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Tuis work 1s conCERNED with modelling compressible fluid flow in a composite poro-
us medium with interfacial flow barrier. The macroscopic behaviour and the effective
permeability are obtained by homogenization, i.e. by upscaling the description at
the heterogeneity scale. Five distinct macroscopic models are derived that relate to
five relative orders of magnitude of the interfacial conductance with respect to the
permeabilities of the constituents.

1. Introduction

THiS WORK IS AIMED towards deriving the macroscopic governing equations of the
flow of a compressible fluid in a porous medium with interfacial flow barrier. Such
a medium is locally characterised by a representative elementary volume (REV)
whose size is O(l) and that consists of two porous solids (2, and §2,) whose
common boundary (I') is a thin layer of very low porosity which constitutes a
flow barrier (Fig. 1). This situation occurs for example in sedimentary structures
that contain shales.

At the local scale, (i.e. at the REV scale), the flow of a compressible fluid in
such a medium is governed by the following equations:

(1.1) V. (ki;iVpy) = 651%%1' in £2,,
(1.2) V - (kpaVpa) = o 22 in s,
(1.3) (kip1Vp1) - n = (kop2Vp2) - m on I,
(1.4) (i ¥p) - m =~ -8  onl.
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470 P. RoyER AND J.-L. AURIAULT

F1G. 1. Periodic cell of the two-constituent porous medium with interfacial flow barrier.

In these equations, py and ps are the fluid pressures in 2, and (2,, respectively;
fluid densities, p; and pp are assumed to be such that p; = Apy, po = Aps,
where A is constant. Equations (1.1) - (1.2) describe the flow of the compressible
fluid in 2, and (2, respectively [1]. k; and ks are the permeabilities of 2, and
£2,, respectively, and are positive functions of the space variable. For simplicity,
they are assumed to be isotropic. ¢; and ¢ are the porosities of 2, and (2,,
respectively, and are assumed to be constant. Equation (1.3) expresses continuity
of fluxes on the interface I'. The interface flow barrier gives rise to boundary
condition (1.4), where h is the interfacial conductance and is a positive function of
the space variable. Equation (1.4) is the non-linear counterpart of Eq. (1.8) below.

In the present study, both domains, §2, and 2, are assumed to be connected.

Due to the high compressibility of the fluid, this problem is strongly non-
linear. Investigations of similar but linear problems have been carried out via
homogenization in the context of heat conduction in composites with heat barrier
[2, 3] and of pollutant transfer in a medinm with interfacial diffusion barrier [4].
In these studies, the local description is of the following type:

(1.5) V + (a1Vuy) = ,!31%—[ in £2,,
(16) AV ((,I'QVUQ) = ,Ijga{,;zg in £2,,
V157 (¢1Vuy) - n = (apVug) - n on [,
(1.8) (a1 Vuy) - ny = —h(u; — us) on I,

The non-dimensional number arising from equation (1.8)
[h(uy —ug)| Al

(1.9) b= ———"r—" = —,

levy V| o

is the Biot number and characterises the interfacial barrier.

http://rcin.org.pl




HOMOGENIZATION OF COMPRESSIBLE FLUID FLOW... 471

The flow of an incompressible fluid in a medium with interfacial low barrier
is also locally described by the linear set of equations (1.5) - (1.8). Therefore, the
originality of the present work relies upon the non-linearities due to the strong
compressibility of the fluid.

Whereas equation (1.8) is well admitted and currently used, to our know-
ledge, equation (1.4) that describes the effect of an interfacial flow barrier on a
non-linear process, has never been proposed yet. However we see that equation
(1.4) is physically consistent as it is obtained by replacing u, and ug by u? and
u3, respectively, in (1.8). The validity of both equations (1.4) and (1.8) can be
demonstrated via homogenization. The rigorous derivation of (1.4) by homoge-
nization will be the purpose of a further paper.

The essence of homogenization method is to determine an equivalent macro-
scopic behaviour by upscaling the local description. The purpose of the present
study is to homogenize the local description (1.1) - (1.4), in order to determine
the influence of the interfacial barrier on the effective permeability and on the
structure of the macroscopic seepage equations.

The fundamental assumption behind homogenization theory is that the scales
are separated:

(1.10) [<<l,

where [ and L are the characteristic lengths at the heterogeneity scale and at
the macroscopic scale, respectively. As this definition conjures up a geometrical
separation of scales, we shall draw attention to the fact that this fundamental
condition must also be checked regarding the phenomenon. For example, in the
case of a wave propagation, the microscopic characteristic length, [, must also be
small compared to the wavelength.
In this study, we use the method of homogenization for periodic structures
also called method of multiple scales - introduced by [5] and [6]. The key
parameter of the method is the small parameter

. l
1.11 1 :
( ) € L<<1

in which L is the macroscopic characteristic length and, depending on the problem
under consideration, is either geometrical (i.e. the sample size) or related to the
excitation (e.g. wavelength).

We also assume the medium to be periodic. This assumption is actually not
a restriction: it allows determination of the macroscopic behaviour without any
prerequisite on the form of the macroscopic equations. In the context of a periodic
medium, the REV is simply the period.

In this study, we use the approach suggested in [7], by which the problem
is tackled in a physical rather than mathematical manner. Indeed, it offers the
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additional benefit that the conditions under which homogenization does apply are
expressly stated. This formulation of the method is the basis of definition and
estimation of the non-dimensional numbers arising from the local description
under consideration. This fundamental step is called normalisation and is aimed
at specifying all cases that can be homogenized.

In the present work, we show that fluid flow in a porous medium with inter-
facial ow barrier is not, a priori, described by a single model. The normalisation
of the local description (1.1) - (1.4) is presented in Sec. 2. It highlights five di-
stinct physical situations to be homogenized that relate to five distinct relative
values of the interfacial conductance with respect to the permeabilities. Section 3
sets out to examine the mathematical formulation of the method as a result of
the separation of scales. Finally, in Sec. 4 details are given of the derivation of
the five corresponding macroscopic models. Three models are single-pressure field
models and the two others are two-pressure field models. We show that besides
its link to the relative value of the interfacial conductance with respect to the
permeabilities, the choice of the model is also related to the excitation.

2. Normalisation

The purpose of this section is to define the set of non-dimensional numbers
that characterise the local description (1.1) - (1.4) and then to estimate them
with respect to the small parameter
From equation (1.1) we can define

IV - (kyp1Vpy) |

(2.1) Th = 3
|0’>1 £

Similarly, equation (1.2) introduces

22) D= e ‘;:r)’);;fzvpg)l =0(Th) x 0 (%) 4 (P_z) X (i_l) :
2

Now, from Eq. (1.3) arises

|(k1p1Vp1) - n ki (;“1)2)
2.3 A= =0(—)x0 =],
e |(kap2Vp2) - m| (kz) a ((,Uz)“

Finally, from Eq. (1.4) we get the following non-dimensional number:

1 7% :

t§ (;UT ‘—Pé)

T kipr V) - o’
http://rcin.org.pl
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which is similar to the Biot number defined in (1.9) and which characterises the
relative value of the interfacial conductance with respect to the permeabilities of
the constituents.

For estimating these non-dimensional numbers, let us consider / as the refe-
rence characteristic length. This arbitrary choice does not affect the final result.
When using [ as the reference length, the estimations of Ty, T, A and B are
denoted by Ty,, Ty, Aj and B; . By assuming for simplicity that:

(2.5) Al =ow; B —oay |2 =ow,
it turns out that

(2.6) T, = O(Ty,),

(2.7) A = O(1),

and .

2.8) Bi=0 (E) :

Since we want to describe a transient flow at the macroscopic scale, we may
consider that:

d
29) v - )l = 0 (|| ).
e
v ! - Ip
(2.10) IV - (kapaVp2)|, = O | |2 p ,
L
which means
(2.11) Ty, = O(Ty,) = O(1).

Thus, when using [ for estimating T} and T5, we get
(2.12) Ty, = O(Ty,) = O(™).

The orders of magnitude (2.12) are actually related to the previously mentioned
condition of separation of scales regarding the excitation. In effect, they express
the fact that the characteristic time of the flow must be sufficiently large to
ensure a good separation of scales. Estimations (2.12) are required for applying
homogenization as there would not exist any equivalent macroscopic continuous
description for Tj, = O(Ty,) < O(e72), whereas orders of magnitude (2.5) are
pure assumptions.

Once the orders of magnitude of T},, T5, and A; have been fixed, the local
description remains only conditioned by the order of magnitude of B;, which
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is actually a measure of the influence of the interfacial conductance. The non-
dimensional description is the following, in which all quantities are now non-
dimensional quantities:

(2.13) V - (ki V) = 2y 2L in 2,
(2.14) V - (kopaVps) = 52@% in £2,,
(2.15) (kip1Vp1) - n = (kepaVp2) - n onI,
(2.16) (bpiVm) - m = ~O(B)g(i —pd)  onl.

We shall now apply the homogenization procedure to this local description.

3. Mathematical formulation of the method

As a result of the separation of scales, two non-dimensional space variables

may be defined:
X X

&’ o3y
where X is the physical space variable.

If the condition of separation of scales is verified, then y and x appear as
two independent space variables: y is the microscopic variable and describes the
heterogeneity scale whereas x is the macroscopic variable.

As a consequence, the physical variables of the problem, p; and py, are a priori
functions of y and x:

y:

P1= pl(y.x.t),

2= p?(ys X, t)'

Moreover, the partial derivative with respect to the physical space variable X
can be written as:

1) A S

e e
axX; l Oy; L Oz;
Since [ is the reference characteristic length, the non-dimensional gradient ope-

rator is therefore given by
(3.2) Vy +eVy,

where V, and V, are the gradient operators with respect to variables y and
x, respectively. The homogenization method of multiple scales is based on the

http://rcin.org.pl




HOMOGENIZATION OF COMPRESSIBLE FLUID FLOW... 475

fundamental statement that if the scales are well separated, then all physical
variables can be looked for in the form of asymptotic expansions in powers of &:

(3.3) p1 =PIy X, t) +epi(y, x,t) +
(3.4) P2 = po(y,x, 1) +epy(y, x,t) + ...,

in which the functions p} and p} are y-periodic.

The method consists in incorporating expansions (3.3) and (3.4) in the non-
dimensional local description (2.13) - (2.16). Solving the boundary-value pro-
blems arising at the successive orders of € leads to the macroscopic description.
It turns out that five distinct macroscopic descriptions can be derived from the
local description (2.13) - (2.16), that correspond to five distinct orders of magni-
tude for By:

(3.5) By = O(eP), p==1,0,1,2.3
The derivation of these macroscopic models via homogenization is the purpose

of the next section.

4. Derivation of the macroscopic models

4.1. Model I: B; = O(¢ ™)

First-order problem (Egs. (2.13), (2.14) and (2.16) at the order of € and
Eq. (2.16) at the order of 1)

(4.1) Yy (kip}Vy, ) =0 in 2,
(4.2) Vy- (k2p§Vyp3) = 0 in 2,
(4.3) (klp?vyp?) i = (kgpgvypg) B onl
(4.4) Pl = p3 on I,

(p) and pJ are y-periodic).
Let V(£2) be the Hilbert space of functions @ defined and continuous over 2,
that are y-periodic and that satisfy the condition

(4.5) /9 40 = 0.

n
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V(£2) is equipped with the following inner product:

(46) (ﬂﬁ)v(g) = /Vy(l‘ ke Vyﬁ dQ
n

The equivalent variational formulation of (4.1) - (4.4) is given by

Existence and uniqueness of the solution to (4.7) are proved by Lax-Milgram
Lemma. Equation (4.7) gives

(4.8) (P°)? = (0°)*(x, ).
Therefore, we get
(4.9) Pl =3 =p°(x).

Second-order problem (Eqs. (2.13), (2.14) and (2.15) at the order of e! and
Eq. (2.16) at the order of 7).

Since p° = p°(x, t), the system reduces to the following linear boundary value
problem:

(4.10) Wi [kl (Vupl + v_,p")} =0 in 2,
(4.11) My [k*_g (Vuph + vzpﬂ)} =0 in 2,,
(4.12) [kI (Yol +Vap)| -n = [k (Vyph+ Vap®)] sm on T,
(4.13) pl =p3 on I

(p} and p} are y-periodic).
The equivalent variational formulation of this system is:

(4.14) vev(): (0.0, = -fvyo k' Vop® d2.
17

V()

Hence, by the Lax-Milgram Lemma, there is a unique solution to (4.14). As a
result, there is a solution modulo a constant to the system (4.10) - (4.14). Let 'r,-_’

5,0
be the particular solution of (4.14) for g{;— = d;;. Thus, p! is written as:
=5

(4.15) p' = - V.0 + 5 (x, 1),

where p! stands for p} in 2, and for p} in 2 and where p'(x,t) is an arbitrary
function. 7! is y-periodic, its mean value is zero,

1
(4.16) <t >p= @/-rldﬂ =0,
2
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and 7! is the solution of the following boundary-value problem:

I
(4.17) % (% + 51-,\.) =0 inf
(4.18) ky (dT* +6; ) -_Ag(aL-i-é,g) on T,
Ay dy;

in which £ stands for &y in £2, and for ks in (2,.
Third-order problem (Eqgs. (2.13), (2.14) and (2.15) at the order of £2):

(4.19) v, [k; (p” (Vypf e pr{) + p} (Vypi + V.rpo))]
+Va. [k1 (p° (Vyp] + Vap))] = 61 i,: in £2,,

(4.20) V- [k (° (Vuph + Vaph) + 2} (Vyph + Var®) )|
+ Vo - [k (0° (Vypd + Vap?))] = 4)2%; 11 8.0

(4.21) (k1 (5° (Vup} + Vapl) + 91 (Vopl + Vap))] 0

= [ka (p° (Vyp3 + Vo)) + P} (Vyp} + Vop®))] - m on I.

(p? and p3 are y-periodic).
Integrating (4.19) over 2, and (4.20) over (2, and then using the divergence
theorem, the condition of periodicity and boundary condition (4.21) leads to

b 0
(4.22) Ve (0° < k(Vyp' + Vap® >0) =< ¢ > a_pt
where
|$2i]
(4.23) < ¢ >=n1¢1 + naga: n; = Tk
Equation (4.22) can also be written as:
(4.24) v (11” 0y 0) =<¢> di
. L p Ip at )

in which K is componentwise defined by:

495 I __
(4.25) KL= lﬂlj (8% )dﬂ
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It can be shown that K is positive definite. When B; = O(eP),p < —1, the
macroscopic behaviour is also described by Model 1.

4.2. Model II: B; = O(c")

First-order problem (Eqs. (2.13), (2.14), (2.15) and (2.16) at the order of £°):

(4.26) (L;p yp;_) =) in £2,.
(4.27) (szg ) =0 in £2,,
(4.28) (klp?vyp?) = (kgpgvypg) ‘n on I,
@29) (kv m = -5 [ -687] e

(p) and p are y-periodic).
Let W(£2) be the Hilbert space of functions @ that are y-periodic, continuous
over §2, and (2, and possibly discontinuous over I" and such that

(4.30) f 002 =0.

W(£2) is equipped with the following inner product:

(4.31) (@, B)wi) = /Vya kV,3 ds2 —{-/’h(n:1 —,)(By — B,) dS
? r

The equivalent formulation of (4.26) — (4.29) is

. 042 i

(4.32) VO € W(Q) : (9, ®°) )W{m =0,
from which we get
(4.33) @)% = (%)% (x.2).
Thus, the solution is
(4.34) 7 =) = p°(x,1).

Second-order problem (Eqs. (2.13), (2.14), (2.15) and (2.16) at the order of
el).

This system reduces to the following linear boundary value problem:

(435) Yy [k (Vypl + Vap®)] = 0 in 92,
http://rcin.org.pl
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(436) V- ko (Vyph+ Vap®)] = 0 in 2,
(4.37) [y (V) + pro)} ‘n = [;-@ (V,ph+ v,_.p“)] . enl

(4.38) [kl (V_,,p{ -+ VIPO)] Ny —h(p{ - p;) on I.

(p! and p} are y-periodic).
The equivalent variational formulation of (4.35) - (4.38) is the following:

(4.39) Vo eW(@D): (0,8'), 0 = /v 6 k V.p° d.

Let 1' L and -rf,l be the particular solutions in £2; and {2, for 9]— = d;5. Then, pi

and p} are given by:

(4.40) pi =11 -V’ + Bl (x, 1),
(4.41) pb =14 Vap’ + Py(x, ).
il and *lf are y-periodic and are the solutions of the following system:
0 &l ]
4.42 — |k | 2+ 04 || =0 in (2,
(4.43) 2l Omay gl =8 in 2,
Ayi Ay ]
011 11
(4.44) ky m + 0k |y = ko (—912—"- + &ik | ny on I,
i Ayi
o 11
(4.45) ky (i:;k +f$1’k) ny = —h (T‘H T%}L) on I'.

i and 7 also verify

(4.46) /-:‘1‘ d =0+ /-:'2‘ df2 = 0.
2, 2,

It turns out that 7i' and =}, and therefore p! and p} are h-dependent.
Third-order problem (Eqs. (2.13), (2.14) and (2.15) at the order of £2):
This problem is similar to the third-order problem in Sec. 4.1. Using identical
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reasoning to that outlined in Sec. 4.1, we arrive at the following macroscopic
description:
op®

11,0 0 op”
(4.47) Ve (K"p°Vop) =< 6 > -

in which ”
o,
(4.48) Kl = [ (— + 6 ) ds.
]-Q| Ay,
K" is h-dependent.

4.3. Model II1: B; = O(")

First-order problem (Egs. (2.13), (2.14), (2.15) and (2.16) at the order of €°).
It consists of two non-coupled boundary value problems:

(4.49) ¥y (klp?vyp?) ~0 in 2,,
(4.50) (klp?vyp?) ‘n=0 on I,
(4.51) Uy (kap3Vypd) =0 in 2,
(4.52) (kgpgvypg) =0 on I'.

(p{ and pj are y-periodic).
The equivalent variational formulations are

(4.53) V01 € V() : (61, (1)), () =0,
(4.54) V0> € V($2:) : (02, (D)), (22) = 0
(V(£2) and (.,.)y(p) are defined in Subsec. 4.1). Therefore, the solutions are
(4.55) Pl = Pi(x,t),
(4.56) Py = pa(x.t).

Second-order problem (Eqs. (2.13), (2.14), (2.15) and (2.16) at the order of £'):
(457) V- [kap (Vyp} + Vapf)] = 0 in 2,

(4.58) V,- [kgpg (Vypé + V?_pg)] 0 in (2,,

Il

[kgpg (Vypé B Vng)} ‘n oniJ%

h ‘
-5 [0 - @9)’] on I.

(459)  [kipf (Vypl + v.p))] ‘o

II

(4.60) [klpll} (Vyp{ - Vrp?)] -n
(p} and p} are y-periodic).
http://rcin.org.pl
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Integrating (4.57) over £2, and using the divergence theorem, the periodicity and
(4.60) leads to

(4.61) |~Ql /hdS p] )] =)
from which we deduce
(4.62) p =p3 =p"(x,1).

As a consequence, the set (4.57) - (4.60) reduces to the two following linear
non-coupled boundary value problems:

(4.63) Uy [k (Yol + V)] =0 in @,
(4.64) [L:l (Vyp} -+ Vzpon SRE—=) on I,
(4.65) Vy - [kg (Vypé <+ Vmpu)] =0 in {2,
(4.66) [kg (Vuph + v:.,-p”)] m=0 onfT.

The equivalent variational formulations are

(4.67) Vo1 € V(@) 1 (0P = = [ Vabs ki Vap 2,
(4.68) ¥0y € V(522) ¢ (B2, Py = — / V0, ks Vo de2.

12,

0
Let 7!l and =il be the particular solutions for g'rl = &;;. The solutions are:
T

(4.69) p{ = ’rl v +p1 x,t),

(4.70) py =l V. p® + ph(x, 1),

where i and =)' are y-periodic, and they satisfy

(4.71) lel“ df2 =0, /T-«l)]l df? =0,
2, 2,

and are the solutions of:

9 111
(4.72) d"; (0;; +6; ) =0 @,
J1 i
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111
(4.73) (8(;‘; +r5.;-k) n; =0 on I,
- 111
(4.74) E}% (% % i:;;) =0 in 2,,
111
(4.75) (65;" - 51-_k) =10 on I

The macroscopic behaviour is derived from the third-order problem as in Sub-
secs. 4.1 and 4.2 and is given by:

~ apY
1, 0o 0 op”
(4.76) o (K p pr) =<¢>—,
in which !
(4.77) K™ = K" + K3,
where R{“ and Ki' are the effective permeabilities of both constituents:
m
4.78 K — / k 40,
& 5 = 7 ) et
m_ 1 [ % 5 _
(4.79) Kff = ) 2/ ks ( 5t JU) a0

K jg independent of h.

4.4. Model IV: B, = O(¢?)

First-order problem (Egs. (2.13), (2.14), (2.15) and (2.16) at the order of £Y).
This system is identical to the first-order problem in 4.3 and therefore leads to

(4.80) = pi(x,t),

(4.81) pg = pg(x._ t).

Second-order problem (Eqs. (2.13), (2.14), (2.15) and (2.16) at the order of ).
This problem reduces to two non-coupled linear boundary value problems that
are identical to (4.63) — (4.66). The solutions are

(4.82) p =V Vb + 5l (x, 1),
(4.83) ph ="y - Vapd + (1),
I11

where )Y = ©il! and 7}V =}
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Third-order problem (Eqs. (2.13), (2.14), (2.15) and (2.16) at the order of &2).

This problem can be expressed as follows:

(484) Yy [k () (Vyp? + Vapd) + 0} (Vup) + Var®) )]
N LA TR 2 R S
(485) (ks (18 (Vi + Val) + 21 (Y40l + Vap}) )] -m

-] e

(486)  Vy- [k (13 (Vup3 + Vap}) + b (Vb + Vard) )]
+ Vo - [k (p3 (Vyph + Vap))] = P27 6p2 in 2,,

(4.87) (k2 (13 (Vup3 + Vaph) + P} (Vuph + Vb)) ] - m

b6 -] e

(p? and p3 are y-periodic).

Integrating (4.84) and (4.86) over {2, and f2,, respectively, applying the di-
vergence theorem and using the condition of periodicity and boundary conditions
(4.85) and (4.87) vields:

) H 2 opY
, AV, 00 0 _ 2 el or
(4.88) Vs (KI plvzp]) 5 [(pl) (pg) ] = ¢ TR

H 2 aop°
09 .0 0\*| _
@) Vo (REVa) +5 | () - ()] = mt g
in which 1
4.90 = —fh ds,
e 2]
r

and where
(4.91) Y = K
(4.92) K3 = K1,
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4.5. Model V: B; = O(£%)

The derivation of model V is similar to that of model IV, but with the dif-
ference that there is no source term. As a result, the macroscopic behaviour is
described by:

= 0 ,:U
(4.93) Ve (RYPIVap)) = mon 2L
: ap?
(4.94) Vaz (I(z Py Vrpg) = Ng—— TR
in which
(4.95) kY = k¥ = K",
(4.96) Ky = KIY = KW,

When B; = O(e”), p > 3, the macroscopic behaviour is also described by model V

5. Conclusions

We have homogenized the problem of compressible fluid flow in a porous me-
dium with interfacial flow barrier. An important conclusion drawn from this study
is that the macroscopic description strongly depends upon the relative value of
the interfacial conductance with respect to the permeabilities of the constituents.
Thus, we have derived five distinct macroscopic models whose domains of validity
are related to the value of B (Fig. 2).

2 -
83 £ £ 1 gl B,

I | 1 1 1 1 >
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F1G. 2. The five macroscopic models and the corres-ponding orders of magnitude of B;.

Models I, 1T and III are written in the form:
(5.1) V- (K°pVp) =< ¢ > o o =111, III
: p> = + 6 11,
They are single-pressure fields models, which means that the pressure field is

constant over the REV. As a consequence, these models describe a state of local
equilibrium. K! , KM and K™ are three distinct effective permeabilities. Klis
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the effective permeability in the absence of interfacial barrier (h = oc). KU s
h-dependent. KM ig different from K! and K. is independent of h and is such
that KM = K, + K5, where K, and Kj are the effective permeabilities of both
constituents.

Models IV and V are two- pressure field models, and as a consequence they
describe a state of local non-equilibrium. Model 1V is written as:

5:2) V- (Kin Vi) = o2t~ 2 () - (02)?)
(5.3 V- (RepaVp2) = 6252 4+ 5 (01)? ~ ((22)?)

where H is the average of the interfacial barrier.
Model V is derived from model 1V by taking H = 0.

Although these models are strongly non-linear, the effective permeabilities
are the same as in the linear seepage problem. The fact that all boundary value
problems reduce to linear boundary value problems is a remarkable feature. A few
continuous passages between the models are possible (Fig. 2): by either increasing
or decreasing h, Models I and III can be derived from Model II and Models 111
and V can be derived from Model TV.

An important issue to be addressed is the estimation of B; with respect to €.
Since it is related to the knowledge of the microstructure, the value of B is well
defined, whilst £, as a measure of the separation of scales, depends in particular
on the macroscopic characteristic length, which is either the sample size or related
to the pressure gradient. As a consequence, if the macroscopic length is modified
(e.g. by changing the pressure gradient), then the value of By remains the same
but its measure in powers of € may be changed. In the latter case, the macroscopic
model itself is also modified. Therefore, the choice of the macroscopic model is
conditioned by both the size of the sample and the pressure gradient.
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