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On the description of anisotropy and evolutionary phenomena
in bone
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A MATHEMATICAL FORMULATION is outlined for describing the mechanical properties
of bone, including the process of age-related degradation as well as functional adapta-
tion. Bone is considered as an anisotropic material, with the microstructure described
in terms of distribution of void space. Both the elastic and elastoplastic formulations
are provided, relevant to cortical and highly porous cancellous bone, respectively. The
description of aging process invokes the concept of a physiological time, whose evolu-
tion depends, among other factors, on the level of activity of a living bone. Short term
remodelling due to hyperphysiological stress is deseribed within a framework which is
conceptually similar to that of age-related degradation, with bone being considered
as a hypoelastic/plastic material.

1. Introduction

OVER THE LAST FEW DECADES, there has been a considerable research effort de-
voted to description of living bone as a material. The research was prompted by
various clinical problems, such as age-related bone fractures, prostheses loosening,
etc. In macroscopic terms, both cortical (compact) and cancellous (trabecular)
bone represent a heterogeneous, anisotropic material. In a typical bone structure
(fermur, tibia, etc.), the material properties strongly depend on the anatomical
location of the specimen. This is due to the fact that the distribution of porosity
as well as the principal directions of anisotropy vary throughout the whole bo-
ne. The mechanical characteristics also change according to the biological varia-
tions (age, sex, etc.) and possible state of pathological degradation. The existing
constitutive theories, commonly adopted for computational /analytical analyses,
describe the bone tissue as an orthotropic linearly elastic continuum (e.g. [1, 2]).
As an alternative, micromechanically based formulations are used incorporating
the homogenization technique (e.g. [3]).

Living bone is a material which undergoes a continuous evolution with time.
One form of such an evolution is known as functional adaptation. The idea is
partly derived from Wolff’s law, which states that there is a direct correlation
between the stress field in the bone and its overall architecture. In other words,
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bone is an optimal structure relative to its mechanical environment and it has the
ability to maintain an optimal configuration by adopting its external form and
internal microstructure to changes in the load environment. The phenomenon of
short-term adaptation is commonly described within the framework of adaptive
elasticity [4]. A variety of mechanical stimuli have been considered, which include
strain [4], strain rate [5], stress [6], strain energy [7], etc.

In parallel with studies on functional adaptation, a considerable research has
been undertaken on age-related changes in the structure and composition of bone
tissue. These changes influence the mechanical properties of bone and are largely
responsible for the increased incidence of fractures in elderly. The problem is be-
coming increasingly important as people continue to live longer. Although several
experimental studies have examined the degradation of mechanical properties of
bone associated with aging process (e.g. [8 — 11]), the existing information is still
too fragmentary to draw any quantitative conclusions from this research. Mo-
reover, there is no comprehensive mathematical framework available addressing
the issue of bone aging process.

The main objective of this paper is to outline a general mathematical for-
mulation for the description of mechanical properties of bone. The bone tissue
is considered as an anisotropic material, with the microstructure described in
terms of a fabric tensor. The definition of the fabric tensor is derived from a
scalar-valued function characterizing the spatial distribution of voids within the
bone. The cortical and cancellous bone are considered as the same tissue with
different porosity characteristics. The age-related degradation is attributed to
mechanical as well as hormonal influences. The former are assumed to be clo-
sely related to the level of activity of a living bone, whereas the bone itself is
considered as a material which possesses a limited memory of mechanical events.
Finally, the formulation for functional adaptation of a living bone is discussed
as a special case of that corresponding to aging process. The differences in the
mathematical treatment of these two evolutionary phenomena are pointed out.

One of the primary reasons for studying the bone degradation process is to
assess the risk of bone fracture in individuals subjected to a prolonged period of
reduced physical activity or immobilization. Typical example relevant to the lat-
ter case involves patients with spinal cord injuries, who can develop osteoporosis
already in the first year after the injury. In these cases, fractures are caused by
relatively minor trauma; most occur due to transfers or during turning in bed.
Also, long bone fractures (typically within proximal tibia or distal femur) have
a high incidence of non-union and delayed union. The other class of problems
where the evolutionary phenomena are of importance, are those associated with
the long-termn performance of bone implants. In this case, the analysis requires
the prediction of shape changes in whole bones as well as adaptation of spongy
bone tissue architecture to the insertion of an implant. A rapid progress has be-
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en made toward this goal, particularly in the context of computational analyses
based on finite element algorithms (cf. [12]).

2. Description of mechanical properties of trabecular/cortical bone

The existing experimental evidence indicates that both cortical and trabecu-
lar bone represent an inhomogeneous anisotropic material. The anisotropy effects
are primarily due to geometric arrangement of the porous microstructure, while
the matrix material itself may be considered as isotropic. In order to describe
the mechanical properties of such a “structured medium”, it is convenient to im-
plement the notion of a fabric tensor ([1, 13]). Over the last few decades, several
different internal structure measures have been proposed, including mean inter-
cept length, volume orientation, star length distribution, etc. A comprehensive
review may be found, for example, in ref. [14]. The emphasis in this work is not
specifically on quantification of bone architecture but rather on incorporation of
one of its measures in the formulation of the problem. The particular measure
employed here is analogous to that proposed in refs. [15, 16] and it attributes
the anisotropy of bone fabric to the bias in the spatial distribution of lineal /areal
porosity.

In order to define the distribution of lineal porosity, isolate in the neighbour-
hood of a material point a sphere (S) of a unit radius, which encloses a represen-
tative volume of the material. Consider now a test line of length L, emanating
from the centroid, with the orientation 1; with respect to the fixed Cartesian
coordinate system. Denoting by [(#;) the total length of interceptions of this line
with the void space, one can write

(2.1) L) =)L Lo =5 5/ L(v:)g(v)dS,

where L(1;) represents the fraction of L occupied by voids, and g(1;) is a scalar-
valued function describing the spatial distribution of test lines. It can be shown
that the mean value of L(1;) is the measure of the average porosity of the material,
n, whereas the lineal fraction occupied by pores is an unbiased estimator of the
volume fraction of voids in the direction v, i.e.

(2.2) =Ly ni(1;) = L().

Note that the distribution of void fraction may also be described in terms of areal
porosity. In this case the function L(v;) will be defined as the areal fraction of
voids on a plane with unit normal »;, i.e.

1
(2.3) L) =4 [ Uudglu)dc,
Clwy)
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where C(v;) is a unit circle rounding the centroid of the sphere and p;, which is
orthogonal to v; , specifies the orientation of the test line.

The scalar-valued function 7i(;), as defined in Eq. (2.2), can be represented
by the generalized double Fourier series. The desired best fit approximation can
be established by the “least square” method leading to representation in terms of
symmetric traceless tensors £2;;, 2k, ... (cf. [17])

(2.4) n(vi) = n(l + Qiviv; + Qijuviviven + ...).

The higher rank tensors £2;;;... relate to the higher order fluctuations in void
space distribution. Thus, in order to describe a smooth orthogonal anisotropy
it is sufficient to employ an approximation based on the first two terms of the
expansion (2.4). In such a case, the function 7i(v;) may be defined as

L

(25) ﬁ(!fi) — SRA,'jvin; A,;j = 3

((51'3' o o ij) = A;=1,
where A;;, referred to as fabric tensor, is a non-singular measure of the spatial
distribution of voids.

With the notion of fabric tensor, as defined above, the mechanical properties
of bone should be considered as an explicit function of its architecture. Thus in
the elastic range, the constitutive relation will assume the form

(2.6) aij = Dijrien; Dijkt = Dijri(Apg, 1)

in which the components of D;;; are a function of the fabric tensor and the
average porosity.

In the above formulation, viz. Eq. (2.6), no explicit distinction has been ma-
de between the cortical and cancellous bone. Thus, both are considered here as
the same material (in phenomenological sense); the only discriminating factor
being 7i(14), Eq. (2.4). Cortical bone, which occurs for example on the cortex of
central sections of femur, is compact (average porosity 3% — 5%), contains no
marrow (other than in the central medula) and its blood vessels are microsco-
pically small. For a broad range of external loads, it may be considered as an
elastic material. Cancellous bone, which is predominant in the neighbourhood
of the joints, is much softer; it consists of a network of trabeculae interspersed
with marrow and a large number of small blood vessels. Given the fact that the
porosity of the cancellous bone may be as high as 90%, it is reasonable to expect
that this material, under certain loading conditions, will exhibit some irreversi-
ble (plastic) deformations. It is recognized that in an intact bone subjected to
typical physiological loads, the response of the trabecular network will still be
predominantly elastic. However, for problems involving a surgical intervention,
e.g. bone/prosthesis interaction, the irreversible deformations are likely to occur
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in the region adjacent to bone-implant interface. This may be an important fac-
tor contributing to loosening of the implant and it should be properly taken into
account.

The properties in the elastoplastic range should also be considered as fabric-
dependent. In general, the yield function can be expressed as an isotropic function
of stress and fabric tensors as well as the average porosity n. This leads to a
rather complex form which employs ten independent invariants of both tensors
and a set of material functions which depend on n. A simpler formulation may be
established by following the framework similar to that recently proposed by the
author in ref. [16]. In this case, the expression for the yield function incorporates
directly the void space distribution 7, i.e.

(2.7) I = foij,5,7(l;)) = 0; Kz""(e?j)s

where 7 is evaluated in the so-called “loading direction” l; = l;(ok;). According
to Eq. (2.7), the consistency condition reads

B BB B B
(28) fﬁ(a_o;‘i-a_hgﬁ)g +dp )'!.+8p —i

In order to specify the irreversible (plastic) deformations, assume that the flow
rule takes the form

(2.9) el =hGy;  Gij=Gj ('J’i.p w,-_,-)

where

(2.10} U aﬂ_f}/| 60’,{

and ¥ = const is a parametric equation defining the plastic potential. Apparently
h—0= sf’i — 0, so that the plastic deformation vanishes for all neutral loading
histories. In Eq. (2.9), G;; is an isotropic tensor-valued function. Assuming that
Gij; is linear ;;, leads to the general representation, which incorporates six func-
tions of ten independent invariants of both tensors defined in (2.10). A particular
form of this representation, as discussed in ref. [16], is given by

Wy = Q,‘_:,:/H.QMH; 'p(dij,ﬁ(h)) = const

(2.11) 5{’} =) (w,-j + (b1pgy + b?‘-”!.-ﬂl—‘kz)wfj)

where by and by are constants. Equation (2.11) represents a simple generalization
of the flow rule, which incorporates the effect of material fabric. It is noted that
the functional form (2.11) has, to some extent, similar numerical repercussions to
those of incorporating a rotation of the plastic potential surface. In general, the
deviation from isotropy results in a progressive deviation of the direction of plastic
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flow from that specified by the gradient of the potential function. Apparently, for
an isotropic material, w;; = 0, so that the classical formulation is recovered.

3. Modelling of the evolution of bone architecture
(i) Aging of bone

Consider now the question of degradation of mechanical properties of bone
with age. Apparently, the existing experimental evidence is insufficient to provide
a complete formulation of the problem. Therefore, the main objective here is to
introduce a set of hypotheses which lead to a general mathematical framework.
These hypotheses in themselves, may serve to define appropriate experimental
procedures, which are required in order to quantify the problem.

In general, the aging process will result in an increase in average porosity, n,
of the bone material. At the same time, the bias in the spatial distribution of
voids may also be altered. The question of age-related changes in the trabecular
bone architecture was addressed by a number of researchers (cf. [10, 11, 18]).
In a typical plate-like structure, the process of bone loss involves a progressive
perforation of plates combined with the thinning and subsequent disappearance
of the supporting horizontal rods [19]. A similar mechanism occurs in rod-like
structures, where the age-related changes invoke primarily the thinning and di-
sappearance of the horizontal struts leading, in extreme cases, to an advanced
breakdown of the continuous trabecular network [10]. In both these cases, the
bone resorption leads to an increase in the bone porosity as well as to the change
in the bone architecture.

In order to address the problem, it may be convenient to introduce the notion
of physiological time (t'), as opposed to the linear chronological time (t). The
physiological time may be defined through an incremental relation

(31)1 dt' = gl('w1 w)Q?(IO)dta Ta = X1, T2 00y Ty
where
(3.1)2 w= Zl—f /I’th: W = [U-jjdgij.

At

In general, both functions g; and go are scalar-valued functions defined within
the range between 0 and 1. The function g; defines the mechanical influences,
while gs is introduced to account for complex hormonal, nutritional and genetic
(o, = 1,...,n) influences. Recognizing the apparent difficulty in quantifying
g2, the discussion here is focused primarily on the mechanical aspects. In the
first approximation, g; may be defined as a scalar-valued function of w alone,
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i.e. g1 = gi1(w). The function w, Eq. (3.1)2, represents the average strain energy
density input due to loading over a fixed time interval Af. Thus, the main as-
sumption embedded here is that, in the absence of any degenerative bone disease
and at a given hormonal/nutritional level (go = const), the degradation process
is an implicit function of the level of physical activity of a living bone which, in
turn, is measured by w. The bone is said to possess the memory of mechanical
events which extends over a time interval Af = const. As time elapses, the events
occurring before t — At are continually erased from the memory. In general, the
bone tends to degrade with time towards a pathological state; this process ho-
wever can be slowed down, and even partially reversed, depending on the degree
of physical activity. The dependence of g; on w alone, implies that a systema-
tic activity involving moderate strain energy inputs is, in general, more efficient
than a sporadic intensive exercise. If this assumption is at variance with experi-
mental observation, then a more general form (3.1);, incorporating @ should be
emploved.

Apparently, the incremental relation (3.1); is not, in general, integrable, im-
plying that it cannot be reduced to a unique relation between ¢ and t'. Also,
Egs. (3.1); and (3.1)2 are formulated in local sense, so that for a particular bo-
undary value problem the physiological time will not be uniform in space. A
somewhat simpler, though more restrictive formulation may be obtained by po-
stulating that Eq. (3.1)2 may be defined in the context of a specific structural
bone as a whole (e.g. femur, tibia, etc.). In this case,

(3.1)3 W= h%/ﬁ“m‘.t: W= % [WdV‘
Af 4

where w represents the strain energy per unit volume (V') of the entire structu-
ral system. The hypotheses (3.1); and (3.1)3 imply that the physiological clock
runs uniformly throughout the entire bone as a structural element, leading to a
homogeneous degradation process.

The specification of the functions g; as well as n = n(t’), i.e. the evolution
of average porosity, requires a comprehensive experimental programme. As an
example, the following simple representations may be suggested

< Wopt — W >

(3.2) g1(w) = n=np+ (ni —ny)(l — t'/t;,)f.

Wopt
Here, wgp, represents a certain optimum strain energy input over Af and the
expression within the angular bracket is defined as < 2 >= z for > 0, otherwi-
se & = 0. Thus, for a very active person (in terms of physical exercise), w — wqpy
implying dt’ — 0, so that the aging process can be substantially slowed down.
(Note that an activity resulting in w > wepy has the same effect as that corre-
sponding to w — weyy ). On the other hand, for an immobilized individual w — 0
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so that dt’ — dt, which results in a progressively increasing rate of degradation.
This case corresponds to, for example, persons with spinal cord injury which
develop osteoporosis, a metabolic disorder of bone leading to increased risk of
fracture, already in the first year after the injury. In the second equation of (3.2),
¢ = const, 0 < t' < 1, n; is the initial average porosity and n, corresponds to the
maximum pathologically admissible value of n. Thus, n = n; at ¢/ = 0, whereas
for t' — t), there is n — n,,.

Given the definitions (3.1), the constitutive relation in the elastic range can
be derived by differentiation of Eq. (2.5) with respect to time

(3.3) 0ij = Dijriert + Dijri€nt.

The specification of the first term in Eq. (3.3) requires an evolution law for the
components of the fabric tensor A;;. According to the experimental evidence,
mentioned earlier in this section, the age-related changes in the microstructure
invoke primarily the thinning and disappearance of the supporting rods with no
significant reorientation of the vertical trabeculae. Such a mechanism is not likely
to promote any significant changes in the principal directions of anisotropy, thus
rendering /11-3- to be coaxial with A;;, and thus £2;;. In this case,

(3.4) Aij = g1g2(c18ij + calij + 382 2p5)

where ¢, ¢z, ¢z are functions of ¢’ and the basic invariants of (2;;. Restricting
the formulation to an approximation which retains terms of the order two in £2;;
vields the evolution law in the form

9
(3.5) Aij = 9192 (dl 25 + do(Rip$2p; — 51195,-_,-)) ;

where IIg; is the second invariant of £2;; and dy, dy are function of ¢’ alone.

In general, at this preliminary stage of considerations, a simplified approach
may be advocated in which the degradation of properties is attributed to the
changes in the average porosity alone, so that

: dn O
(3.6) Diji =~ 91925;51-91';“-

Equations (3.3) and (3.6) represent a set of differential equations describing the
aging process under the assumption that the bone is an anisotropic elastic ma-
terial. Apparently, the elastic regime is defined in terms of

(3.7) f <0 = 6ij = Dijuer + Dijuién

whereas f = 0 implies the onset of irreversible deformations. The behaviour in the
elastoplastic range can be defined by invoking the consistency condition, which
according to Egs. (2.8) and (2.12) takes the form
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. . ([ Of of ol \ . E)f Ok . af on
(3.8) f == (agu T _8:’.—;_67,}—) 8 de p )‘(IIJ:_',- + bwu) ot 91926_8t, =M
where b = by + bawppy; and
(3.9) g—g =3 (%AU + T.td].Qij 4= ndg(.(.?l-pf.?pj = %II;;(L-}-)) Viv;.

Assuming the additivity of elastic and plastic strain rates
(3.10) 6ij = Dijriely + Dijri(€xt — €5))

and substituting Eq. (3.10) in Eq. (3.8), the following constitutive relation may
be established after some algebraic operations

: d l
(3.11)1 T = Df}lgék! - [iD{_ﬁs (ﬂ- + —f-i) (P + bewyg)

H opq Ol Oopg
: 1 af on
_‘5'£p5jq D;uqklckimngrrm DzJM(d}H o bwk!) f a7 d192;
H dn ot

1 of | of ol
P = Despr— — D b
Dzjk!‘ Duki HDU:.-; (C) ok i ol 6(}?]?) (Prs + wr‘S)quki

where

. 0 (b AL T af Ok T
(5.11)2 Hi= (56_” ~+ maﬂ'ij) D;_;lk!'(‘]’k! RE zl)‘-UM) = 5;@(%3 + bw‘:j}s

U“ Dz}k!

Equation (3.11) describes bone as an anisotropic elastoplastic material with de-
grading properties. Once again, the formulation may be simplified by neglecting
the terms involving the evolution of fabric in Eq. (3.9). It should be emphasized,
that for problems restricted to an intact bone subjected to normal physiological
loads, there will be, in general, f < 0, in which case Eq. (3.11) will simplify to
representation (3.7).

(ii) Bone as a regenerating material; internal adaptation process

The time scale associated with age-related degradation of bone may extend
to several decades in humans. However, over a shorter time interval (of the order
of months) the living bone may undergo yet another type of internal remodelling
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process. The latter is related to functional adaptation to changes in the load
environment, which are prompted by an increase in physical activity, i.e. taking
up jogging or other form of athletic exercise. In this case, the mechanical stimuli
trigger biological processes which occur at a cellular and microstructural level and
manifest themselves in a progressive increase in density, which is again coupled
with the reorganization of the trabecular architecture.

The phenomenon of short-term remodelling due to hyperphysiological stress
may be described within a framework which is conceptually similar to that outli-
ned in the previous section. In order to specify the required modifications, consi-
der first the rate of energy dissipation due to the evolution of elastic properties
under o;; = const. Inverting Eq. (2.5) and differentiating it with respect to time
(under o;; = const), leads to

(3.12) & = Cijron = 03564 = 04;Cijlon = 0 = det[Ciji] > 0.

In general, the above inequality is satisfied for a degrading material only, implying
that the representation (2.6) is not suitable for our purpose here. Thus, the elastic
properties of a regenerating material should be described by invoking hypoelastic
relation

(3.13) Gij = Dijriér; Dijkt = Dijri(Apg,m)

which ensures that, under a sustained load, o;€;; = 0.

Equation (3.13) must be supplemented by an appropriate evolution law for
the components of Dj;x. Since the functional adaptation involves relatively short
time intervals, the notion of a physiological time may now be abandoned. The
formulation of the problem requires, among other factors, the specification of
the evolution of n. In general, for a normal level of activity n = const, whereas
hyperactivity will result in reduction of n to a finite, physiologically possible
value. The level of activity can again be measured in terms of average strain
energy density, Egs. (3.1)2 or (3.1)3, with an understanding that the time interval
associated with memory of mechanical events is now much shorter than that
corresponding to age-related degradation. A possible form of evolution law, which
may be adopted here, is

(3.14) f= hy(w,)ha(t);  0< hy <1,

where h; reflects the level of physical activity, whereas ho(t) describes the ma-
ximum, physiologically admissible variation of n under h; — 1. Apparently, for
standard levels of activity hy = 0, which corresponds to remodelling equilibrium.

The response in the elastoplastic range can be obtained by following the same
procedure as that outlined in the previous section, Eqgs. (3.8) — (3.11). Invoking
the consistency condition
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) . fOF DAY, Bk . Of
(3.15) f_( ) &+ 5n=0

Boy;  Olx 0oy ) 7 T B Bel, T Bm

and the assumption of additivity of elastic and plastic strain rates, the following
constitutive relation may be established

2
H

where D:ﬁ\t and H are defined in Eq. (3.11). It should be noted that in a
regenerating material, under o;; = const, there is (0f/0m)7 < 0 leading to
A< 0= oij€i; = 0. On the other hand, in a degrading material, Eqgs. (3.11),
A >0 and oi;€i; > 0, so that the evolution of microstructure under a sustained
load leads to dissipation of energy. The above constraints are consistent with the
second law of thermodynamics.

Equation (3.16), supplemented by the evolution law (3.14), defines a simple
framework for modelling of the bone tissue undergoing an internal adaptation
process. Apparently, if the irreversible deformations are negligible, i.e. H — o0,
then Eq. (3.16) reduces to the hypoelastic relation (3.13). The formulation may
again be enriched by incorporating the effect of the changes in the trabecular
architecture, which requires an appropriate evolution law for the fabric tensor
A;j. The latter issue was addressed, for example, in ref. [20], or more recently in
ref. [21], where the evolution law employed the notion of optimally effective bone
remodelling.

. ep 1 8 =
(3.16) i = Dijki‘g"’f ~ —=Disei (b + bwk;)%n,

(iii) An example

In order to illustrate the mathematical framework outlined in this section,
a simple numerical example is provided here. The objective is to demonstrate
the effect of the age-related degradation of elastic properties on the mechanical
characteristics of trabecular bone.

Consider the behaviour of the material under uniaxial compression (o] =
oy = 0,03 < 0) in the direction of principal material axes. Choose the properties
which may be considered as representative of a trabecular bone from the human
proximal tibia [22]. Assume that 7i(»;) is defined in terms of, say, lineal porosity,
i.e. Eq. (2.1), and let £2; = 0.15, 22 = 0.1, 23 = —0.25, n; = 0.53, which
corresponds to 7i(e;) = 0.61, (ez) = 0.58, fi(ez) = 0.40. Following ref. [23],
assume that the orthotropic Young's and shear moduli are defined as

E; = Eylps(1 - n)PA7% Gy = Golps(1 — n)2 A7 A7

In the above equations i,j = 1,2,3(i # j), A; are the eigenvalues of the fabric
tensor, ps and n represent the density of the tissue and the average porosity,
respectively, and Ey, Gy are material constants. Take 1712 = nog = 0.25 (Poisson’s
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ratios) and Ep = 230 (MPa cm®/g?), ps = 1.93 g/cm®, so that E; = 1.29 GPa,
Ey = 140 GPa, E3 = 3.00 GPa. The degradation of properties is described
in terms of evolution laws (3.2) and (3.5). Assume that £ = 0.5 and t' — 10
ph.y (physiological years) results in an increase in the average porosity to its
pathological value of n, = 0.85. Moreover, take a; = 0.01/ph.y and a3z = 0 in the
evolution law for the fabric tensor, Eq. (3.5).

0024 £
£
{a} 18
0.01 +
E
time (years )
01[|]1|1]r—;4||||||||'|
1 2 8 % 5 6 ¥ ¥ ¥ W
-0.01
-
-0.02 4
-0.03 -
£
0024 =
b £
{b} 5
1w
0.01 —
time (years )
o!||||1:|1]I}|r||||||
1 2 3 4 5 6 7 8 3 10
|
-o'u'—H“M
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0.03 -
A~ Axial strain (e, ) -X-- Lateral strain (&, ) ~%-- Lateral strain (g, )

Fic. 1. Evolution of normal strain under a constant load of o3 = 0.3 MPa; solution for:
(a) w/wopt = 0.1, (b) w/wep: = 0.6.
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The results of numerical simulations are presented in Figures 1 and 2. The
figures show the mechanical characteristics and the evolution of microstructure

for the bone material subjected to a sustained axial load of o3 = —0.3 MPa.
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F1G. 2. Spatial distribution of 7i(v;) at t = 10 years.
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Figure 1 provides the time history of normal strain for w/wep = 0.1 and 0.6,
respectively. In the former case, a continuous development of deformation takes
place and the strain rates progressively increase with time. When the chronologi-
cal time approaches 10 years, the deformation gradients become very high, which
is triggered by a significant degradation in material microstructure. On the other
hand, the response for w/wp, = 0.6 is characterized by a relatively slow progress
in degradation, resulting in constant deformation gradients.

Figure 2 presents the evolution of bone architecture for both of these scena-
rios. The initial distribution of void fraction displays an orthotropic characteristic.
For the case of w/wyy = 0.1, the lineal porosity in the lateral direction incre-
ases to nearly 0.9, prompting a severe degradation of mechanical properties. At
w/wep, = 0.6, the average porosity as well as the bias in the directional distribu-
tion of voids are only marginally altered, implying a much slower progress of the
degradation.

Finally, it should be pointed out that a similar loading history imposed on
a regenerating material, Sec. 3(ii), would trigger a progressive decrease in the
average porosity accompanied by no deformation.

4. Specification of material functions; numerical analysis of bones

The identification of bone architecture requires the use of modern 3D imaging
techniques such as high resolution magnetic resonance imaging, micro-computed
tomography, etc. Apparently, the microstructure and thus the mechanical proper-
ties of bone depend on several factors including the anatomic location, age, sex,
etc. In general, given an image of a fixed volume of bone material, in the form of
3D binary data, one can determine a set of 7i,(a = 1,2...N) defining, according
to Eq. (2.1) or (2.3), the values of 7i(v;) for discrete orientations v;. The obtained
distribution can be approximated by the first two terms of the representation
(2.4) using the least squares approach. The error involved is the sum of squares
of the differences between the given values of 7, and those due to approximation
(24), i.e.

2
(4.1) E=Y" [fa—n(1-9TN,)]
where QT = {Q]l,Qgg,.(212,.(213,.(22;;}; NT = {(.-'.a"l2 — U%)‘ (UQQ = Uf;z), —2!‘/102‘

=213, —21o13) b The constants 2 should minimize the total least squares error,
i.e. OE/0€2 = 0, which leads to a set of simultaneous equations

(4.2) (Z NQN;‘:) Q=Y Na—n1Y RN,

which can be solved for individual components of £2.
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The properties in the elastic range are defined by Eq. (2.6). The general
representation of the elasticity tensor Djjx in terms of the fabric tensor, has
been derived by CowiN [1]. The representation employs nine scalar functions
of the three basic invariants of the fabric tensor. In the same reference Cowin
has also developed an approximation based on retaining the terms of order two
in A;; and expanding the scalar functions in powers of A;;. The result of this
approximation is

(4.3) o Bagkﬁ(n.)

where d, denotes the individual non-zero components of D;;x, kg are functions
of n only and B,z depends on the basic invariants of the fabric tensor.
Taking d, as d = {Dyy, Doy, D33, Das, Dss, Deg, D12, D13, D23} one has

(4.4)

r1oIl 241 243, Ah. 28R 4A1 443, T
111 2A29 242, A 2, Al 4A2 443,
1EeT] 2Aas 2A3, AZSE WBoN OT] 4A3a 4A2%,
0 0 0 0 0 1 1 (Azz+ Ass) (A3 + A%)

B]=]0 0 0 0 0 1 I (A + Ass) (A} + A%)

0 0 0 0 0 1 I (A +An) (A4 +Ad)
1L II (An+An) (Al +A43%) Andsx 0 0 0
1 I (A + Ass) (AL +A%) Andss 0 0 0

L1 U (Asp+ Ass) (A5 +A%) Axndss 0 0 0 0 ]

where
IT= A1 A + A1 Agz + Ao Ayy: Ay + Ags + Agg = 1.

The question of the specification of kz(n) has been addressed in ref. [22]. In that
study, ks were approximated as power functions of normalized density and fit-
ted (using the least squares analysis) to an extensive set of experimental data.
The representation (4.3), although attractive, has a serious limitation. Namely,
the matrix [B], Eq. (4.4), is singular implying that there is no unique set of k's
describing the given material properties. Over the recent years, other approxima-
tions have been developed (e.g., [20, 24]). However, most of them are restrictive,
as they neglect certain terms in the general representation, which may be of signi-
ficance. The formulation adopted here is based on the approximation developed
in ref. [23], quoted earlier in this paper. The estimates of elastic properties are
derived from general representation theorems which incorporate an assumption
of homogeneity of the constitutive relation with respect to the measures of the
material fabric. Following this work, the orthotropic elastic moduli are defined as
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(4.5) E; = EoA7% Gij = GoAs"; Nij = ?m%
Ay

subject to the constraint ng = Ey/(2Gp) — 1. In the above expressions, E and
G are the Young’s and shear moduli, respectively, and 7 is the Poisson’s ratio.
Moreover, 7,5 = 1,2,3(i < j), A’s are the eigenvalues of the fabric tensor, whereas
Ey, Gy, np are considered to be material functions which depend on btructural
density. A specific form of (4.5) has been employed in the example given in
Sec. 3(ii).

A simple fracture criterion for bone, consistent with general representation
(2.7), has been recently proposed by the author and his coworkers [25]. This
criterion is expressed in the functional form

—a a? + 4as(az + I/f,)’
(6) F=5-g(0)5.=0; 7= '+‘/(lz:22(3+/f))f“

where [ = —0;,7 = (1/23Usu)lﬂ,6 = —1/3sin~! {(\/ﬁsﬁsjksk,;)/%'g} and s;;
denotes the stress deviator. In Eq. (4.6), ay, as, ag represent dimensionless ma-
terial constants and the function g(0) satisfies g(w/6) = 1, g(—7/6) = K, where
K < 1 is a constant. Moreover, f. which represents the uniaxial compressive
strength of bone tissue, is assumed to be an explicit function of the void space
distribution, i.e.

(4.7) foll) = feo (ﬁ) =i (1——?1(5))“!

no

where ng and v are constants and «y is typically within the rrmge 1< v 2(ek
[26]). The function 7 is evaluated in the “loading direction” I; which has been
defined as the direction of the average stress vector #; at a point,

(4.8) l; = ﬁ b= alj(c{ + (,( 2) + j‘n) \/_SU*J,mj,
where e; are the base vectors associated with the principal material axes and
m; = {1,1,1}/4/3 is a unit vector along the space diagonal.

In order to provide an illustration to the notions brought up above, the re-
sults of numerical simulations pertaining to evaluation of the risk of fracture in
a proximal femur are reviewed here (after ref. [25]). A 3D model of the proximal
two thirds of an adult human right femur has been created based on external
surface contours extracted from CT scans. A set of elastic constants was assigned
to each element to model a heterogeneous distribution of orthotropic material
properties. In particular, representation (4.5) has been employed with average
porosity values obtained from CT data. At this preliminary stage, the bias in the
distribution of void fraction was assumed to be constant, with the principal ma-
gnitudes of the tensor £2;; taken as 2y = —0.15, §25 = 0.04, £24 = 0.11. The latter
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choice gi\«'(‘.‘i E;/E';g = ].7, EI/EQ =1.5 and G]Q/G‘z:j = 1.3, G;-g/G]:; = 1.07,
which is consistent with typical experimental data for human femoral bone [27]
over a broad range of average porosities. The numerical analysis has been carried
out in two stages. First, a supplementary finite element simulations were conduc-
ted in order to estimate the distribution of the principal material directions. The
problem was solved by performing a linear elastic analysis of the femur subjected
to loading conditions corresponding the one-legged stance phase of gait under the
constraint that the matrix multiplication of the stress and fabric tensors is com-
mutative. The latter follows directly from Wolff’s hypothesis, which postulates
that the principal stress axes coincide with the principal trabecular directions at
remodelling equilibrium. The second phase of the analysis involved the numeri-
cal simulations of a fall from standing height to the lateral aspect of the greater
trochanter.

[F1G. 3.
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F1G. 2. Predicted contours of damage factor £ in an osteoporotic bone; (a) anterior
view of the proximal femur; (b) transcervical cross-section (orthotropic formulation);
(c) transcervical cross-section (isotropic formulation).

The main results of the simulations are presented in Fig. 3. Figure 3a shows
the anterior view of the proximal femur together with superimposed surface di-
stribution of the damage factor 3. The latter has been defined, based on the
proposed fracture criterion (4.6), as

a

It should be noted that, according to Eq. (4.6), F' < 0 requires 0 < 3 < 1. The
case of 3 — 1 results in F' — 0 and signifies the local failure of the bone material
associated with formation of macro/micro cracks (e.g. fracture of individual tra-
beculae). Clearly, 3 > 1 is physically inadmissible as the stress state corresponds
to F > 0. The distribution shown in Fig. 3 corresponds to an osteoporotic bone.
It is evident that in the inferior region of the femoral neck, the stress field vio-
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lates the fracture criterion, implying that a lateral fall to the hip will trigger a
transcervical fracture. The fracture zone will initiate at the outer cortical shell
and propagate through the trabecular network in the femoral neck. In general,
given the fact that the porosity in the region of trabecular bone is relatively high,
the propagation of the fracture zone will require little mechanical effort. In this
context the elastic analysis alone, incorporating the criterion (4.6), may be suf-
ficiently accurate for estimating the potential for fracture risk. Finally, Figs. 3b
and 3c present the distribution of damage in the transcervical cross-section. The
distribution shown in Fig. 3¢ corresponds to the case of isotropic formulation
(£2;; = 0). Comparing both results it is evident that the isotropic representation
will, in general, overestimate the fracture potential.

5. Final remarks

An appropriate representation of the effects of aging on the mechanical pro-
perties of bone is essential for numerical evaluation of the risks of fractures and
the design of prosthetic implants in elderly. With this objective in mind, a set
of hypotheses has been put forward in order to form a general mathematical
framework for the description of age-related degradation of bone structure. In
general, the degradation phenomenon manifests itself in a progressive increase
in the average porosity of the material coupled with the reorganization of the
microstructure. The latter usually involves a thinning of vertical and horizontal
trabeculae. This would indicate a possible simplification in the evolution law of
the fabric, whereby the primary effect is that of the change in the eigenvalues
of the fabric tensor. The formulation presented here distinguishes between the
mechanical and hormonal /nutritional influences. The discussion is essentially re-
stricted to mechanical effects, which is particularly relevant to studies on the
degradation of bone due to prolonged periods of reduced physical activity.

Apparently, the most important clinical problems in orthopaedics today in-
volve the regions which are dominated by the cancellous bone. Therefore, an
adequate description of its mechanical properties is important. In general, the
mechanical competence of the entire bone, as a structure, is enforced by the pre-
sence of cortical bone, which constrains the deformation. In this context, under
typical physiological loads, the system may be considered as elastic. This is not
the case however, when considering for example the bone-implant interaction. In
order to predict the relative micromotions at the bone-prosthesis interface, it is
important to recognize that the trabecular tissue has a high average porosity and
it will experience some irreversible deformations (c.f. [24]). The formulation given
in this paper is still in its preliminary stage and falls short of quantifying some of
the material functions involved. It is believed that this and similar approaches are
useful in directing the experimentation towards more specifically defined objecti-
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ves. Clearly, the identification of properties in the elastoplastic range will require
a series of uniaxial compression tests on trabecular bone specimens, performed
at different values of confining pressures (within a range typically experienced in
the region adjacent to bone-stem interface). Such tests should be performed in
the principal material direction, which could be identified through measurements
of material fabric involving high resolution imaging.

Various evolutionary phenomena in bones may be described within a simi-
lar conceptual framework. It has been demonstrated that the formulation for
functional adaptation of the bone may be derived from that corresponding to
aging process, by imposing different evolution laws for the material fabric. It is
important to emphasize that the approach adopted for description of a regene-
rating material requires the framework of hypoelasticity, Eq. (3.13), rather than
the conventional elasticity. This fact has been generally ignored in the existing
formulations of the problem. Finally, it is apparent that much work needs still to
be done on the development of quantitative theories, their verification and finally,
the numerical simulations of specific clinical problems.
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