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A GENERAL sCHEME within the frequency domain is elaborated for the scattering of
obliquely-incident waves at a stratified, anisotropic, viscoelastic solid. Existence and
uniqueness of the asymptotic wave propagator is established. Possible nonexistence of
the scattering matrix at specific values of the incident field is then shown. Conditions
for nonuniqueness or incompatibility of the direct scattering problem are provided.

1. Introduction

SCATTERING BY STRATIFIED viscoelastic media is of interest, e.g., in seismics and
nondestructive testing. The linear viscoelastic model allows for the introduction of
dispersion and attenuation effects that are of importance in realistic calculations.
In this paper, a frequency-domain approach is elaborated for the determination
of the scattering matrix, with the specific aim at establishing properties of the
transmitted and backscattered wave fields generated by a wave obliquely incident
from infinity. The scattering of horizontally-polarized shear waves, in isotropic
viscoelastic solids and within the time domain, is investigated in [1] for oblique
incidence and in [2] for normal incidence.

The material functions or parameters of the continuously stratified viscoela-
stic medium vary in one space dimension, z say. To fix ideas, we let 2 be directed
vertically upward. The usual assumption is made that dependence on time and
transverse coordinates is through the complex factor expli(k - x — wt)], where
k; is a (possibly complex-valued) constant horizontal vector, w is the (real, con-
stant) frequency, x and ¢ denote the position vector and time, respectively. The
realness of k; amounts to considering the Fourier components of the unknown
functions. It follows from these conditions that the dynamics of any stratified
anisotropic solid may be modelled by a linear system of six first-order ordinary
differential equations with complex-valued, z-dependent, coefficients in the unk-
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534 G. CavicLiA AND  A. MORRO

nown components of the displacement and traction vectors. Under the rather
stringent assumption that the solid is isotropic, the equations of the system de-
couple and the usual formulations of scattering problems for the one-dimensional
Helmholtz and Schrodinger equations is recovered [3 - 7).

We assume that the body is asymptotically homogeneous. Accordingly we
express the unknown functions as superpositions, with z-dependent coefficients, of
the inhomogeneous waves |8] associated with the eigenvectors and the eigenvalues
of the governing system at +oo. By looking at the differential equations for the
pertinent coefficients, we can find a formal expression for the asymptotic wave
propagator matrix T that provides the solution at +oc in terms of the solution
at —oco.

While the wave propagator matrix T is uniquely defined, existence and
uniqueness or nonexistence and nonuniqueness of the solution to the direct scat-
tering problem may occur, depending on the value of kj;. To our mind this
feature has not been adequately investigated in the literature. Our approach in
terms of the asymptotic eigenvectors allows a systematic treatment of the pro-
blem and a simple understanding of the conditions for existence and uniqueness
of the solution.

Nonuniqueness seems to be related to the phenomenon of mode conversion
and shows some analogy with the possible existence of interfacial waves at the
common boundary between homogeneous solid half-spaces |9 - 11]. Yet nonuni-
queness or nonexistence are not confined to the occurrence of interfacial waves.
As an example, in the last section we consider horizontally-polarized waves in
an inhomogeneous half-space, bonded to a homogeneous incidence half-space,
and determine numerically the matrix T. We then show that conditions on T,
such that the solution to the reflection-transmission problem does not exist, are
realized by admissible values of the material parameters.

2. Time-harmonic waves in anisotropic media

Consider a body. in an unstressed configuration, occupying an unbounded
region {2 which is described by the Cartesian coordinates (z,y,z) =: x. Let
V' be the translational space associated with the three-dimensional Euclidean
point space. Also, denote by es the unit vector of the z-axis. Let u denote the
displacement vector with values in V; u(x,t) maps 2 x R onto V' and represents
the displacement, at time t, of the point labelled by x [12].

Let 7T be the symmetric (Cauchy) stress tensor, 7 : V' — V and let the
time-dependence be expressed through the common factor exp(—iwt). In the
absence of body forces, the evolution of time-harmonic waves is governed by the
equation
(2.1) —pPu=V-T.
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The tensor T depends linearly on the spatial derivatives of u, namely
T =C(V3u),
where C is a complex-valued fourth-order tensor. In components,
Tin = CinriOxw.
The standard symmetry properties
Cjnkt = Chjkt = Chjik = Clkhj

are taken to hold. The tensor C is real-valued in (linear) elasticity and is strictly
complex-valued and dependent on w in common dissipative models. For later
convenience, for any two vectors a and b we let aCb be a second-order tensor
defined by

(aCb)r = anChjribi.

We assume that the material properties p and C depend only on the vertical
coordinate z. Hence we look for solutions of the form

u(x,t) = a(z) expli(ky - x — wt)],

where k; is a horizontal, complex-valued, wave vector. Correspondingly the gra-
dient takes the form i
>

= ik =
V 2 H+e3d2

Let t = Tey = t(z)expli(k, - x — wt)] be the traction at horizontal planes.
Evaluation of V ® u and substitution into the expression for 7 shows that the
definition of t and the equation of motion (2.1) become

i(eng“)ﬁ -+ (e;;Ce;;)ﬁ’,

t

(2.2)
pwtt = —(k,Ck )i + i(k,Ce3)d’ +t',

where a prime stands for d/dz. As shown in [11], thermodynamics implies that
e3Ce;y is invertible. Hence, a comparison allows @’ and t’ to be expressed in terms
of i and t as

(2.3) o
(2.4) £

—i(e3CE3)—l(e3Ckn)ﬁ + (e;;Ce;;)_lE,
[~pw?1 + (k;Ck;) — (k;Ces)(e3Ces) ' (esCky)]a
—i(k;Ces)(e3Ces) 't.

I

To get a more compact notation, we let w be the column of the ordered set of
components of @t and t, i.e. w = [4, E]T where the superscript T means transpose,
whence
(2.5) [u,t]” = w(z) expli(k - x — wt)].
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In accordance with (2.2) and (2.3), let

Al Ag ],

AZ[A;; Ay

where the four 3 x 3 blocks A, Aa, Az, Ay are given by
A, = —i(e3Ces)'(e3Ck;), A= (e3Ce3)”!=Al, Ay=A]l
Az = —pw®1 + (k;Ck;) — (k; Ces)(e3Ces) "' (e3Ck;) = Af.

The matrix A is neither symmetric nor Hermitian. Yet, by means of the 6 x 6
matrix

¥ = [}1]

i T O

where 1 is the 3 x 3 identity matrix and 0 is the 3 x 3 zero matrix, we can write
the symmetry condition

(2.6) KA = (KA)".

In terms of A, Eqs. (2.2) and (2.3) can be given the form

(2.7) w' = Aw.

where w and A depend only on the space variable z and the vector parameter
ky. This is the sought Stroh-like form of differential equations governing the
behaviour of the body [10]. The general solution to an equation of the form (2.6)
is sometimes termed as a multimode wave [13].

In electromagnetism, Stroh-like forms are more familiar (cf. [14]) also because
Maxwell’s equations as such are first-order equations. This is a further motivation
for the investigation of (2.6) as a model of wave propagation.

For later purposes, we consider the mechanical model of isotropic bodies
where

(2.8) Chijri(2) = p(2)[0nkdjt + Snidjn] + M(2)0nj0n.

If the body is a viscoelastic solid then the tensor (2.8) is complex-valued and pu
and A are parameterized by w € R in the form

p=no+ [W)expliwnydn, A=+ [ Xn)exp(im)dn,
0 0

where g, Ao € R are taken to be positive and u/, N € L'(R) are real-valued;
the dependence of pg, Ag and p/, A’ on z is understood and not written. Further
restrictions are due to thermodynamics. As shown in [15] (Eq. (3.2.11)), the
dissipative character of the stress results in the inequalities

(2.9) 1e(w) <0, 2ul(w) + Ai(w) < 0, Yw > 0,
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where the subscript s denotes the half-range Fourier-sine transform. Since
e3Ces = diag(u, p, 21 + A,
the invertibility of e3Ce3 amounts to the requirement that
p#0,  2u+A#0,

which is a direct consequence of (2.9).

For formal simplicity we let k; have a real direction and choose the z-axis
to be in the direction of k; so that k, = 0. Upon (2.8), the system (2.7) then
decouples in two subsystems,

(2.10) w, = A Wy, wh, = Apwy,.
The vectors w,, wj, and matrices A,, Ay are given by

0 ik g 0
—ivk, 0 0 /)

Ty Thy By B
L] B

WU — 3 y ATJ — Ckg ’ W2 0 0 _i,}(kx 5
) 0 —pw? —ik, O
where v = A/(2u+ A), ¢ =4p(u+ A)/(2u + A), and
| By o~ 0 1/p
(2114 wh—lfy], Ah_[ukﬁ-wz 0 l

The systems (2.10) describe vertically-polarized (with polarization in the zz-
plane) waves and horizontally-polarized (y-polarized) waves [16]. The decoupling
implies that the horizontal and vertical polarizations are conserved through the
body. The system for wy, in (2.10) is equivalent to the ordinary differential equ-
ation

(2.12) (i)' + (pw? — pkZ) ity = 0

which is typical of scattering problems [3 — 7]; here, though, x and k, are complex-
valued. Upon the transformation

iy = o(:)exp [~ (1/2) [/},
0

Eq. (2.12) can be written in the normal form
(213} 0’”(2) §3 f(szi kﬂ-‘)o-(z) =

where

2 1 1y 2
k o R ) - .‘”_)
flew, k) = 5 ks 2,u+(2,u

is complex-valued and parameterized by w and k.
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3. Asymptotic wave propagator

Let A(z) be a matrix function on R with values in Mg(C), namely the set
of 6 x 6 matrices with complex entries. Let the matrix A be continuous on R
except a point, say z = 0, where it may suffer a jump discontinuity, 0 # [A] :=
A(0*) — A(07). Hence w(z) : R — C° satisfies the differential Eq. (2.7) as
z€ R\ {0} and is continuous at z =0, i.e.

w(0F) = w(07).

This equality represents the welded contact condition such that u and t are
continuous at any discontinuity surface for material parameters.

We now examine the asymptotic properties of the fields u and t. It is con-
venient to introduce a representation in terms of a column vector v which is
related to w through a wave-splitting technique (cf. [17]). To give evidence to the
asymptotic properties, we apply the wave splitting in terms of the eigenvectors
of A at +oo.

Let A= and A* be the limit values of A as z approaches —oo and oo. The
matrices A* are taken to be simple and the eigenvalues to be nonzero. Sim-
plicity is a generic property; examples of non-simple matrices A correspond to
peculiar values of k; (cf. [16]). Let m* (m~) be the maximal real part of the

eigenvalues of A* (A~). Also let || - || be a matrix norm in Mg(C) like, e.g.,
|A|| = max |A;|, 4,5 = 1,...,6. We assume that
(3.1) |A(z) = A%|| = o([|z] exp(2mT2)]™!), as z — +oo.

For the sake of convenience we now restrict the analysis to the half-space z > 0
and hence denote by the superscript + the pertinent asymptotic values. Strictly
analogous relations hold for the half-space z < 0.

Denote by io} and p}, a = 1,...,6, the eigenvalues and eigenvectors of A*.
Let P* be the matrix whose columns are the eigenvectors p/, namely

P* = [pj, ..., pgl.

Since A* is simple we have [18]

(3.2) [Rr AP =8t

where S* is the diagonal matrix

S* = diaglio?, ...,i0{].
It is convenient to consider the new variables v(z) : R — C% such that
w=P*'Ev,
where

E(z) = diaglexp(io] z), ..., exp(iog z)].
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Incidentally, by definition E satisfies the differential equation

E' =ES* =S"E.
Substitution of w in (2.7) provides the differential equation for v in the form
(3.3) v/ = My,

where

M(z) = E~!(z)(P*)"'A(z)P*E(z) — S*

Once the vector function v is determined we obtain the original unknown w(z) =
[u(z),t(2)]" in the form

6
w(z) = Z 2)pf expli(ky - x — wt)],

where k! = k; + 0}e3. The components v, can be viewed as the amplitudes of
inhomogeneous waves [8] Indeed, since the functions v, have a limit as z — +o0,
asymptotically w is just a superposition of inhomogeneous waves.

We then investigate the existence and uniqueness of the solution v to (3.3)
with a given initial value, e.g. v(0*). By replacing S* with (3.2) we can write M
as

M =E1(P*)"}[A(z) - A*|P*E.
Hence, because —So} < m*, a = 1,...,6, we have the estimate
IM(2)[| < [[(P*)~!]| [|A(2) — A*[| [P*[| exp(2m*2).

Two consequences follow at once. First, if A is constant as z > 0 then M(z) =0,
Vz € (0,00). By (3.3) this implies that v is constant in homogeneous half-spaces.
Second, the assumption (3.1) makes |[M|| to be integrable on R* namely

(3.4) fuM(z)udz < .
0

The integrability (3.4) and the continuity of M : R* — Mg(C) allows us to argue,
step by step, as in [19], and conclude that there exists a fundamental matrix U(z)
such that

(3.5) U’ = MU, (=1, v(z) = U(z)v(0%),
in (0,00) and v(z) has a limit as z — oo. Letting
vt = zli{‘gcv(z), U+ = zI_i_{roaoU(z),

we can write

(3.6) vt =U"v{0%).
http://rcin.org.pl
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Apart from purely formal changes, the same statements and results hold as
z € (—00,0). For instance,

E = diaglexp(ioy 2), ..., exp(iag 2)],

and
(3.7) S VI T

Owing to a possible discontinuity of A, and hence of v, at z = 0, we need a
relation between v(0~) and v(0"). We know that since w is continuous, whence

that
E(07)=E(0*) =1,

and that
w(0™) =P v(07), wi(l" ) =P v(0")

As a consequence, v(0~) and v(0*) are connected by
(3.8) v(0*) = (P*)"'P-v(07).

By means of (3.6), (3.7) and (3.8) we have

(3.9) veE=Tv,
where
(3.10) = U’”(P*)'IP“(U')*1

may be viewed as the asymptotic wave-propagator matrix (cf. [20]). The matrix
T is non-singular and is parameterized by k; through P* and U*.

To sum up, the existence and uniqueness of the fundamental matrix U(z)
implies the existence and uniqueness of the solution v(z) to the Cauchy pro-
blem for (3.3) in (0, c0) with initial value v(0™), possibly through (3.8). In direct
scattering problems, though, the values v(0*) and v(0~) are unknown. Rather,
we consider an incident wave which comes, e.g., from —oo; it is partially back-
scattered and partially transmitted by the stratified medium. This means that
neither v* nor v~ in (3.9) can be regarded as known. The associated reflection-
transmission problem for v* and v~ is not a Cauchy problem and hence existence
and uniqueness of the solution are not guaranteed. This is examined in the next
section.

http://rcin.org.pl



MULTIMODE WAVE SCATTERING PROBLEMS... 541

4. Existence and uniqueness of reflected and transmitted waves

The asymptotic limits of the matrix A allows the identification of incident,
reflected and transmitted waves. The real part of ¢} is the z-component of the
phase speed of the corresponding asymptotic wave mode

w = v} pl expli(k) - x — wt)].

Accordingly, we assume that the real part of o, is positive for three eigenvalues
and negative for the three remaining ones. For definiteness we let R} > 0as a =
1,2,3 and Ro} <0 as a = 4,5,6. Hence we regard v;, vg,v3 as being associated
with forward-propagating waves, and vy, vs, vg with backward-propagating waves,
in the z-direction. Alternative, non-equivalent partitions of the forward-backward
propagating modes can be considered that are based on the direction of the
energy flow or amplitude growth [21, 13]. They result in a different partition
of the asymptotic wave modes. Yet the essence of the subsequent analysis holds,
irrespective of the criterion adopted to select forward- and backward-propagating
wave solutions.

For definiteness, at first let the incident wave come from —oo. A reflected
wave is going back to —oo, a transmitted wave is going to +oo and no backward-
propagating wave occurs at 4o0o0. Let v;, v, be triples associated with input and
output waves. The sixtuples v- and v* at —oo and +o0 are given by

r=[E] »=[%]

o

where v, and v} represent the reflected and transmitted waves. The matrix T
can be viewed as given by 3 x 3 blocks. We then write (3.9) in the form

vl=ln o]
or

(4.1) Tyiv; + Tev, =V}

T Tav;y +Tyv, =0.
If, instead, the incident wave is coming from +oo then the reflected triple v}

and the transmitted triple v, are given by
(4.2) vi =Tavy, v =T,

where v is the incident triple. Equations (4.1) and (4.2) are to be solved in the
unknowns v, v} .

If T4 is non-singular then v, and v} are determined at once. By (4.1) we
have

v; = -T7 Tev;, vi=(Ti—-TyT;'Ta)v;.
http://rcin.org.pl
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Similarly, by (4.2) we determine v} and v, in terms of the incident wave v; . For
generality, both v; and v; are allowed to occur. The output waves v, and v;

]
are given in terms of the input waves v; and v as

=l

S; =T;— ToT;!Ts, Sa=ToT;!, S3=-T;!Ts, Ss=T;.

o S4

where

The matrix
S; S
g — s B
Sz S4
is called scattering matrix and is uniquely determined by T. Of course it provides
the reflected and transmitted waves in terms of the incident ones.

The matrix T4 depends on the complex vector parameter k; and hence may
become singular by appropriate choices of k. Let det Ty = 0. By (4.1) nonzero
triples v in the nullspace of T4, N(T4), exist and make the case v; = 0 and
v, # 0 to be possible while the remaining equation of (4.1) determines v;.

Similar conclusions follow from (4.2). Hence scattering solutions v(z) can exist
such that

s as[9]. w-[%]

In the picture of plane waves, a wave solution satisfying (4.3) is regarded as an
interfacial wave [9].
Now let the incident wave v; meet the condition T3v; € R(T4) where R(T}y)
is the range of T4. By (4.1) at least one pair of output triples exists, say v;,v}.
Hence a solution v occurs subject to
Vo
o |-

\}_ — V,- \‘}4' —
VO

Since the system (3.3) is linear, the field v(z) + v(z) is a solution such that

[v"'-i"ﬁ] = [ \Tr;{;{v; ] [V3+ﬂ

Hence v and v + v, are two fields associated with the same incident field, which
shows the nonuniqueness of the direct scattering problem.
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Something else can also occur. The range of T4, R(T4), is two-dimensional,
at most. Hence there are vectors v; such that (4.2) is not compatible. Similarly,
if T3 is non-singular, there are vectors v; such that

TgV; g 'R.(T4)

Hence we say that, for such vectors v and v; , no vector v, and v satisfies the
second relation in (4.1) or (4.2) and then there is no solution for the scattering
problem. In conclusion we can write

detTy # 0 => existence and uniqueness of v,,v}, and S,
{ no solution v, v} if Tav; & R(Ty),

detTy =0, vi =vi, ; :
¢ ' ! nonuniqueness of v, v} if Tav; € R(Ty),

no solution v, ., v} if v; ¢ R(Ty),

: nonuniqueness of v, ,v} if v; € R(Ty).

det Ty=10vs =vl, —p {

It is of interest to compare this conclusion with existence and uniqueness re-
sults appearing in the literature. For example, [5] proves that there is at most one
pair of reflection and transmission coefficients consistent with the wave reflection
problem. Here we show how a less restrictive hypothesis makes nonuniqueness to
be possible. Roughly, the differential equation

(4.4) y"+ N(2)y=0, z€eR,

is considered where N(z) > 6 > 0, N' € L(R) and N has finite limits as z —
+o00. Also in view of (2.13), we observe that the qualitative difference with the
approach in [5] is that we allow for a complex-valued coefficient N, which does
not guarantee existence and uniqueness. A similar remark holds for [6]. Moreover,
the nonexistence of S, due to the vanishing of det Ty, is consistent with a remark
made in [3] that S may not exist at some values of a suitable parameter. The
equation examined in [3] is a particular case of (2.13).

As a comment on the condition det T4 = 0, we observe that if the half-spaces
are uniform then U% is the identity. Hence T = (P*)"'P~. Now, by (3.10) we
have
(P$)"P; + (P{)"P3 (P3)"P; + (P})"P;

(P})"P; + (P3)"P; (P})"P; + (P§)"P;
Hence det T4 = 0 takes the form
det{(P})"P; + (P3)"P3] =

T=

which corresponds to the condition for the occurrence of interfacial waves (see,
e.g., the equivalent Eq. (2.11) of [9]). This is consistent with [11] where the
condition for the existence of interfacial waves is related to possible nonexistence
or nonuniqueness of the solution.
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5. Application to horizontally-polarized waves

By (2.11), horizontally-polarized waves are described by

0 i
A:[ g /1
-viu 0

where v = /pw?/pu — kZ, Rv > 0. Accordingly we have
e R S|

—(V+)2p+ 0 iptet —sutyt
w0 exp(ivtz) 0
S = : E = : 2> 0.
[ 0 —wt l [ 0 exp(—ivtz)

The matrix M is then given by

M(z): [ fQ+a) —ivt —f(l—a)exp(__Qiy-rz} ] |
f(1 —a)exp(2ivtz) —f(1+ a) + vt
where 2 0 .
alz) = w_f_ :iﬂ v .
O = ez TO=0

In homogeneous media we have p = p*,v = v* whence a = 1, f = w* /2 and
M vanishes. This in turn implies that v; and vy are constant in homogeneous
regions.

We now determine numerically a case where det T4 = 0. First we look for the
2 x 2 fundamental matrix U* such that

v | utr Uy v1(0%)
v3 Uf Ut ][ w0 ]
We regard U* as given which means that (3.5) is taken to be solved.
We assume that the half-space z < 0 is homogeneous and hence

{Uf}:lvl(o_)}‘ oAy
vy va(07)

Since T = U+(P+)"!'P- and

1 1
< 1 .
W YT =t
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we obtain
1 prvt Uy +Uy) +p v (Uf - Uy)
2wt | ot (Uf + U + v (U - Uf)

(U +U3) - pv (U - Uy)
ptvr(Ug + Uf) — pv (US - U)
Now we show that there is a value of y~ such that
0=T4 = ptv*(Us +Uf) —p v (Us - UY).
Such is the case if
= e ot =: o
‘ - =
Upon substitution of the expression for v we have
(kep™)? — p~w?p™ + o =0,

whence

__ pw?
f- = T 1:|:\/1— (2aky [ p~w?)?).

By thermodynamics [15], only the solution such that Su~ < 0 is admissible.
As an example, let
(2) { poexp(z?),  z€(0,2),
pu(z) =
Ho CXP(4} = }L+, zZ€ [2$00)1

where 1o = (12.10 —0.40i)10'° g/cm s? is the value of x in the model of Berkeley
crust while

pt =2.1g/em?, z € (0,00), p~ = 1.5g/em?, z € (—o0,0)

and
w=30s""1, ky = 0.1+ 0.5i cm™!

We find that
= (.3676 — 2.468i)10" g/cm®

is the admissible solution. Accordingly, if such is the value of p in the incidence
half-space (= # p(0%)) then Ty = 0 and hence, since T3 # 0, the problem (4.1)
is incompatible.
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