NQn;

L4 4] 0 (4] oo o0
AW -WA (trWN) AnVNAn;AB + BA;

0 0 0
uVWunvWu+uvVWn;uv Au,nvV Au+uVv An;

where (u, V) — (u,;, uj)l (W,Q, H) = (wm W, WB): (A! B, C) = (AL- Ay, AN):
J == 1@ >r>e= 18 N>Ms> L =10, suply a
functional basis and irreducible generating sets for scalar-, vector-, skewsymmetric
and symmetric tensor-valued anisotropic functions of the a vectors uy,-- -, u,,
the b skewsymmetric tensors Wy, -+, Wy, and the c symmetric tensors Ay, -+, A,
under the group Com, for each m > 2. In the presented result, n and e are two
orthonormal vectors in the directions of the principal arvis and a two-fold azis of
the group Copmy,.
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