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Domain of influence theorem in the theory of bending
of micropolar elastic plates with stretch

M. CIARLETTA and F.PASSARELLA
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IN THE CONTEXT OF LINEAR THEORY of bending of micropolar plates with stretch, a
domain of dependence inequality associated with the initial-boundary value problem
is derived and a domain of influence theorem is established. It is shown that for a finite
time, a solution corresponding to the data of a bounded support vanishes outside a
bounded domain.

1. Introduction

THE THEORY OF MICROPOLAR ELASTIC SOLIDS with stretch has been introduced by
ERINGEN in [1, 2| as a generalization of the micropolar theory [3] and a special
case of the micromorphic theory [4]. Such a theory takes into consideration mi-
crostructural expansions and contractions of the material particles. Micropolar
continuum with stretch is a model for Bravais lattice with basis on the atomic
level, and two-phase dipolar solid with a core on the macroscopic level. The the-
ory of micropolar elastic solids with stretch characterizes composite materials
reinforced with chopped elastic fibers, porous media with pores filled with gas or
inviscid liquid, asphalt and other elastic inclusions and solid-liquid crystals.

By using the method described by ERINGEN in [5], CIARLETTA [6] presented
a theory of micropolar elastic plates with stretch. Within the context of bending
of micropolar elastic plates with stretch, a spatial decay estimate of Saint-Venant
type is also derived and a reciprocal theorem is established which leads to a uni-
queness theorem with no definiteness assumptions on the elastic coefficients.

In the present paper we continue the study of the theory of micropolar ela-
stic plates with stretch developed in [6] by establishing a domain of influence
theorem of the type discussed in [7, 8]. To this aim we first establish a domain
of dependence inequality associated with the initial-boundary value problem of
micropolar plate with stretch, in the sense of [9]. Then we prove that, provided
the given data of the initial-boundary value problem have a bounded support

on the time interval [0, {], the corresponding dynamic process vanishes outside a
certain bounded domain.

http://rcin.org.pl



48 M. CIARLETTA AND F. PASSARELLA

Finally, we note that the domain of influence theorem has been studied in
connection with various theories of continua (see e.g. [10] — [14]).

2. Basic equations

We consider a homogeneous and isotropic micropolar elastic solid with stretch
that at time ¢ = 0 occupies the right cylinder B of length 2k with cross-section &
and the smooth lateral boundary II. We call B and ¥ be the interiors of B and
¥ and denote by n; the components of the outward unit normal to the boundary
of B. We assume that ¥ is a simply connected region and we denote by L the
boundary of .

We refer the motion of continuum to the system of rectangular Cartesian axes
Oz (k = 1,2, 3) chosen in such a way that

B = {x = (x1,%2,z3) : (z1,22,0) € &, —h < z3 < h},

and
II = {X = (21,22, 23) : (z1,22,0) € L, —h < x3 < h}.

We denote the tensor components of order p > 1 by Latin subscripts, ranging
over {1, 2,3}, or by Greek subscripts, ranging over {1, 2}. Summation over repe-
ated subscripts is implied. Superposed dots or subscripts preceded by a comma
mean partial derivative with respect to the time or the corresponding coordinates.

In the context of the theory of micropolar elastic solids with stretch, we
consider the following set of the independent variables:

U= (ui| Piy "i’)

where u; are the components of the displacement vector, ; are the components
of the microrotation vector and % is the microstretch function. We suppose that
the fields w;, @i, % € C*%(B x T) N CY (B x [0,00)), where T" = (0, o).

In the considered theory, the equations of motion are

tii; + fi = pii,
mMjij + Eirstrs + i = J%i,
Xjj—8+H=JP, on BxT,
where t;; is the stress tensor, m;; is the couple stress tensor, A; /3 is the microstress

vector, s/3 is the microstress function, f;, g; and H are the body loads, p is the
reference mass density, j is a coefficient of inertia, J = 3j/2 and &, is the
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alternating symbol. We assume that p and j are given strictly positive constants
and that the surface tractions t; = tjin;, m; = mjin;, p = A\jn; at regular points
are assigned on the surfaces 3 = %h, i.e. the functions t3;, ma;, A3 are prescribed.

We call a state of bending on B x T' a process I that satisfies the following
relations [5]:

U Ty, T2, T3,1) = —Ua(T1, T2, —T3,1),
uz(z1, T2, 23,t) = ua(z, 2, —73,t),
Ya(T1, T2, 23, 1) = pa(T1, T2, —23,1),
wa(x1, T2, 23, ) = —pa(x1, T2, —73,t),

Y(z1, T2, 23, t) = —Y(z1, T2, —T3,1), (z1,%2,73,t) € B x T.

In accordance with the theories established by ERINGEN in [1, 2] and
CIARLETTA in [6], we assume that the body loads obey the relations

Ja(z1, T2, 23,t) = —fal(21, T2, —23,1),
fa(z1, 22,23, t) = f3(z1, 72, —23,1),
9a(Z1, 22, 73, t) = ga(z1, 22, —23, 1),
g3(21, x2, 73, t) = —g3(71, T2, —T3,1),

H(z,, z2, T3,t) = —H(z1, 22, —23,1t).

In the context of the theory of bending of micropolar elastic plates with
stretch, we have the following independent variables (see [5, 6] for physical
meaning of various quantities):

h h
Uy = -f;fx;;uad:ca, w = 2% fu;gd:cg,
—h —h

h h
1 i
Yo = E_/‘Padl& Ui~ /%de-’ﬂs,
Zh <

2
here I = =3,
where 3
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Following [6], we consider the state of bending characterized by
U — I3va($11:r2:t)) Uz = W(II,I:*J),
ek = Tpﬂ(IhI?at)? w3 =0, Y= I3U(I1,IQ, t)) on B xT.

On the basis of the theory established in [6], we obtain the fundamental
system of field equations consisting of the equations of motion

Ta3,a + F= p,

1Ba,p + Epas(T3p — 783) + Ko = jiay
(2.1)
Mpgag — 2h73q + Hy = plig,

Qa,a_2h73—5+P“—_Cﬁ, on ExT,

the constitutive equations

Ta3 = (4 + K)€aa + pesa, Ta = (1t + K)€3a + p€as,

Hap = QMNppdap + Pga + Vs,
(2.2)

Maﬂ = I[’\fppaaﬁ + (.U' + K-)Euﬁ + Lega + a’uaﬂﬁ]!
Qa = O‘IEas 3 = Oou, S:I(aep,,+bu),
and the geometrical equations

€a = VB,a €3 = Weo + 53:1,6"}‘)3; €30 = Vg — Eaaﬁwﬂt
(2.3)

Nap = wﬁ.m Ea = U -

In these equations we have used the notations [5, 6]

B ) h
Tij = E‘{taj dzs, Wi =3¢ _{.mij dzs,

h h
(2.4) ﬂff; = -/I3tgjd1.'3, Q,‘ :fI3)t§dI3,
—h —h

h h
1 3
T = E { Aidzs, S = /$33d3:31 = 5.7])

~h
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the loads F', K,, H, and P are defined by

h

1

F = FS+q: JH= Et33(Il1I2shlt)s F3 = /f3d13|
—h

h
1
}{cr — Gc: +ﬂus Tla — };mSG(Ii:I%h’) t)s Ga fgadxlh
—h

h

Hy = Qo+ Lo, ga = 2htaalL1, 3, h,t), Lo = f z3 fadzs,
—-h
h

P = b R, X = 2}1A3(I],I2,h, t’)l R = fx3HdIE;
—h

moreover, the coefficients A, u, &, a, @3, v, o and b are constitutive constants.
The loads F', K4, Hy and P are prescribed.

Together with the system of field equations (2.1) — (2.3) in the variables vq,,
W, Yo, u, we consider the following initial-boundary conditions:

Va(Z1,72,0) =18(z1,22),  w(x1,72,0) = w'(zy,22),
Ya(z1, 22,0) = (71, T2), w(z1, z2,0) = ul(z1, 22),
(2.5)
‘l}ﬂ(IhI%O) = Va(Ils I2)| m(Il:I%U) = w(:rl!I?)}
Ya(T1,22,0) = Xal(T1,22),  (z1,29,0) =v(zy,T2), on %,
and
Mganﬂ = Ma, TadNa = ‘F",
(2.6)
HaaTlg = ﬁa& Qana == @1 on L xT.

The terms on the right-hand sides of the equations (2.5) and (2.6) stand for
the (sufficiently smooth) assigned function; with F, Ko, H,, P, these are the
(external) data of the mixed problem considered. An array field Q@ = {vq, w,
Y, u} satisfying all equations (2.1) - (2.3) and (2.5) — (2.6), for some assignment
of the data, will be referred to as a (regular) solution of the problem of bending.
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Of interest in the sequel will be the internal energy W of the plate due to
bending (see [6])

h
(2.7) 2W =2 -/ W*dzxz = Nfaﬁfaﬁ + Qaba + Su
—h

+2h('rc-3503 + T3a€3a + T3U + ﬁaﬁﬂaﬁ)a

in which W* is the strain energy density of the micropolar elastic solid with
stretch [2]. In what follows, we suppose that W* is a positive definite quadratic
form; thus, there exists a strictly positive constant & (it is maximum elastic
modulus) such that [15]

1

(2.8} E(t,ﬁjt,’j + miymy; + Aidi + 32) < 2W*,
and [6]
i S |
(2.9) E[f(MaﬁMa,s + QaQa) + 2h(TaaTa3 + #aﬁuaﬁ)] < 2W.

3. Domain of influence

Having fixed a solution Q of the problem (2.1) - (2.3) and (2.5) - (2.6) and
a time t € T', we denote by Dg(t) the support of initial and boundary data and
body loads of the problem in concern; Dg(t) is the set of the point x € ¥ such
that

(i) if x € %, then v2(x) # 0 or w%(x) # 0 or ¥%(x) # 0 or u%(x) # 0 or
Va(x) # 0 or w(x) # 0 or xa(x) # 0 or v(x) # 0 or there exists 7 € [0, ] such
that F(x,7)# 0 or Ko{x,7) #0 or Hy(x,7) # 0 or P(x,7) # 0;

(i) if x € L, then there exists 7 € [0, ] such that Mu(x,7) # 0 or 7(x, T) # 0
or fla(X,7) # 0 or @(x, r) #£0.

By a domain of influence of the data at time ¢ for mixed problem (2.1) - (2.3)
and (2.5) — (2.6) we mean the set

(3.1) D(t) = {x0 € £ : Do(t) N S(xo, ct) # 0},

where S(xg, d) is the closed disc of radius d and the center xg, and ¢ is given by

(3.2) e= {%}”2 with  m = min{p, j}.
http://rcin.org.pl
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We put

S(xo,d) = SN S(xo,d),  L(xo,d) = LN S(xq,d),

in which S(xq,d) is the interior of S(xg,ct).

In order to approach the proof of the domain of influence theorem, we have
to show first the

THEOREM. Let Q be a solution of the initial-boundary value problem (2.1) —
(2.3) and (2.5) - (2.6), and U be the function defined by

1 .
(3.3) U=W + -2-(;;11:,01::& + ¢ + 2hpi? + 2hjtbatba).
Then, for eacht € T' and any positive constant R we have

(3.4) / U(x,t)da < [ U(x,0) da

N(xo,R) E(xo,R+-ct)

|
4 / f (Hgig + P+ Fiy; + Kgiog) dadr
0 B(xo,Rtc(t—r))

—f—f / (ﬂ-'fﬁa‘l}u -+ Qﬁ’l}. + 2h(1"ﬁ3‘lﬁ + ;;gawira])ng ds dr,
0 L(xo,Rte(t—r))

where ¢ 15 given by (3.2).

Proof. Ata fixed (xg,t) € IR? x T and a positive constant R, we introduce
the function

G(x,r) = G; {%[H%—c(t—r)—b{—x{]l]}, (x,7) e R? x T,

where Gy is a smooth, nondecreasing function on IR, such that
Gs(t) =0 ife€(—00,0,, and Gs(t)=1 ife¢€ s, 00).

The support of G is 2 = U S(xo, R+4c(t - r}). We may prove that G is iden-

r<t

tically equal to 1 on the set 25 = U S(xg, R+ ct — er — ¢d) and, consequently,
r<t
grad GG vanishes on (2.
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Of course, we must choose ¢ small enough to assume that R +ct—er—ed >0
for any r € [0, ¢].
From the equations (2.2) and (2.3), we can note that
(35)  GU = G(Mpata,s+ Qatig + St + 2h(rpstb
+£3ﬁa7',637£’a + T3ala — 53,60{73,61.2’0 + w3t + #ﬁqﬁ:'a,ﬂ)
+pIBata + Ciits + 2hpiind + 2hjiz5c,¢a),

and, taking into account the equations (2.1) and (3.5), we can write

(3.6) f/-—dadr—]/(U%—f)(x,r)dadr
z

<
4 f f G(Hai:(,, + Pt + 2hFi + 2hK¢,¢'=a) da dr
0

¢
+f/G[ﬁ’Igat}q + Qi + 2h(Tg3tw + ugai,fla)] ﬁdﬂ dr,
0 ¥

where A = GU. Using the equation (3.6) and the divergence theorem, we get

/A(x t)da-/A(x0da—|—/] xrdadr

t
+]_/G(Haﬂa + Pu + 2hFw + 2hKa1j:a) da dr
0 X
t
—/fG 2h('r,ggw ES pﬁawa] + Mgt + Q,gu] da dr
0

t
+[/G[2h(‘f’ﬁ3ﬂ) + #ﬁa?.-‘f’a) 4 Nfgai}a + Qﬁu] ng dsdr.
0L

If we denote by

dGs(y)

G =
6 dy b

= 2[R+ cft—r) - x — xall
http://rcin.org.pl
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then we can write

1 (zp —23)
3.8 G, = —(s=G5, e
(3.8) B Cﬁc § s Ix — xo|
and
oG ’
(3.9) e —Gj.
Thus, we have
2 Ve
(310)  ~Gy[Mpaata + Qpii + 2h(73th + patia)| = G5[Mpata™2

+Q,6C,s% + 2h (TﬁSCﬁ% + #ﬁaCﬁwf)]-

If we apply the Schwarz inequality and the arithmetic-geometric inequality, the
equation (3.10) implies that

(811)  —G 5[ Mpata + Qg + 2h(7ssts + ppatia)| < 5G5| 7z MpaMpa

%7

1
+I§Uava 5P Q Q + _Eu > ?Tﬁ3‘rﬁ3

2hg 4 2RE,
+‘_w2 + ?uﬁaﬂﬁa 8—2"1’01%]

Taking into account the relations (2.9), (3.2), (3.3) and (2.4)7, the equation
(3.11) implies that

(3.12) G p[Mpaa + Qpit + (73 + ppatha)| < GHU.
With the help of (3.9) and (3.12), we get

t

(3.13) ]/ UE -Gg Mgavq + Qptt + 2h(1g3w + uﬁawa)] dadr <0
0%

Thus, from (3.7) we have
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(3.14) fA(I,t)da < fA(I,O}da

by by

t
o f f G(Hab + Ptk + 2hFub + 2hKathe) dadr
0%

t
-+ -/ / G[ﬁ’fﬁaﬂa = Qﬁﬂ. =+ 2.\‘1(7“33151 =+ #ﬂa%’i’(x]]nﬁ dsdr.
0 L

We note that passage to the limit § — 0 is permissible in the integrals in
(3.14) by virtue of the Lebesgue dominated convergence theorem, since G tends
boundedly to the characteristic function of the set 2. If we take the limit in
(3.14) as 6 — 0, then we obtain (3.4). m

The set D(t) covers a domain of elastic disturbances produced by the data
at time ¢; in fact, following [11, 12], we prove the

DoMAIN of INFLUENCE THEOREM: Let Q be a solution of the initial-
boundary value problem (2.1) - (2.3) and (2.5) - (2.6), and D(t) be domain of
influence of its data at time t. Then,

Va=0, w=0, Po=0 u=0, on (E—D(t))x[o,t].

Proof. If we put in the inequality (3.4) t = 7 and R = ¢(t — 7), we obtain

(3.15) / U(x,7)da < / U(x,0) da

E(X{},C(t—'f}) X(xp,ct)

- f / (H,,f;a + Pi + 2hF) + QhKadra) dadr
0 (xo,c(t—r))

+ / f [Maata + Qpit + 2h(ms31i + prgata) | mp ds dr.
0 Lixoe(t—r)

At fixed (xo,7) € (% = D(t)) x [0, ], we have

v.(%,0) = 0, w(x,0) = 0, Pa(x.0) = 0,
g2(x,0) = 0, Va,8(x,0) = 0, wg(x,0) = 0,
Ya,s(x,0) = 0, u,g(x,0) = 0, x € X(xo, ct),
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and
F(x, T) = 0, KQ(X,T) = 0,
Ha(x,7) = 0, P(x,7)= 0,  (x,7)€ E(xq,ct) x [0,].
Thus, we get
U(x,0)da = 0.
X(xp,ct)
(3.16)

(Hai,:u + Pi+ 2RFw + 2RKQ¢Q) dadr = 0.
0 B(xo,cl(t—1))

If we consider 7 < t and £(xg, ct) C % — D(t), the last integral of Eq. (3.15)
also vanishes. Then, the equation (3.15) becomes
(3.17) f Ulx,7)da < 0.
B(xo,c(t—7))

With the aid of the equations (3.3), (2.8) and (3.17), we conclude that

i"a(xO!T) =0, U'J(X.{), T) =0,

Ya(x0,7) = 0, w(x,7) =0,  (x0,7) € (E~D(t)) x [0,¢];

taking into account that

va(xﬂlo) =0, ‘lU(XQ,O) =0,

tba(xo, 0) = 0, u(x(]: 0) =0, Xp € ¥ D(t),

we obtain the desired result. m
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