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Probability density equivalent linearization and
non-linearization techniques
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Tue concepT of equivalent linearization and non-linearization for dynamic systems
under Gaussian excitations with criteria in probability density space is considered
in this paper. The term non-linearization used in the literature means the procedu-
re of finding an equivalent nonlinear system for stochastically excited Hamiltonian
system. New criteria of linearization and non-linearization and two approximate ap-
proaches are proposed. In the first one, the direct minimization of a criterion is ap-
plied and the approximation of the probability density function by the truncated
Gram-Charlier expansion is used. In the second approach, equivalent linearization or
non-linearization is made for the Fokker-Planck equations corresponding to the ori-
ginal nonlinear and linearized or non-linearized dynamic systems, respectively. Two
examples are given to illustrate the results obtained.

1. Introduction

EQUIVALENT LINEARIZATION was first proposed by CAUGHEY [3] who considered
the replacement of a nonlinear oscillator by a linear one for which coeflicients
of linearization can be found from the mean square criterion. These coefficients
depend on the first and second order moments of the response. Equivalent line-
arization has been developed in the field of control, mechanical and structural
engineering, and has been generalized by many authors. Numerous studies have
been performed in the context of this method, and they are summarized in the
monograph by ROBERTS and SPANOS [11] and the review article by SocHA and
SOONG [12]. In almost all studies of different versions of stochastic linearization,
the difference between variances of nonlinear and linearized systems has been ta-
ken as a measure of the accuracy of the considered version. The most important
reason for considering only this measure is the fact that stochastic linearization is
treated as one of the numerous approximate methods used in studies of vibration
systems, where the well known and simple covariance analysis can be used. From
theoretical point of view, the best linearization technique in the sense of previo-
usly discussed measure should be the “true linearization” proposed by Kozin [7],
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where the variances of the outputs of nonlinear and linearized systems are the
same. In fact, this true linearization is not true with respect to other criteria,
for instance, higher order moments, correlation functions or spectral densities of
responses of nonlinear and linearized systems. The difference between the corre-
lation functions and the spectral densities of responses of nonlinear and linearized
systems as a measure of accuracy was considered, for instance, by Kazakov and
Dostupov [6] and by APETAUR and OPICKA [1], IYENGAR [5], respectively. The
idea of equivalent linearization has been developed to the case when the original
nonlinear system is replaced by another equivalent nonlinear system for which the
exact probability density function of the stationary solution is known. Numerous
studies have been performed in the context of this method, see, for instance, [4,
3. 14, l(i], where mainly the mean-square criteria were used.

Since the complete information about random variable is contained in proba-
bility density function, it would be reasonable to consider a criterion depending
on the difference between probability densities of responses of nonlinear and li-
nearized or non-linearized systems. Therefore in this paper a new philosophy for
stochastic equivalent linearization and non-linearization is proposed. We introdu-
ce new criteria of linearization and non-linearization and we discuss two approxi-
mate approaches. In the first one, the direct minimization of a criterion is applied
and the approximation of the probability density function by the Gram-Charlier
expansion is used. In the second approach, the linearization or non-linearization
is made for the Fokker-Planck equations corresponding to the original nonline-
ar and linearized or non-linearized dynamic systems, respectively. The proposed
approach is a generalization of the considerations given in [13]. The detailed ana-
lysis for two-dimensional systems is given to illustrate the results obtained. To
compare characteristics of the responses obtained by the proposed methods and
other equivalent linearization or non-linearization techniques, the examples with
exactly known stationary probability density functions have been chosen.

2. Equivalent linearization

We consider a nonlinear stochastic model of dynamic system described by
the Ito vector differential equation

M
(2.1) dx(t) = ®(x,t)dt + > Gr(t)dé(t),

k=1
where x = [@,...,2,]T is vector state, ® = [®y,...,®,]T is a vector nonlinear
function, G = [G‘;\.l,....G;m_]lr are deterministic vectors, & are independent

standard Wiener processes.
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We assume that the unique solution of Eq. (2.1) exists and an equivalent
linear system has the form

M
(2.2) dx(t) = [A(t)z(t) + C(t)ldt + Y Gi(t)d(t),
k=1
where A = [a;;] is a matrix and C = [Cl,...,C,l]T is a vector of linearization

coefficients.
The objective of the probability density equivalent linearization is to find the
elements a;; and C; which minimize the criterion

+00

(2.3) h= [ we¥(oy() - g00)dx

-0

where ¥ is a convex function, w(x) is a weight function, gy(x) and g, (x) are
probability density functions of stationary solutions of nonlinear system (2.1)
and linearized system (2.2), respectively. It means that the discussed equivalent
linearization method is made for criteria in the space of probability densities. In
the case of linearized system, the probability density of the solution of system
(2.2) is known and can be expressed as follows:

@24)  gp(z) = [@r) KLl ”29\'-13{ S (x—m)TK; ‘<x—mJ}

where m = m(t) = E[x(t)] and K. = K (t) = E[x(¢)x(t)"] - ym(t)” are
the mean value and the covariance matrix of the solutmn x = x( ) of system
(2.2), respectively, K| denotes the determinant of the matrix K. The vector
m and matrix Ky, satisfy the following equations:

dm
e A(t)m + C(t),

dKp

—- =K AT(t) + A(DK, +ZGLU G{(1).

k=1

To apply the proposed criterion (2.3) we have to find the probability density
gn(x). Unfortunately, except for some special cases, it is impossible to find the
function gy (x) in analytical form. However, it can be done by approximation
methods or by simulations.

To obtain approximate the probability density function of the stationary so-
lution of a nonlinear dynamic system one can use for instance, the Gram-Charlier
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expansion. For n-dimensional system the one-dimensional density has the follo-
wing truncated form [10]

(2.7) 9N (%) = gec(x) = go(x Z

Al H(x—m)}

Lozg)

where g (x) is the probability density of a vector Gaussian random variable
e R™

(28)  ge(x) = [(2n)"|Kel]" /2 exp {—%(x —m) Kz (x - m)} ;

m and K are the mean value and covariance matrix of vector variable x, v
T

is the multi-index v = [v1,...,v|T, o(v) = Zv,-, N is a number of elements
i=1

in truncation series, ¢, = E[G,(x — m)|y; are quasimoments. H, and G, are

Hermite's polynomials defined by

L < ("“)2(—1)““’"}82':1){1::“"1(—1;( v BEL
' mi~ 2 Bxﬂu : alrrl“

1

EXp{—_ TK_]x}_
2
1 4 gelm)

2.1 G () = (—=1)7™) {_ Ter—1 } | ggtnl
( U.) m(ﬁ') ( ]-) exP 2x K X 6y7ul ] 6ylnn

exp { - %yTK“iy}]
y=K-1x
where K is a real positive definite matrix.
To obtain quasimoments ¢, first we must derive the moment equations for the
system (2.1) which can be closed, for instance, by the cumulant closure technique,
and next we use the algebraic relationships between quasimoments and moments.

3. Direct optimization method

Since the probability density of the linearized system g, (z) is a function of
coefficients of linearization a;; and Cj, therefore in the case when the function
W (x) is differentiable, the necessary conditions of minimization one can find, for
instance, from conditions

(3.1) on i / V(gn.91) 091 (x }ds, ~i)
E)al-_? OJL dayj

— 00

http://rcin.org.pl



PROBABILITY DENSITY EQUIVALENT LINEARIZATION... 491

+00
' oh _ % (9n.91) 991, ()
(3.2) ac; 2 / w(x) 59'L 9C, dx =10.

In this paper we consider both differentiable and non-differentiable functions, for
instance if w(z) = 1 and ¥(z) = 22 then we have

(3.3) B= [ (gn(x) - gu(x)dx

Another criterion with non-differentiable function we propose is

+00
(3.4) j / 2®lgn () — g (D)|dx, 1=1,2...

Since the criteria Iy and I3 are known in the mathematical literature of proba-
bilistic metrics, as square metric and pseudo-moment metric, respectively [15],
we propose to call the corresponding linearization techniques by square metric
equivalent linearization and 2l-order pseudo-moment equivalent linearization, re-
spectively. The necessary conditions (3.1) and (3.2) for criterion (3.3) will be
shown in details in Sec. 5 and 6.

4. The Fokker — Planck equation approach
When the probability density function of nonlinear system is unknown and
for some reason the direct optimization technique can not be applied, we propo-

se instead of the state equations (2.1) and (2.2) to consider the corresponding
reduced Fokker-Planck equations

(4.1) 95'3’1=—Za [@:(x, t)gn] + %ZZ

and

[bijgn] =0

mn ")

, 0y, o @ : s .
() Tff_“;‘ég[(““?x*c*)gﬂh22;6’?&- big] =0,

1
where A7 is i-th row of matrix A, B = [b;;] is the diffusion matrix

M

(13) b]'j = Z Gkickj.
k=1
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If we denote py = gy, p2i = % and q1 =g, @i = (;% then the Egs. (4.1)
and (4.2) can be transformed to the following two-dimensional vector systems:
om
B_:r;,- = P2
" 9P i3 % b 8b
4.4 beltaid @, = J Y s
(4 Ejl [8 pLY pg:] 2 Z i 811813 (3:5:; &
1= i=l j=1
+5,. P2 +bi GI: 0,
a1
8I£ i q?t
= Tl 025 Ob;;
T i] i
e Z: [aﬁql o $q2,;] P Z Z [3:1:56:1:-(}1 % ox; 12
i=1 i=1 j=1 i )
Ib; 9ga;]
+a_—;:q2j s b:j 6:!:5 =0
: . dgn
Comparing the system Eqs. (4.4) with (4.5) we find that gy and ? will be
1

3]
approximated by g, and _6% respectively, when the error ¢ defined by

n
8 A
(4.6) £=) = [(éz- - Afx - Cs)g;‘]
= 9%
will be minimal “in some sense” for all z. We note that g, () is the probzbility
density of linearized system and depends on the parameters of linearized system
i.e. on a;; and C;. Since € = g(z) is a function of z, the criterion I; ard the

necessary conditions of minimum can be proposed, for instance, as follows

+o00

(4.7) = / €2(x)dx,
oL _, o

da; ; ac; Fo

(4.8)
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5. Application to a nonlinear oscillator

Consider a nonlinear oscillator described by

dxy = xadt,

d.l‘g — [—2}1.’1‘.2 = f('l] )]dt + gd{,

where h and ¢ are constant parameters, f(z;) is a nonlinear function such
that f(0) = 0, & is a standard Wiener process, and an equivalent linearized
oscillator

dr| = xodt,
(5.2)
d:EQ - [—Qh.ﬁ:‘g = kli‘l]dt + qd{,

where k; is a linearization coefficient.

First we show the application of criterion [3. In that case the probability
densities of stationary solutions of nonlinear and linearized oscillators are known
and have the form

= 2
(5.3) gy(z) = % exp {—% (/ f(s)ds + %) } ,

(5.4) (.o k) = o 4”‘{;{"_ exp {—% (ks +3)},
where Cy and Cy, are normalized constants.

Since in this case E[z,] = E[zs] = 0, the application of the Gram-Charlier
expansion leads to the following formula of approximate probability density func-
tion:

(5.5) gn(2) = gee () = ga(2) [1 + Z > Cuava Hinvs x)]

=5 olu)—k !
where
- 1 k ;1:2)2 — 2k19m129 + k-‘_)g(.'f:l 2
(56)  gal@)= B {_ slea) —Pgees s bl
Qﬂ'\fk“kzg—k?z ( 11722 — 12)

Cuyiy = E[Gy, 1, (X)] are quasimoments, vy, vp =0,1,...,N, vy + 2 =3,4,...,N,
Hy,u,(x) and Gy, (2) are Hermite's polynomials deﬁnod by
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1
(57)  Hp(wr.az) = (-1 exp {5 (4193 + 20122122 + 2253 |

ap+r

1 2 2
X W exp {"5 (01111 + 2q192129 + 9221‘2)} 3

: 1 9
(5.8) Gp,-(:l,‘1 ,Tg) = (—l)w—T exp {§ (qu:ﬂ% + 2q19x1 29 + QQ2$§)}

oPtT 1
% { p{—— (k”yf +2k12y192 +k22y§) }] 4

P T
Ayl dys 2 WaF)
where
kn ke = qu q12
5.9 K = 2l wliage ,
(5.9) [km koo |’ e go1 g2

k{j = E[:r;:r:j], i,j = 12

In the case of stationary probability density function the corresponding moments
are as follows:

. 1 1

(5.10) k=0, kppo=—, q2=0, knp=—.

q22 q11

The second moment kyy, the quasimoments ¢,,,, and two-dimensional Hermite’s
polynomials H,, ,, (21, 22) and Gy, ,, (21, x2) are presented in the Appendix. The
moment ky; has to be found from moment equations. The necessary condition of
minimum of I defined by (3.3) takes the form

+o0 +0o "
h al, ; 2
(1) =2 f [ (on (@) — (@) (E — th—;) g;(z)dzidzs =0,

—00 —00

In the case of pseudo-moment equivalent linearization, the linearization coefficient
we find by minimization of the following criterion:

+0oo 400

(5.12) I;; = / / :t%flgN(l'j ,.1‘2) — gy, (:‘El,:i':g, kl)]d.’t:lrf.‘rg, = 1,3.

—00 —00

The linearization coefficient k; can be calculated numerically in two considered
cases from equality (3.3) and directly from (3.4).

Next we consider the application of the Fokker-Planck equation approach to
the system (5.1) - (5.2). In that case the transformed Fokker-Planck Eqs. (4.4)
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(4.5) are as follows: for nonlinear system

dp1
8_1"2 = p2,
(‘}p2 B 9 9 219 (3}31 .
Ory ¢ 0y [(2hzz + f(x1))p1] + q* Oz,

for linearized system

dq

E = q2,
(5.14)
g 2 9 2332 g1

b TR et hadal o

Then the following criterion is proposed

+00 400

(5.18) L= //{—[ (21) - ki) gy (21, 52, 1)]}2dx;d'r:2,

—00 —0Q

where g; is defined by (5.4).
The necessary condition of minimum of criterion (5.15) is the following:

+oo
ol
(5.16) 6—;& [{ﬂ—[ (x1) — kyz1)gL(z1, 22, k1)
1 )
a 0 19
g (gmsntennin)) - oz gy k)
a a
—kl‘la,; (é]—mgL(xl'$2?k1)]}d$1diz =0
where
13) 4h
% = xz (1"15:'['21’{"1)
(5.17)

9 (99, 1 2ha?) dhay ‘
Oy (dr2) B [--ZE+ 2 _q‘z'_ga(ﬁ?h:lz,kl).
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EXAMPLE 1.
Consider a nonlinear Duffing oscillator excited by a stationary white noise
described by Eq. (5.1) for

(5.18) f(z1) = wiz) +exd,

where wi and ¢ are constant parameters.
The probability density of stationary solution of the system (5.1) with con-
ditions (5.18) has the form

1 2h z] 9
(5.19) gn(x) = a;{-cxp{—q—? (wg.’cf+s?] +:r:2)},

where C'y is a normalized constant.

To apply the approximate probability density function we use formula (5.5)
for N = 6 and m = 0. The second moment ki, the quasimoments ¢, ,, and two-
dimensional Hermite’s polynomials H,,,, (21, 22) and Gy, (z1,z2) are presented
in the Appendix.

The application of criterion I leads to equality (5.11) with gy (z) and g, (x)
given by (5.19) and (5.4), respectively, i.e.

al 1 2h !
- BiL - - 2.0 12
(5.20) T 2 -/ [—-CN exp{ e (u.o.r:] +e 5 +x2)}
—00

1 4hv/Ep 2h 9 2
__C‘_}:Texp{—? (Llrb] + :.-:2)}

ha? j Vk
- (i L —11) Lélh A cxp{——?g (kl:cf +3:%)}dmld;r2 ==l
q

2k, ¢ |/ Cp ¢

In the case of pseudo-moment equivalent linearization, we find the linearization
coefficient by minimization of the following criterion:

+o0
(5.21) Iy = j (;r:i)?!lg;\r(:r],:r:g) — gr(z1, 2, ky)|dx1dy, i=13;

—00
The linearization coefficient k; can be calculated numerically in two conside-
red cases from equality (5.20) and directly from (5.21). The application of cri-
terion I leads to equality (5.16) with conditions (5.17) and with f(x) given by
(5.18), i.e.
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+00

; 5
(5.22) [ (8 ~ k)zs +ead]” (ﬁ - E%ﬁ) 2303 (21, 29, k1 )de1 da
— o0
+00 400
= / / [(wé — ky)zy + sa.'"f] x%mlg%(zl,:rg, ky)dzydze = 0.
—00 —00

Using the properties of Gaussian process we calculate from Eq. (5.22) the
integrals and we show (see Appendix) that the linearization coefficient k; satisfies
the following algebraic equation:

(5.23) 192h% k] — 128w3h%k} — 64wgh’k? + 48ehg’k,
—144ehq®wik) — T5e%¢* = 0.

To illustrate all the methods discussed we compare stationary mean-square
displacements of linearized systems (for different linearization coefficients) obta-
ined by applying the exact and the approximate (by the Gram-Charlier expan-
sion) probability density functions of the Duffing oscillator, and by applying
the Fokker-Planck equation approach. The numerical results for parameters
wg =185 e=18%xt,i=1,...,10, ¢ =02, h = 0.05 are presented in Fig. 1.

/SPDEL

25 =

20 9

of sixth oruer

moment of displacement
C w

abaaasaascalaaaaaaaalaaaag
\
m |
£ 0
™m
re~

Relative error

0.0 A L} T T T TTTTrrorTTT]

FiG. 1. a) Comparison of the relative errors of the displacement variance E[z}] versus

the ratio of parameters r = €/wj for w§ = 1.85, e =1.85x i,i=1,...,10 and ¢*> = 0.2,

h = 0.05 with notations: standard statistical linearization (SSL), potential energy stati-

stical linearization (PESL), Fokker-Planck equation linearization (F-PEL), second order

pseudo-moment equivalent linearization (P-MEL2), sixth order pseudo-moment equiva-

lent linearization (P-MELG), square metric probability density equivalent linearization
(SPDEL).
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F1G. 1. b) Comparison of the relative errors of the sixth order moments of the displa-
cement E[z§] versus the ratio of parameters r = ¢/w? for wi = 1.85, ¢ = 1.85 x 1,
i=1,...,10 and ¢° = 0.2, h = 0.05 with notations: standard statistical lineariza-
tion (SSL), potential energy statistical linearization (PESL), true equivalent lineariza-
tion (TEL), Fokker-Planck equation linearization (F-PEL), second order pseudo-moment
equivalent linearization (P-MELZ2), sixth order pseudo-moment equivalent linearization
(P-MELS®), square metric probability density equivalent linearization (SPDEL).

Figures la and 1b show that for the second order moments of the displacement,
the relative error obtained by (TEL) is equal to zero and the errors obtained by
(PESL) and (P-MEL2) are almost zero while the errors obtained by the other
methods are significantly greater. The opposite situation is observed for sixth
order moments of the displacement.

6. Equivalent non-linearization

As it was mentioned in the Introduction, the idea of finding an equivalent
model for a nonlinear system has not been limited to a linear model. It has been
extended to the case when the original nonlinear system is replaced by another
equivalent nonlinear system for which the probability density of the exact sta-
tionary solution is known (see, for instance, [4, 8, 9, 14, 16]), and mainly the
mean-square criterion was used. In all these approaches the most important role
is played by the moments of response. In this paper a new philosophy for equ-
ivalent non-linearization is proposed. Instead of moment equations of responses
of original nonlinear and non-linearized systems, the corresponding probability
density functions are considered. The detailed discussion is given for a nonlinear
oscillator described by the Ito vector differential equation
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dry = maodt,
(6.1)
dry = [~ f(z1,22) — g(a1]dt + qd&(t),

where f(.,.) and g(.) are known nonlinear functions, £(t) is a standard Wiener
process, ¢ is a parameter intensity of noise. An equivalent nonlinear system is
proposed in the form

dry = xodt,
(6.2)
dey = [—fp(H)xs — g(x))]dt + qdw(t),

where H is the Hamiltonian
| 7
(6.3) H=3ad+ /g(s)ds,
0

[ is a nonlinear function.
For further consideration we assume that the integral f (s)ds has the
polynomial form, i.e.

(6.4) /fg Vel = Za H

i=0
where «; are non—lim-!arizatlnn coefficients. They have to be determined from a
proposed criterion, for instance

+00 400
(6.5) dii— / j f(zy,22) Za H' | 20| p(xy, z0)dzydxy

—00 —00
where p(xy,x2) is a weight function. Taking this function in a particular form we
obtain the earlier literature results. For instance, in one of the best approxima-
tions obtained by POLIDORI and BEcK [9], the weight function is given by

; U, TS = GE i T e B P e e
il dese 204, Oz, 1 20%1 2032
where crjf.i and 0?2 are constant parameters. As for the case of equivalent line-

arization, new criteria of non-linearization and two approximate approaches are
proposed. In the first one the direct minimization of a criterion is applied and
the approximation of the probability density function of the stationary solution
of Eq. (6.1) by the Gram-Charlier expansion is proposed.

The probability density of a stationary solution of Eq. (6.2) is known exactly
and has the form
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H
(6.7) gpn(z) = CLN exp {—q% [fg(s)ds} ,
0

where Cy is a normalized constant.

As in the case of equivalent linearization, we consider two particular cases
of modified criterion (2.3) for both differentiable and non-differentiable functions
¥(x) and w(z), namely

+00
(6.) b= [ (o() - gpn(a)ds,
+o0
(6.9) == [ |ePlon() - gen@lds, 1=12...

Also, when for some reason the direct optimization technique can not be applied
we propose, instead of state Eqs. (6.1) and (6.2), to consider the corresponding
reduced Fokker-Planck equations in vector form

Opy
-6?2 = P92,

(6.10) - . ,
p2 — _3_ G 212 pl
5:2 i q° Ozs (= f(z1,22) — g(z1))p1] + —- 2 81
o
8_1'2 = 42,

(6.11) o e e
)2 2 O B 12 q;
Brg — 0, \IEE —glen]+ 5 o

where p1 = pi(z1,22) = gy (21, 22), @1 = q1(z1,22) = gpn (21, 22).

Comparing the system Eqs. (6.10) with (6.11) we find that g, and dgy /0z;
will be approximated by gpy and Ogpy/0x; respectively, when the error &
defined by

(6.12) €= o [(~f(z1,22) + fo(H)e2)gn)
2

will be minimal “ in some sense” for all z. We note that g (2) is the probability
density of non-linearized system and depends on parameters of non-linearized
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system i.e. on ;. Since € = g(x) is a function of x, the criterium Ipp and the
necessary conditions of minimum can be proposed, for instance, as follows:

+00
(6.13) Ipp = f£2(:1:)d:1:,
(6.14) 3IFP:U, i=1.9,.... N5
8(}:,;

EXAMPLE 2.
We consider a nonlinearly damped Duffing oscillator excited by the white
noise previously studied in the literature

dry = zodt,
(6.15)
dzy = [—[32:2 = a-:r% —yxy — s’c‘;‘] dt + qd&(t).

The equivalent nonlinear system is proposed in the form

d&."; = .'I,'Qdf,
(6.16)

dxy = [—fE(H):cg e E:c?] dt + qd&(t).
where H is the Hamiltonian
af

1 ) I%
(6.17) Hi—= 53:2 +'}'? +E‘I.

The exact probability density of stationary solution of Eq. (6.16) is given by

H
(6.18) oen (o) = G exp {—q% V] ff;(s)d.s} .
0

However, the function fg is unknown. We seek an approximation of the form
(6.19) fe(H) =by+ b H.
Then the approximate probability density function is given by
(6.20) gEn (@) = c—N""P{‘q—z (ot + 217},
In the case of the Fokker-Planck approach, the following criterion is proposed:
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+00 400

(6.21) Ipp = / ] |i()l . —Bxg — (_m:g + bpxo

=00 —00
p
+ biHz9)gpy(x1, T2, ho, h.l]H drydxs.

To illustrate all the methods discussed we compare stationary mean-square
displacements of non-linearized systems versus parameters € and a, using the
approximation of probability density function in the form of the Gram-Charlier
expansion (for N = 6) and also by applying the Fokker-Planck equation approach.
Since in this case exact response characteristics does not exist, the comparison
is given for simulations. The numerical results for parameters o = 0.5, 8 = 0.1,
v =1, ¢*> = 27 are presented in Fig. 2.

Figures 2a and 2b show that for the second order moments of the displacement
there are no significant differences between the methods proposed in this paper
and the best techniques known from the literature.

1.20
E[Xf] TP_mnL
1.00 —
_[_PN
0.80 —°-M
1p_BN
0.60 —
0.40 —
0.20 L l L I L] ] T I T I

000 200 400 6.00 8.00 e 10.00

FiG. 2. a) Mean-square displacement variance E[2?] versus parameter £ for a = 0.5,

q"2 = 21, 8 = 0.1, v = 1 with notations: Polidori-Beck Il()!l-llll(?dllhltI(JI] (P-BNL),

Fokker-Planck t.‘tlu;ltiou non-linearization (F-PNL), pseudo-moment metric equivalent

non-linearization (P-MNL), square metric equivalent non-linearization (S-MNL), simu-
lations (stars).
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1.60 —
EpE] A i

1.40 -

F_PNL

1.20 -

0.60 ] I i I I I i ' I ]
000 010 020 030 0.40 a 0.50

F1G. 2b) Mean-square displacement variance E[27] versus parameter a for € = 1, ¢* = 2,
3 = 0.1, ¥ = 1 with notations: Polidori-Beck non-linearization (P-BNL), Fokker-Planck
equation non-linearization (F-PNL), pseudo-moment metric equivalent non-linearization
(P-MNL), square metric equivalent non-linearization (S-MNL), simulations (stars).

7. Conclusions and generalizations

The probability density equivalent linearization and non-linearization tech-
niques applied to dynamic systems subjected to external Gaussian excitations
have been considered. Two different approaches: direct optimization method and
Fokker-Planck equation method have been examined on two examples of nonli-
near oscillators. It has been shown in Example 1, that although some stochastic
linearization techniques such as (PESL), (TEL) and (P-MEL2) approximate very
well the mean-square error of the response, they fail in the case of higher order
moments. In contrast to them, (F-PEL) and (P-MELG) methods are more accura-
te for higher order moments than for the second order. It means that some of the
proposed probability density equivalent linearization techniques are more accu-
rate for second order moments of the response while the other - for higher order
moments. Here it should be stressed that the standard statistical linearization
technique which was criticized by many authors because it did not approximate
well the second order moment of the response, is in fact “not so bad”. In both
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comparisons (second and sixth order moments of the response) the results are “in
the middle”. It means that the (SSL) method can be treated as a kind of compro-
mise between methods which approximate very well the second order and higher
order moments. In contrast to the SSL method, the relative error obtained by
the SPDL method was significantly greater for second and higher order moments
of the response.

In the case of equivalent non-linearization, from numerical results it follows
that for the second order moments of the displacement there are no significant
differences between the methods proposed in this paper and the best techniques
known from the literature. However, it should be stressed that the comparison
was given for the second order moments while the criteria proposed in this paper
were given in the space of probability density functions.

We note that, similarly to the generalization obtained for standard equiva-
lent linearization and non-linearization techniques, several new approaches of
probability density equivalent linearization and non-linearization methods can
be considered. It includes the cases of criteria depending on the probability den-
sity of energy of the response and linearization of stochastic dynamic systems
under parametric excitations. Also other probabilistic measures (metrics) discus-
sed in mathematical literature [15] can be analyzed. Another generalization can
be done with application of the idea of equivalent systems derived by CAl and
LiN [2].
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Appendix

1. The second moment kjy, the quasimoments c,,,, and two-dimensional
Hermite’s polynomials Hy, ., (21, 23):

(A.1) ki1 = Blg}), cuw, =0 for vy+1n =35,
ts 4 2 S i L [ S e o
Cio = E[.’I.Tl = 3;{-,“. C31 = E[.’I.IJI.-Q] = O, Cop = E[.I.‘].ng] = A,ggk]].
a3 = Elziaf],  con = Elz}] — 3k3,,

E[z%) — 15k E[z]] + 30k3,,

€60
es1 = Elxizg] = 0,
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cia = Elaiad] — ko Elz]] + 6k% kag — 6ky1 E[ziz3),

Cy3 = E[I?lg] = 3&11)5‘[1'11'%],

coq = Elrizl] — b Elzd] — 6kopE[z223] 4 6k11k3,,

&

(A.2)

2. Deriva

5 = E[:C].Tg] = 10.262251[.?:1(1.‘%], Cog = E[I‘g] = 15k22E[:c§] + 30;\2%2,
Hyo(z1,22) = qiy2| — 6q71 27 + 347,

G =t
Hyy(z1,22) = qhaemrizs — 3¢} qrmi2o,
(

=)

2 2.9 2 2 5 4
20Ty, T2 Q11Q22T-1T2 — 1192277 — Q1192275 + q11422,

as

)
) =

13(21,22) = qugT173 — 3¢5q112123,
) =

)

2013 — 6g3y23 + 343,

£

04\ T, T2

jan

|

=

(
a
o0(1,79) = qfyaf — 15q7, 21 + 45¢],27 — 1543,
s1(21,29) = qfygaariws — 10q], graxiey + 15¢7, g2 129,
Hyp(x1,22) = qf1q2071 (qoaa3 — 1) + 643, q2027 (1 — gaa3)
+ 3¢31q22(q2023 — 1),
Haa(x1,72) = ¢31q3%7 25 + 9g71g3om122 — 347, @307 22
= 39’?1‘1323;1333:
Has(z1,22) = qu1g5y73(quiaf — 1) + 6g11g323(1 — quiz3)
+ 3q1132(quat — 1),
Hys(z1,22) = qugsrizh — 109119302125 + 15¢11¢557 129,

Hog(z1,73) = g8, — 15g3,a5 + 453,23 — 15¢35.

tion of Eq. (5.23)

We introduce the notation

g =

4hk 16h2
— C Lo
q2 ) L2 = - qq 1

+00
e /c 'rzeX){ 4h$2}d$
_‘/02_00 LBy SKR | =gy ( ddy.
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Using the properties

+o00 (2 1)”
2P { — ’.'2 — E—-——-—p_ =
(A.4) /:.-: exp(—ax*®)dz a (2ap

we calculate the integrals appearing in Eq. (5.22)

+00 +00
2 1 Sha? .
(A.5) / / [(wg —ky)zy + 51?] (ﬁl- - “-q?’-'—l) z3g? (1, T, ky )dz dzy
—00 —00
2hkie? 105 e 4hk, s{wg —k1)\ 15
ST T aa s, 9, Lok
g 16a; 2 q° 8y
2hk;(wd — k1)%\ 3 (wd — k)"
o= P ki b Sl M O Y e MG
-+ (E(LJJO k]) qQ 40:% AN 40:2 )
+o00
(A.6) f |(wf — ki)er + mﬂ 237197 (21, T2, k1 )dzy dag
18 3 (wg g kl)
_Isz] lEQ+ 20[2 5
References

1. M. Aperaur and F. Opricka, Linearization of nonlinear stochastically exeited dynamic
systemn, J.Sound and Vibr., 86, 563-585,1983.

2. G.Q. Car and Y.K. Lin, On ezact stationary solutions of equivalent nonlinear stochastic
systems, Int.J. Non-linear Mechanics, 23, 315-325,1988.

3. T.K. Caucury, Response of a nonlinear string to random loading, Trans. ASME
J.Appl.Mech., 81, 345-348, 1959.

4. T.K. CauGHey, On the response of a nonlinear oscillators to stochastic ezcitations, Prob.
Engrg. Mech., 1, 2-4, 1986.

5. R.N. IveEnGAR, Higher order linearization in nonlinear random vibration, Int. J. Nonlinear
Mechanies, 23, 385-391, 1988.

6. LE. Kazakov and B.F.Dosruprov, Statistical dynamics of nonlinear automatic systems,
(Moscow: Fizmatgiz) 1962 (in Russian)

7. F. Kozin, The method of statistical linearization for nonlinear stochastic vibration [in:]
Nonlinear Stochastic Dynamic Engineering Systems, F.Ziegler and G.I. Schueller [Eds.]
(Berlin: Springer), 45-56, 1989.

http://rcin.org.pl



PROBABILITY DENSITY EQUIVALENT LINEARIZATION... 507

10.
11.

12.

13.

14.

L.D. Lures, Approzimate technique for treating randomn vibration of hysteretic systems,
J.Acoust.Soc. Americ., 48, 299-306, 1970.

D.C. Pouponrt and J.L. Beck, Approzimate solutions for non-linear random wvibration
problems, Prob.Engrg.Mech., 11, 179-185, 1996.

V.S. Pucacev and LN. Sinicyn, Stochastic differential systems, (Chichester: Willey), 1987.

J.B. Roserts and P.D. Spanos, Random vibration and statistical linearization, (Chichester:
Willey), 1990.

L. Socta and T.T. Soona, Linearization in analysis of nonlinear stochastic systerns, Appl.
Mech. Rev., 44, 399-422, 1991.

L. Socua, Application of probability metrics to the linearization and sensitivity analysis
of stochastic dynamic systems [in:] Proc. International Conference on Nonlinear Stochastic
Dynamics, Hanoi, Vietnam, Dec. 7-10, 1995, 193-202.

R. Wang, S. Kusumoro and Z. Zuana, A new equivalent non-linearization technique, Prob.
Engrg. Mech., 11, 129-137, 1996.

M.W. ZoroTrarev, Medern theory of summation of independent random quantities [in Rus-
sian|, (Moscow: Nauka), 1986.

. W.Q. Znu, T.T. Soonc and Y. Lei, Equivalent nonlinear systemn method for stochastically

excited Hamiltonian systemn, Trans. ASME Appl. Mech., 61, 618-623, 1994.

Received December 12, 1998.

http://rcin.org.pl



