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Foundations of mechanics of corroding materials
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In THIS PAPER the basic principles of mechanics concernning the balance laws of the
corrosion process models are presented. The corrosion process has been described by
a linear law of creation of the oxide layer using a single corrosive rate constant. The
mass defect is neglected in the balance law of mass. In the balance of momentum,
the corrosion processes are treated as a source of the additional compressive stresses.
The kinematic magnitudes are treated independently of the corrosion processes. This
approach is based on the infinitesimal strains and linear constitutive equations. Two
linear versions of the theory, which are from the formal point of view certain variants
of the Coupled Fields Theory, have been proposed. The first of them includes the
corrosive term in the displacement equation of motion and has no mechanical term
in the equation of corrosion. The second of them contains the coupling terms, both
in the equation of motion and in the equation of corrosion.

1. Introduction

PROCESS OF CORROSION plays a negative role in technology and it is a source
of economical losses. The costs which people have to pay for protection against
corrosion are high and they are not justifiable from the economical viewpoint. The
economical aspect of the mentioned problem is not only limited to the loss of the
materials, but it is mainly connected with the necessity of permanent replacement
of the corroded elements of the constructions. The corrosion processes lead to
degradation of the materials and reduce their capability of transferring the loads.

Fast development of the modern technology creates the increasing require-
ments concerning the metallic constructions which are assumed to work in vario-
us oxidation environments. In the modern chemical industry, where the elements
of construction are exposed to the action of the gases and vapours, the gaseous
corrosion of the metals has particularly drastic forms. The car, aircraft and spa-
ce industry as well as nuclear technologies require the use of materials of the
appropriate mechanical properties.

Speaking in short words, we can say that the corrosion processes increase
forces and tensions which are transferred through the parts of machines and
the elements of structures. When we take into consideration the basic chemical
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reactions, it is possible to model the influence of the corrosion process on the loss
of the mass of the materials which transfer the loads.

In this paper, the basic principles of mechanics in the concept of the balance
laws [1, 2| are presented taking into consideration the model of the corrosion
process. The corrosion process has been described by a linear law of the oxidised
layer creation using a single corrosive rate constant [3, 4, 5]. The mass loss is
neglected in the balance law of mass. In the balance of momentum, the corrosion
processes are freated as a source of the additional compressive stresses. From
the formal point of view, the compression stresses are introduced as the additio-
nal, external field forces. In the presented model of the corrosion processes, the
classical symmetry of the stress tensor follows from the balance of moment of mo-
mentum. It is worth to remember that the theoretical and experimental results
confirm the influence of the mechanical stresses on the corrosive rate constants.
It means that the corrosion and mechanical processes can be treated as coupled
fields in the formal description.

2. Basic equations

From the point of view of mechanics of materials it seems convenient to create
the theory using the laws of the balance of mass, of momentum and of moment
of momentum.

Let us consider the body B which occupies space 7(B). The surface S(B) is
the fringe of the space 7. We will take advantage of the general equation of the
balance formulated by KosiNsk1 [2]:

(2.1) %«p = —W() + P(¥) + R(¥).

In Eq. (2.1) the symbols have the following meaning: W (%) - is the outflow of
the quantity ¥ through the fringe of the space 7, P(¥) - is the creation of the
quantity ¥ inside the space 7, R(¥) - is the inflow of the quantity ¥ to the space
7 from the surroundings.

The quantity R is very often assumed to be equal to zero, thus in this paper
we will make the same assumption.

The law of the balance has to be fulfilled for the body B and for each sub-
system. The physical quantities in Eq. (2.1) are generally described by means of
the proper constitutive equation.

The balance of mass is assumed to be expressed by the equation of the con-
servation law [1]:

d
2.2 - ir. =0,
(2:2) dt /,m &
T
where p is mass density.
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The balance of momentum can be expressed as follows:
d
(2.3) P /pvkdr = %tﬂdsl + /pfkdr,
1 "r :S' T

where vy is the velocity, g is the stress and f}. is the body force.
The balance of the moment of momentum leads to the conclusion that the stress
tensor is the symmetric tensor [1]:

(2.4) ter = tik.
We will neglect the balance of energy since we do not consider the thermodynamic

aspects of the investigated processes.

3. Model of the mass defect

In the studies of the corrosion of materials [4, 5], the laws of the growth
of the layer thickness of the corrosive product are formulated and they can be
interpreted as the constitutive law for the quantity P(¥) in the Eq. (2.1) with ¥
as mass. Generally speaking, in such a study the polynomial laws can be expressed
in the form

u
(3.1) Plin)i= Z ki(m)?,
i=1
m being the mass. For simplicity we will assume the linear law as follows:
(3.2) P(m) = —vIm = —am,

where symbols denote: v — the stechiometric coefficient, I — reaction rate constant,
a = v, and they correspond to the linear chemical reaction [3].
In such a case the balance of mass is expressed by the integral formula:

(3.3) i/pdr = —u/pd.‘r,
dt

and the corresponding differential formula has the following form:
(3.4) dip + pOrvy. = —ap,

where d; is the material derivative and 9y, is the space derivative. The application
of the balance of mass (3.3) and (3.4) to the balance of momentum (2.3) enables
us to obtain the local balance of momentum in the form:
(3.5) pdyvy = Ot + apug + pfy.
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Moreover, it is found that the balance of the moment of momentum has not
changed and has the form of Eq. (2.4). The balance of momentum (Eq. (3.5)) is
the classical differential equation of motion, however the term on the right-hand
side with the coefficient « is due to the mass defect (Eqgs. (2.3) and (2.4)).

Let us assume now that we consider the isotropic, elastic material which is
described by the Hooke’s law:

(3.6) tht = 2pekt + AOpiErr,

where: A, pu, are the Lamé elastic constants, d;; is the Kronecker delta, 2¢4y =
Orku; + Opuy is the infinitesimal strain tensor and wuy is the displacement vector.

By substitution of Eq. (3.6) to Eq. (3.5) we will obtain the Lamé displacement
equations:

(37) %-63631:‘:7- =} (C‘i — o%-)@,.asus in a;ﬁtu, = 615;?1,-,-,

where ¢k = p/p, c7 = (A + 2u)/p and it is assumed that f = 0.

Symbols ¢ and ¢j, denote the transverse and longitudinal wave phase veloci-
ty, respectively. Let us assume that perturbation depends only on the one space
co-ordinate and time:

Y =" (1, L) r=1,2.3..
Then Eq. (3.7) has a form:

c%@,znl +adiu = 812111,
(3.8) 0%8]21;2 + adyug = Of ug,
c%&)?’u;; + adhuz = d{uy.

On the basis of Eq. (3.8) we can draw the conclusion that both the longitudinal
and transverse perturbations undergo the modification which is connected with
the mass defect. In the asymptotic case when e approaches zero, one obtains the
classical equation of perturbation. Taking into account the general character of
this paper, we will not explore this problem any further.

4. Model of additional stresses

Now we will present another model of the chemical reaction which describes
the corrosion processes. Let us suppose that the mass defect is sufficiently small
and can be neglected in the balance equation of mass, and that the corrosion
processes create the particular centres on the surface of the body which contribute
to the balance of momentum. The corrosion process can be described as the
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chemical reaction by the progress variable. Time derivative describes the reaction
rate. We assume that the progress variable and the reaction rate are the time-
space fields. The progress variable can be expressed as

z = z(zpt);
and the rate of reaction as
I(ﬂ‘.’-i? t) = 6;3(1'5, t).

The contribution of the corrosive processes in the balance of momentum is de-
scribed by the scalar function of the progress variable which can be expressed as
a surface source in the form:

d
(4.1) E/pv“dT = fP(z)ék;dS; -+ ?{md& +/pfkd?‘.
T S i T

Using the standard approach, the local balance of momentum can be expres-
sed in the following differential form:

(4.2) pdyvr = Otk + P(2)01t) + pfi.

From Eq. (4.2) it is easily seen that the extended stress tensor:
(4.3) Tha = tra + P(2)0k1,

can be used in our theoretical approach. On the basis of the balance of moment
of momentum we can show that the extended stress tensor is a symmetric tensor:

(4.4) Tk = Tisp.

We will postulate the evolution equation of the corrosive rate in the simple
form [1}:

{_45) Gz = le + T'()Tl, .!r'z, 13),

where 7, is the relaxation time of the corrosion process and 7 is the function of
invariants of strain, I, s, I3. Introduction of the » function means that one takes
into account the influence of the strain on the corrosion processes.

In order to formulate this problem as a linear problem, we will make the
following assumptions:

1. The corrosion process is stable: it means that the relaxation time appro-
aches infinity.

2. The corrosive rate is the linear function of the first invariant of strain, i.e.
it is the linear function of the relative volume change.
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3. The corrosion source of momentum is linearly dependent on the progress
variable.

The above assumptions can be formulated as: relaxation time 7, — oo, the
evolution equation of the corrosive rate

(4.6) Oz =AlL = [A% = AEpp = Aakuk,

where A is constant.
The corrosion source of momentum can be expressed by

(4.7) P(z) = 7z,

where -y is constant.
On the basis of the above equation and Eq. (4.3), we obtain the extended
stress tensor in the form

(4.8) Tt = 2pepy + (Aerr +72)0p1.
It leads to the displacement equations:
(4.9) 0s0suy + (¢3 — 4)0,d5us + g0y 2 = 8,0yu,,

where g = v/p.

The evolution equation of the corrosive rate (4.6) and displacement Egs. (4.9)
form the set of equations which describe the coupled fields of displacement and
progress variable.

In the one-dimensional particular case:

(4.10) i == (1 ), Z == z{%1.t);
we obtain

) c%c')lé?lul + g1z = 0,0,uy,
(4.12) Oz = Adu,
) F0101uy = ByOyus,
) (2%61(?1 uy = Odus.

It is easily noticed that the coupled problem concerns only the voluminal
strains (Eqgs. (4.11) and (4.12)). In other words, in the assumed model, perturba-
tion of the displacement u; is coupled with the corrosion effects. The transverse
perturbations up and wug are independent of these effects. It is the result of the
previous Assumption 2 that the corrosive rate depends on the relative change
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of the volume only. On the basis of the assumptions made it is not possible to
obtain addditional coupled effects.

5. Concluding remarks

The presented models of the corrosion, the model of the mass defect and
the model of the additional stresses, are qualitatively different. They differ from
each other in the character of coupling between the field of displacement and
the corrosion effects. To stress the character of the two models, one-dimensional
problems are formulated. In Egs. (3.8) of the model of the mass defect, the a
parameter which describes the corrosion process is present in all equations, both
in the longitudinal perturbation and in the transverse perturbation.

In the model of the additional stresses, the coupling between the voluminal
strain and the progress variable is shown (Eqs. (4.11) and (4.12)). Eqgs. (4.13)
and (4.14) do not show such a coupling. The obtained results open the field for
the further investigations.

It seems that the model of the additional stresses creates more possibilities by
introducing fewer simple assumptions. It is obvious that it is possible to complete
the evolution Eqs. (4.6) by further invariants of the strain tensor and with the
relaxation time.
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