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TwoO GRADIENT-DEPENDENT COMBINATIONS of isotropic plasticity and scalar damage
are proposed. The gradient enhancements of either the plasticity or the damage
component of the theory are performed by introducing the Laplacian of a strain
measure and an internal length parameter. This makes the constitutive models
applicable to localization analyses. The models are used for finite element simulations
of localization in a one-dimensional tensile bar problem. The coupling of hardening/
softening plasticity with damage governed by different damage evolution functions
is discussed. Then, attention is focused on the response of the models in unloading
from localized deformation states. The model of gradient damage combined with
hardening plasticity is used to predict progressive damage of concrete in a beam
subjected to four-point bending. The simulated stiffness degradation is compared
with experimental results.
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1. Introduction

IN A PHENOMENOLOGICAL CONSTITUTIVE description, a combination of plastici-
ty and damage theories is physically appealing since a host of materials exhibit
an interaction of inelastic mechanisms of microcrack or microvoid growth with
plastic flow. The coupled models make it possible to reproduce a realistic ela-
stic stiffness degradation, which is crucial for cyclic loading and extensive stress
redistributions.

The research on the incorporation of elastic stiffness degradation within the
theory of plasticity goes back to the works [1, 2, 3, 4, 5]. Confining interest to
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small strain theories, plasticity and damage combinations have been considered
amongst others in [6, 7, 8, 9, 10, 11|, although they all restricted themselves to a
local continuum form.

In quasi-brittle materials the inelastic behaviour is accompanied by localiza-
tion of deformation and progressive fracture. The problem of localization, driven
by material instabilities like strain softening, has recently been thoroughly inve-
stigated, see for instance [12| and references therein. Within a classical, local con-
tinuum formulation this phenomenon is associated with the loss of well-posedness
of the governing partial differential equations, and therefore discretization me-
thods used to solve them may give mesh-sensitive results. To overcome this pro-
blem, some form of nonlocal or rate-dependent enhancement of the constitutive
model must be adopted [13, 14, 15]. In other words, a continuum formulation
should be equipped with an internal length parameter.

This paper investigates the damage evolution and the resulting elastic stiff-
ness degradation using gradient-enhanced plastic-damage theories. The coupling
of plasticity and damage is based on the effective stress concept and strain equiva-
lence |7, 8]. However, a gradient enhancement of either plasticity or damage has
been adopted [16, 17]. The gradient-dependent plasticity enhancement is based on
[18, 19, 20]. The gradient damage model follows [21, 22]. A gradient-regularized
hardening plasticity theory has so far been coupled to damage in [23].

The numerical response of the gradient-dependent coupled plasticity-damage
models in localization problems involving load reversals is examined. Although
the models are general, consideration is focused on the tensile regime. Section
2 summarizes the adopted plasticity-damage theory. In Sections 3 and 4 the
two gradient-enhanced constitutive models are presented [17]. In Section 5 the
employed equivalent strain measures and damage evolution laws are discussed.
Section 6 presents the results of one-dimensional numerical studies. Section 7 con-
tains some simulations of damage and stiffness degradation in a notched concrete
beam subjected to four-point bending. Final remarks are gathered in Section 8.

2. Coupling of local damage and plasticity theories

In the following we assume that configurations are loaded quasi-statically and
exhibit small strains, which is usually realistic for quasi-brittle materials. Hence,
the equilibrivm and kinematic equations have the form:

(2.1) LTe+b =0,
(2.2) e = Lu,

where L is a differential operator matrix, o is the stress tensor in a vector form,
b is the body force vector, e is the strain tensor in a vector form, u is the
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displacement vector and the superscript T is the transpose symbol. The stresses
and displacements satisfy the relevant natural and essential boundary conditions,
respectively.

We start the discussion of constitutive relations by selecting a form of co-
upling between plasticity and damage theories. We combine a plasticity theory
formulated in stress space and a damage theory formulated in strain space. The
theories have a simple, isotropic format (intrinsic and induced anisotropy is ne-
glected). However, as will be shown in the next sections, one of the two theories
is made gradient-dependent [17] in order to assure that numerical simulations of
strain localization give meaningful results.

Considering the damage evolution, we distinguish the actual body with stra-
ins e and stresses o and its fictitious undamaged counterpart with stresses ¢ and
strains €. The fictitious counterpart represents the undamaged “skeleton” of the
body, and the stresses ¢ acting on it are called effective. We adopt the postulate
that the strains observed in the actual body and in its undamaged representation
are equal [7, 8
(2.3) € = €,

and that the stresses are related by means of a scalar damage measure w
(2.4) o= (1-w)o.

The damage w is a function of a damage history parameter x4 that will be
specified below:

(2.5) w = w(kd).

It grows from zero to one as k% grows from a damage threshold kg to an ultimate
value K.

Next, we define a damage function which limits the elastic (or elasto-plastic)
behaviour of the material in the strain space:

(2.6) fd=e-—rd=0,

where € is an equivalent strain measure. During the damage evolution the history
parameter k% is equal to the largest value of € reached in the loading history.
Suitable loading/unloading conditions complete the formulation of the scalar da-
mage model:

(2.7) A0, fA<0, k4fd =0,
where the superposed dot denotes the rate of a quantity.
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Although damage and plastic processes can be coupled, plastic flow occurs
in the undamaged skeleton of the body, so we can write the elastic constitutive
relation between the effective stresses and elastic strains as follows:

(2.8) & = DC,

where D€ is the elastic stiffness operator. Combining Eqs. (2.4) and (2.8) we
obtain the relation:
(2.9) o= (1-w)D%",

in which the damage measure w accounts for the degradation of the elastic stiff-
ness. Damage does not grow during unloading, so that for a pure damage model
the constant (secant) stiffness (1 —w)D*® results in unloading to the origin, i.e. no
residual strains remain after unloading, which means that microcracks and mi-
crovoids are assumed to close completely. The motivation for coupling the model
with plasticity is thus to incorporate irreversible strains.

The plastic component of the coupled model is formulated in the effective
stress space. The yield condition is as follows

(2.10) 17 =5(8) — 0y(w?) =0,

where ¢ is an equivalent stress function, oy is the yield strength and isotropic
hardening is assumed. The yield function satisfies the Kuhn-Tucker conditions:

(2.11) A20, €0, AP =0,

in which A is the plastic multiplier. For simplicity, the equivalence of the plastic
multiplier A and the plastic strain measure kP is adopted, but extension of the
theory to cases where A and kP are not equal is straightforward.

The plastic multiplier determines the magnitude of plastic strains according
to the classical flow rule, which may be non-associated. Assuming the standard
additive decomposition of strain rates info an elastic and a plastic part, the elastic
strain rate can be written as:

(2.12) e = & — Am(6),

where m is the plastic flow direction vector in the effective stress space.
Next, we invoke the local plastic consistency condition f? = 0 in order to
compute A and substitute it into Eq. (2.12) to obtain:
17

TR
(2.13) € =¢é—-mn

a.

where the classical definitions of the gradient n normal to the yield function and
the softening modulus h are used:

T da do

2.14 n’(6)= —, h=—L.

( ) (e) o6 dkP
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After some rearrangements and with the help of Sherman-Morrison formula, we
obtain the tangential relation:

(2.15) & = DPé,
with the classical elasto-plastic matrix
(2.16) D — e D Df
i E h+nTDem’

This tangent operator is valid during loading, and the unloading process for the
pure plasticity model is completely elastic.

The effective stress rate during the evolution of damage and plasticity can
also be obtained by differentiating Eq. (2.8):

(2.17) o =D,
and the stress rate can be computed by differentiating Eq. (2.9):
(2.18) o= (1-w)D% " -wa,

where &° follows from Eq. (2.12) and the rate of damage during evolution (k%

is computed as:
(2.19)

=€)
PO

= ki de <
During unloading we have w = 0. Comparing Eq. (2.17) and Eq. (2.15) and using

the following definitions:

dw e
2.20 F o K8 T_ O
(3203 ; dgd’ f e’

we obtain the linearized constitutive relation for the coupled model:

(2.21) 6 =[(1-w)D® — HésT]eé.

3. Gradient plasticity coupled to damage

Now, we revisit the gradient plasticity formulation [18, 19] and write the yield
function, which depends on the Laplacian of an equivalent plastic strain measure
kP in the effective stress space:

(3.1) 1P = (&) - 0y (k) + gV =0,

where ¢ is a classical (e.g. Huber-von Mises or Rankine) yield function and g is
a positive gradient influence factor. The yield function satisfies the Kuhn-Tucker
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conditions (2.11), but it is now a partial differential equation which must be
solved simultaneously with the equilibrium equations.

The enhancement of the classical theory was made in order to preserve well-
posedness of the governing equations for materials which do not comply with
the material stability requirement [24], e.g. when a softening relation between
stresses and strains is assumed (h < 0). For a softening medium the factor g
can be associated with an internal length parameter [, e.g. in a one-dimensional
analytical solution we have g = —hi® > 0 [19]. However, also for a hardening
material the Laplacian term with g > 0 regularizes the solution [20] in the sense
that a higher-order continuity of the strain field is obtained.

The finite element implementation is based on the following two weak-form
equations governing the static equilibrium and the plastic consistency, respecti-
vely:

/(Lv)TcrdV = [vadv+fv'1‘tdS,

v v g
(3.2)

f'w fP(&,M, V2N)dV =0,
A

where v and w are suitable weighted functions, t is the traction vector. Equation
(3.2)2, which requires the discretization of the A field, refers to the effective stress
space and therefore does not change in presence of damage.

Equations (3.2) are written for iteration ¢ + 1 of the incremental-iterative
algorithm and the following decomposition is used:

(3.3) olitD) = ¢ 4 dg, AOHD = XD 4 q),

so that the yield function can be developed in a truncated Taylor series around
(6'[‘}, AD). We obtain the following incremental equations:

[ @) dodV = foi = fi,

4

(3.4)

/w nTdé — hdA + gV3(dA)]dV = — /wfp(&(i),ﬁ.p(f},VQﬁp(f))dV,

v v
with

fext = /thdSvL/vadV.
o] Vv

(3.5)

i = [(@v)Ta av.
V
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It is important to notice that, if the yield condition (3.1) is used in the classical
return mapping algorithm to distinguish between elastic and plastic states, a
C'-continuous interpolation of A is unavoidable, otherwise V2 loses its meaning
[20]. Therefore, the Laplacian term is not removed from the left-hand side of
Eq. (3.4)2, although this can be done using Green’s formula if a homogeneous
non-standard boundary condition (VdA)Tv = 0 is assumed (v is a vector normal
to the surface of the plastic part of the body).

Next, we substitute Eq. (2.12) into Eqs. (2.18) and (2.17) and substitute their
incremental forms into Egs. (3.4); and (3.4)s, respectively:

/ (Lv)T[(1 - w®)Dde — 6D dw]dV

V

- [@v)T( - @)D m® A\ AV = fess = fi,
(3.6) g

/ wnT®DdedV — [ w [(hD + nTODmM)dA + gV (dN)] dV
” v

=4 —f'wfp(&(i),-‘i"“.’,VQ.%p("})dV.
v
The increment of damage dw is non-zero only when damage grows, i.e. when
Eq. (2.6) is satisfied. With the definitions in Eq. (2.20) it can be related to the
strain increment:

(3:7) dw = Hs"de.

Substituting Eq. (3.7) into Eq. (3.6); and defining the elastic-damage tangent
operator as:

(3.8) D* = (1 - w¥)D* — HY 50
we obtain the following final form of Eqs. (3.6):

/'(Lv)TD'-“’dedv 3 / (LV)T(1 = 0D AN AV = fuxt — fint.
. /

A
(3.9)

/w nTWDdedV — f-w [(hm| +nTODm)dA + gV (dN)] dV
v ‘)

= [ w fP(60, kPO, 2P @) qV.
i.."

Details of the finite element implementation can be found in [17].
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4. Gradient damage coupled to isotropic plasticity

In the second formulation the plasticity theory remains standard and the
damage theory is made nonlocal. It is emphasized that in this combination, the
unstable material behaviour is caused by damage, and the plasticity model (for
instance Huber-von Mises or Drucker-Prager plasticity) is hardening,.

Following [21], the damage evolution is now governed by the following damage

loading function:
(4.1) fi=e-xi=0,

where the averaged (nonlocal) strain measure € satisfies the Helmholtz equation:
(4.2) E—cVie=¢

The loading/unloading conditions (2.7) still apply. The parameter ¢ > 0 has a
unit of length squared and is hence related to an internal length scale. It is assu-
med here to be constant, although, with some modifications in the formulation,
it can be made a function of € or € [22].

The finite element implementation is based on the equilibrium Eq. (3.2); and
a weak form of Eq. (4.2) obtained using Green’s formula and the non-standard
boundary condition (Vé)Tv = 0:

(4.3) [weé + ¢(Vw)TVEdV = [ wedV.
! /

In the ensuing two-field formulation the average strain measure must be discreti-
zed in addition to the displacements, but C%continuity now suffices for all shape
functions. The coupling to plasticity influences only the equilibrium Eq. (3.2);,
while Eq. (4.3) is exactly the same as for pure gradient damage.

We write Egs. (3.2); and (4.3) for iteration 7 + 1 of the incremental-iterative
algorithm and decompose the stress vector, the strain measure and its averaged
version as

(4.4) o) =gl f do, &) =@ e, D =&l 4 de
to obtain:
(4.5) / (Lv)TdodV = fuxe — fint

v

= /wdédV—l—/[wd€+c(Vur)TV(d€)]dV
Vv 1%

= / weh qv — / [we + o(Vaw)TVed) av.
Vv v
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Equation (2.21) is now invoked in an incremental form:

(4.6) do = (1 — w)D*®de — dwa,

and, when Eq. (4.1) holds, the damage increment dw can be computed as
(4.7) dw = Hdg,

with H defined in Eq. (2.20);. The increment of strain measure dé is computed
as:

(4.8) dé = sTde,

with s* defined in Eq. (2.20),. Equation (4.7) is substituted into Eq. (4.6) and

next Eqgs. (4.6) and (4.8) are substituted into Egs. (4.5); and (4.5)s, respectively,
to obtain:

/ (Lv)T(1 - w)DPdedV — / LV)THOGDdedV = fuxy — fine
Vv v
(4.9)

= [ wsTOdedV + f [wdé + ¢(Vaw)TV(de)] dV
Vv v

- fw e qv — /[w e 4 ¢(Vw)TveD) av.
Vv Vv

In fact, a similar matrix form of incremental equations is obtained upon di-
scretization for both combinations of the local and gradient-dependent theories,
leading to two-field mixed finite elements. Further details of the numerical imple-
mentation, consistent linearization and other algorithmic aspects can be found
in [17].

5. Equivalent strain measures and damage laws

So far, the equivalent strain measure € has been left unspecified. It can be
defined as the damage energy release rate, cf. [8], or a modified form thereof
which satisfies the condition that for a uniaxial strain € = |e[:

(5.1) = 1(lE€TD“e,

where E is Young’s modulus. For quasi-brittle materials a more suitable form,
taking into account the difference between the tensile and compressive strength,
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can be adopted [25, 26], e.g. the modified von Mises definition of the equivalent
strain measure [26], which has been used here:

y k—1 1 e 12k
(3:2) iy 2k(1 — QU)II + ﬁ\/(l - 2011) T (1+v)? Ja,

where k is a ratio of uniaxial compressive and tensile strength, v is Poisson’s
ratio, Iy is the first invariant of the strain tensor and .J» is the second invariant of
the strain deviator. In Fig. 1 this strain measure is compared with the definition
in Eq. (5.1). The figure has been plotted for plane-stress conditions, € = 0.001,
k=10 and v = 0.2.
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FiG. 1. Comparison of equivalent strain measure definitions: Eq. (5.1) — solid versus
Eq. (5.2) - dashed.

Another issue is whether € should be a measure of total strains, their elastic
part or some other function of elastic and plastic strains [8]. If it is assumed that
the equivalent strain measure is a function of elastic strains only. €(e®), which
means that the damage growth is driven by the effective stresses, see Eq. (2.8),
the two theories become weakly coupled. If a full coupling exists, for instance for
plastically induced damage in metals, plastic strains should also contribute to €.

In this paper, for gradient plasticity combined with damage, € has been as-
sumed to be an equivalent measure of the total strains €(e). A measure of elastic
strains only obviously loses sense in the case of softening plasticity and, for the
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gradient regularization to be active within the considered model, the damage
growth should depend on the nonlocal plastic strains. For gradient damage com-
bined with plasticity we consider two possibilities: é(e) and €(e®). In the latter
case the computation of sT in Eq. (2.20) becomes slightly more intricate, since it
then equals:

) Jr_ de dec  df
J. =

~ de® de  de®

The damage growth function (2.5), which governs the stress evolution and
elastic stiffness degradation, represents a uniaxial stress-strain relationship. It can
be validated by experimental measurements. In this paper we use three different

damage growth functions. A linear dependence of w on k%

(Dn)— 1 Dep_

.d
5B — K
(5.4) w(r) = —=
Ku — Ko
means that, although eventually the stress drops to zero, there is a hardening
stage in the stress-strain relationship. Secondly, the function can represent a
linear softening stress-strain diagram:
5o el .
Ky K¢ — K,
(5.5) w(k?) = 5 —=.
K nu P> h-‘l)
Case (5.4) will further be called “linear damage”, while case (5.5) will just be called
“damage”. Finally, we will use an exponential damage function which represents
exponential softening:

(:J{j) w(h‘d) =] = (l e ﬂe-—q(ud __n'.:]) :

where a and 7 are additional parameters. This function is suitable for reproducing
the experimental tensile fracture in concrete, since the experimental uniaxial
softening relation is exponential [27]. Since it approaches the complete loss of
coherence (w = 1) asymptotically, singularities caused by a complete loss of
strength are also avoided.

6. One-dimensional numerical studies

Firstly, implications of the three damage laws are illustrated using a uniaxial
problem shown in Fig. 2 and a pure gradient-damage theory. We analyze a bar
with a unit cross-section and a geometrical imperfection, subjected to tension.
In order to initiate strain localization, a 10% smaller cross-section is adopted in
the central zone d = 10 mm. Symmetry of deformation is imposed. The length
of the bar is L = 100 mm, Young's modulus is E = 20000 N/mm?. Eighty
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F1c. 2. Tensile bar with imperfection for localization studies.

CY-continuous three-noded gradient damage elements are used with two-point
Gaussian integration [21]. The elements have a quadratic and linear interpolation
of the displacement and averaged strain, respectively. A gradient constant ¢ =
4 mm? is adopted.

In a one-dimensional problems the equivalent strain measure € is equal to
the absolute value of the axial strain €. For all damage laws the same damage
threshold £, = 0.0001 is used. For linear damage, Eq. (5.4), we adopt &, = 0.0005
and for the damage growth function representing linear softening, Eq. (5.5), £y =
0.0125. The exponential damage parameters, Eq. (5.6), are: a = 1.00, n = 200.

Figures 3-4 demonstrate that the response of the model is quite different
although the gradient influence factor is the same for all cases. The load-
displacement diagrams in Fig. 3 show the computed relations between the stress
at the right-hand end of the bar ¢ and the elongation of the bar ue,q. For linear
damage we first observe a hardening stage and then a severe snap-back beha-
viour while the originally distributed damage profile in Fig. 3b strongly localizes
and damage finally grows only in the smallest possible volume (two integration
points).

For the second case (Fig. 4a) the damage zone first broadens and then the
points at its boundary gradually enter unloading, which is also accompanied by
snap-back behaviour in Fig. 3a. In the final stage the deformation also localizes in
the two central integration points. This is because the strain and damage finally
localize in a crack at midspan of the bar. Up to this moment, localization is
limited during the whole deformation history.

For the exponential law the damage zone in Fig. 4b is narrower, since softening
is more pronounced in the first stage of the damage process. However, for this
case the bar extension does not exhibit a snap-back and w = 1 is approached
simultaneously in a larger set of central points. The interpretation of a continuous
damage evolution into a crack is lost in this case.

The gradient-enhanced coupled theories will now be applied in the uniaxial
localization problem from Fig. 2 in order to illustrate the basic properties of the
models in loading and unloading. It is noted that mesh sensitivity studies have
been presented in [17] and will not be repeated here.
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6.1. Gradient plasticity coupled to scalar damage

In the uniaxial case the Huber-von Mises or Rankine yield functions give
& = |a|. The tensile strength is oy = 2 N/mm?. We employ a discretization with
eighty C'-continuous three-noded gradient plasticity elements [20]. The derivative
of the plastic multiplier is set to zero at both ends of the bar to allow for reduced
integration.

First, softening gradient plasticity is coupled to damage. Linear softening
with i = =500 ':\'-/111;112 and the gradient constant g = 12500 N are adopted,
so that the width of the localization zone predicted by gradient plasticity is
w = 27l = 31.4 mm [19]. In Fig. 5a the solution obtained for pure gradient
plasticity is compared with the coupled model, in which € is the total strain. The
damage evolution is activated later than the plastic low by adopting the damage
threshold k, = 0.001. The linear damage with s, = 0.01 and the damage law
from Eq. (5.5) with &, = 0.1 are used. For the linear relation w(k9) the damage
growth is initially much slower, but the ultimate value &, = 0.01 associated with
w =1 and o = 0 is reached for smaller extension of the bar.

It is observed that the localization zone first expands from the imperfect
elements, then its width remains almost constant and, finally, the plastic zone
starts to grow again while the load-displacement diagram bends upwards, since
in the central points the softening diagram is exited. For pure gradient plasticity
the width of the localization zone is equal to the expected value during the linear
softening stage. For the coupled model the plastic strains are more localized due
to interaction with damage, but a spurious tendency to localize in the smallest
possible volume is not observed [17]. Apparently, the gradient regularization is
active in spite of adding the second destabilizing component to the constitutive
description.

In Fig. 5a unloading branches at some extension levels are also shown. For pu-
re gradient plasticity the unloading is elastic, but. quite surprisingly, also for the
coupling to damage the unloading stiffness reduction is very small. The plasticity
model dominates.

Secondly, for hardening gradient plasticity, we preserve the gradient constant
g = 12500 N and we adopt a linear hardening with h = 500 N/mm?. For the
linear damage model &, = 0.0005 and &, = 0.01. For the damage growth function
representing linear softening /£, = 0.1 and two damage thresholds are conside-
red: Kk, = 0.0001 and &, = 0.0005. For the former case the damage and plastic
processes are activated simultaneously, i.e. K, is reached for the same load as ay.
Figure 5b presents the obtained load-displacement diagrams and Fig. 6 gives the
damage evolution in the bar.

For the case of pure gradient plasticity or when the onset of the damage
process is delayed until after the initiation of plasticity we first observe yielding
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in the imperfect part of the bar and then, due to hardening, a plastic state
is reached in the whole bar. However, once damage starts, softening is observed
and localization of both damage and plastic processes takes place in a zone whose
size and evolution depend on the damage law and threshold as shown in Fig. 6.
For k, = 0.0001 a fast growth of damage is first observed in two central finite
elements and then the damage zone gradually expands. The regularization related
to plasticity seems to be active for the softening caused by damage, see also
[23]. However, the predicted stiffness degradation is again unrealistically small
(Fig. 5b).

6.2. Gradient damage coupled to hardening plasticity

We now consider the case of gradient damage theory coupled to hardening
plasticity. The length of the bar, the size of the imperfection and Young's modulus
are the same as before. The gradient constant ¢ = 1 mm? is adopted. The damage
growth function representing linear softening, Eq. (5.5), with x, = 0.0001 and
iy = 0.0125 is employed.

The strain measure is either the total strain € = € or the elastic strain € = €.
In Figs. 7-8 the solutions obtained for pure gradient damage are compared with
the two combinations with hardening plasticity. Now, the beginning of the plastic
process is slightly delayed with respect to the damage threshold (oy = 5 N/mm?).

Figure Ta shows a comparison of load-displacement diagrams for different va-
lues of the hardening modulus k. For € = € the coupled model gives a more brittle
response and for € = €® the results show an increased ductility. The value adopted
in this test for the hardening modulus /& may seem unrealistically large, but we
note that plasticity now represents the behaviour of the material “skeleton” (the
fictitious body, see Section 2) and the evolution of microcracks and microvoids
which causes the strength and stiffness degradation of the material is modelled
by the damage component. For an increasing value of h the solution for pure
damage is approached.

Figure 7b compares the unloading branches for h = E. Both combined models
result in irreversible strains. If the strain measure is based on elastic strains,
damage evolution is governed by the effective stress. This is why for this case
and for pure damage, the same stiffness degradation is observed for the same
stress level. However, a large irreversible strain is now present.

The damage evolution for the two damage measures and h = E is shown in
Fig. 8. For € = €° the obtained damage evolution is the same as for pure gradient
damage. This is because plasticity and damage contribute to the response without
mutual interaction. For € = € no further expansion of the damage zone is observed
after the plastic process has started, so the solution is more localized.
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The only unstable part of the constitutive model, i.e. the damage growth, is
regularized by the gradient enhancement, so the results do not exhibit spurious
mesh sensitivity [17].

7. Four-point bending test

The four-point bending test is a plane-stress simply-supported beam configu-
ration which has been used in standard experiments of concrete fracture under
monotonic and reversed loading in [27]. A symmetric half of the original specimen
is shown in Fig. 9 together with the finite element mesh employed in the present
computations. The thickness of the beam is 50 mm. The vertical force is exerted
under deformation control.

P2

100

150 75

F1G. 9. Four-point bending test — discretized configuration (dimensions in mm).

Four cases have been analyzed: pure gradient damage, gradient damage co-
upled to plasticity by the equivalent strain measure based on total strains €(e),
the gradient damage-plasticity with damage driven by elastic strains €(e®) and,
finally, pure gradient plasticity. Although the softening gradient plasticity with
the Rankine failure function, i.e. when ¢ in Eq. (3.1) is the maximum principal
stress, is capable of reproducing to some extent the decohesive material failure
which usually underlies damage 20, 28|, the lack of elastic stiffness degradation
makes the model unacceptable for cyclic loading. However, coupling of this theory
to damage pursued in Sec. 6.1 suffers from three drawbacks: the predicted stiff-
ness degradation is too small, the results are excessively sensitive to the damage
threshold [17], and, more importantly, it is difficult to find physical grounds for
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a combination of two softening mechanisms even if the regularization of only the
plastic component of the model leads to mesh-insensitive results. Therefore, this
coupled model will not be used here.

For gradient damage coupled to plasticity the Huber-von Mises criterion has
served as the yield function. However, the Drucker-Prager plasticity theory can
also be used in the combined model if the difference between the uniaxial and
biaxial compressive strength and the possible non-normality of plastic flow beco-
me important. The modified von Mises definition of the equivalent strain measure
from Eq. (5.2) with k& = 10 and the exponential damage law from Eq. (5.6) have
been used, cf. [29].

The following model parameters have been adopted: Young’s modulus E =
40000 N/nu‘ng, Poisson’s ratio » = 0.20, damage threshold &, = 0.000075,
damage growth function parameters a = 0.92, n = 300, yield strength oy =
4.5 N/mm?, hardening modulus h = E/2, gradient influence factor ¢ = 4 mm?.
The value of oy is chosen such that the damage and plastic processes commence
almost simultaneously. Gradient damage elements with quadratic interpolation
of displacements, linear interpolation of the averaged strain measure, and 2 x 2
Gauss integration have been employed [21].

For pure gradient plasticity the Rankine failure function has been used with
the exponential softening law oy (&P) of CORNELISSEN, HORDIJK and REINHARDT
[27]. The following model parameters have been adopted: Young's modulus as
above, Poisson’s ratio » = 0, uniaxial tensile strength f; = 3.0 N/mm?, fracture
energy Gy = 0.125 Nmm/mm?. The gradient influence factor g is assumed to de-
crease with the increase of the equivalent inelastic strain measure g = —520;(,%[’),
cf. [20], and an internal length scale [ = 3 mm is adopted. Gradient plasticity ele-
ments with quadratic interpolation of displacements, Hermitean interpolation of
the plastic multiplier and reduced Gauss integration (2 x 2) have been employed
[20].

In Fig. 10 the computed load-displacement diagrams are compared. The de-
flection v is measured at midspan at the bottom of the beam. It is first observed
that, with the adopted parameters, the diagrams for Rankine gradient plastici-
ty and pure gradient damage coincide rather closely. However, the response in
unloading is far from reality. In loading, a more brittle response is observed for
gradient damage coupled to damage through €(e), while for é(e®) a larger duc-
tility is obtained, since damage is then a function of elastic strains which grow
much slower during the plastic process.

Figure 11 shows the incremental deformation pattern obtained for the pure
gradient plasticity and gradient damage models at the final points on the cu-
rves in Fig. 10. It is observed that in both cases localization appears in a zone
broader than one row of elements. It is also noticed that while for the gradient-
damage model a quadratic convergence of the incremental-iterative algorithm is
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observed, for gradient plasticity the convergence is slow due to problems with the
satisfaction of the weak form of the yield condition (3.2) at the notch.

40 [ T e T

Grad.dam.(elas.)

3.0 -

\Grad.dam.

2.0
+plas.

Force P [kN]

1.0 -

0.00 0.10 0.20
Deflection v [mm]

FiG. 10. Load-displacement diagrams for four-point bending test (gradient plasticity
diagram dashed).

F'16. 11. Four-point bending: final displacement pattern in the central zone for (a) gra-
dient plasticity and (b) for pure gradient damage.

As shown in Figs. 12-13 the two gradient damage-plasticity models can easily
be tuned to fit the experimental results of [27]. The crucial point is that for both
damage-plasticity combinations, the load reversals exhibit a proper gradual in-
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FiG. 12. Experimental and simulated load-displacement diagrams - gradient damage
coupled to plasticity é(¢). Model parameters: ¢ = 4 mm?, oy = 6.5 N/mm?, h = E/2,
Ko = 0.00011, & = 0.90, 5 = 160.
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Fi1c. 13. Experimental and simulated load-displacement diagrams — gradient damage

with plasticity é(¢®). Model parameters: ¢ = 4 mm?, oy = 4.5 N/mm? h = E/2,
Ko = 0.00008, a = 0.92, 7 = 600.
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crease of elastic stiffness degradation. However, the hysteretic loops observed in
the experiment can not be reproduced with the present model. To achieve this, the
plasticity model must be augmented by a kinematic hardening and the damage
description must be split into parts related to positive and negative strains, see
for instance [6, 8]. This would also allow for a simulation of crack closure effects.
Another solution may be to enhance a generalized plasticity model like that
shown in [30] with a localization limiter.

Finally, Fig. 14 presents the damage zone, the averaged strain distribution and
the equivalent plastic strains distribution for gradient damage coupled to plastici-
ty. The results are plotted for the final point on the computed load-displacement
diagram in Fig. 12. We observe that the averaged and, especially, plastic strains
are much more localized than the damage distribution.

a) b) c)

Fic. 14. Fracture zone of four-point bending test: (a) final damage distribution, (b) ave-
raged strain and (c) equivalent plastic strain distribution for gradient damage based
on total strains.
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As has been noticed in [22], the damage predictions of the model with a
constant gradient influence factor ¢ and the exponential damage evolution law
may be unrealistic for two-dimensional configurations, since the damage zone
tends to broaden instead of evolving into a crack when failure is approached.
The coupling to plasticity does not solve this problem. If a localized final damage
pattern is to be simulated, the gradient-damage model must be improved, for
instance by making the gradient influence factor variable and adopting a different
damage law, see [22].

8. Final remarks

Plasticity and damage theories are both capable of reproducing the expe-
rimental load-displacement diagrams obtained for quasi-brittle materials under
monotonic loading. However, since strain softening and localization are involved,
the models must be regularized. To reproduce a realistic stiffness degradation and
get closer to a proper modelling of damaging or fracture processes, a combination
of the two theories is proposed. It seems that a compromise must be made bet-
ween a sophisticated modelling of constitutive properties like anisotropic damage
and a proper treatment of ill-posedness problems. In this paper a higher weight
has been attributed to the latter issue while the constitutive description retains
a rather simple, isotropic format. This obviously limits its applicability, although
the use of concepts as the modified von Mises equivalent strain measure allows to
incorporate the difference of the response to tensile and compressive forces. As
also shown in [29], this leads to quite realistic fracture simulations in concrete.

Two types of gradient-dependent couplings of plasticity and damage have
been summarized. They are formulated is such a way that the coupling influen-
ces only the equilibrium equations, while the second differential equation, which
serves the purpose of regularization, preserves the original format of gradient
plasticity [19] and gradient damage [21], respectively. For both couplings, consi-
stently linearized two-field finite element formulations have been used [17].

The combination of softening gradient plasticity with damage, in spite of be-
ing considered in the numerical experiments, does not seem to have a good phys-
ical motivation. The combination of hardening gradient plasticity with damage.
considered here and also in a slightly different form in [23], has the weakness that
the attachment of the regularization procedure to a hardening plasticity model
raises doubts. As shown in [17], these models also seem to suffer from an excessive
sensitivity to the damage threshold.

On the other hand, the combination of gradient damage with hardening pla-
sticity gives promising results: the physical interpretation of the model compo-
nents is convineing, there are few model parameters to be determined, the elastic
stiffness degradation is properly reproduced and spurious mesh sensitivity of re-
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sults is avoided [17]. Although the fully coupled model with a strain measure
based on total strains has a better physical background, no clear evidence has
been found that the coupling based on an elastic strain measure should be di-
scarded.
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