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A parTeErN of Rate Form allowing the modelling of the thermomechanical features
of the cyclic plasticity has proved to be effective in order to take into account va-
rious isotropic behaviours, ranging from those of granular media exhibiting isotropic-
deviatoric coupling effects, to those distinguished by shape memory effects or ferrohy-
steresis ([1] to [8]). Under its basic form, of pure hysteresis type, this discrete memory
pattern is able, by definition of a formalism brought into play in the fixed frame and
in the A A. Tliushin space of stress, to describe the behaviour involving perfectly clo-
sed cycles. Owing to this fact, it is also unable, in its basic form, to take into account
second order effects such as those of multiaxial effects of ratchet type. In order to
introduce a well founded and straightforward approach to the continuum thermo-
mechanics of the isotropic solid-like inelastic behaviours, including rate-independent
and hardening-independent second order tensorial coupling effects of ratchet type, a
new approach is introduced. It is founded on the following assumptions: firstly, the
formalism of the initial pattern is not modified, maintaining its role in the A.A. Iliu-
shin spaces of stress and strain (of power and geometry); secondly, the unaltered
initial formalism is no longer brought into play in the fixed frame and works now
in the Preferred Reference Frame (PRF); thirdly, the definition of this PRF is ba-
sically thermomechanical and may be dependent on a mesoscale of Nél-Krumhansl
type. The formalism of the general multiaxial isotropic case is introduced and the
approach is shown to be straightforward even when the pattern is (easily) generalized
to the viscoelastoplastic case. It is shown that the usual multiaxial effect of ratchet
type obtained through cyclic torsion is not necessarily hardening-dependent and is
existing under zero axial load, in accordance with experimental evidence.
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Notations
(0,e;) orthonormal fixed reference frame (i = 1,2, 3),
t absolute time,
e or d/dt partial time derivative, the only time derivative which is implemented,
M(2*) material point of invariant convected co-ordinates z*, (following the old-fa-
shioned classical terminology of J.A. Schouten type, the z* are the dragged
along co-ordinates),
(M,H,) initial (¢ = 0) field of orthonormal Preferred Reference Frame (PRF),
(M.h;) current (¢ > 0) field of PRF,
(M,G;) initial (t = 0) field of Convected Reference Frame (DARF),
(M,g:) current (¢ > 0) field of DARF,
OP(M,0) initial position vector of M(z*) in (O, e;),
Op(M,t) current position vector of M(z*) in (0, e;),
Zi(M) components of OP in (O, e;),
z(M.,t) components of Op in (O, e;),
(M) invariant co-ordinates of M in the convected co-ordinate system defined at
g =0
G, g, current metric tensor and associated covariant components and determinant,
p(M,t) current specific mass (p,/g = constant masse at M),
V(M,t) current velocity vector defined in (O, e;) (e;V; = e,0z,/dt = d Op/dt),
v vi(M.t)  current components of V expressed in the DARF at M,
Lv  generic symbol of the four Lie derivatives: L... , L -, L. L.,
v,N relative and absolute normal vector (Lvv =0; N N-N = 1),
D(M,t) current strain rate tensor of M (2D;; = 8gi;/0t = Lv..gi; = Vv + Vivy),
T(M,t) current absolute temperature of the material point M (z5),
Dr(M,t) strain rate associated with the usual (isotropic) thermal dilatation
Dr = a(T)TG,
Kn(M,t) current stretches along e, for the material point M (%),
Ju(t) 14 Ka(M,t),
~1,%2,7as current shears in the directions of es, e, ez for the material point M(z"),
d, (M,t) current unit vectors of the principal directions (PPD) of D, resulting in an
orthonormal frame (M, d.(M,t)),
I,(M.t) current inertia-like tensor of the material point M (z*),
in(M,t) current unit vectors of the PPD of I, resulting in the frame (M, i.(M,t)),
5. 05,05 current Euler's angles (precession, nutation and proper rotation) of
(M, d.(M, 1)),
. 0s. s current Euler’s angles (precession, nutation and proper rotation) of
(M,in(M,1)),
25,0 current angular velocity pseudo-vectors in (0,e;) of (M, d,(M,t)) and
(M, in(M,1)),
Q(M,t) current angular velocity pseudo-vector in (0, e;) of the PRF,
as(M,t) scalar used instead of 25 in the special simple kinematics with only one

shear 73,
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0s(M,t) scalar used instead of 2, in the special simple kinematics with only one
shear ~s,
a(M,t) scalar used instead of 2 in the special simple kinematics with only one
shear 73,
©G  current Cauchy strain tensor convected from tr < ¢ to the current state at ¢,
A%e  current Almansi strain tensor defined as the G variation
ke =(G -k G)/2 on |tr, ],
S,0(M,t) current Cauchy stress tensor (o = S,/3),
©8,%0  current Cauchy stress tensor convected from tr < ¢ to the current state at ¢,
ARS  current “variation” stress tensor defined as the S variation S — %S on [tg, t],
S, I, 11, T, deviator of S, trace of S, trace of (trgz}ﬂ. trace of (trgn}fli, respectively,
PP, pi  current internal power received by M per unit extent of ¥, of volume,
of mass, respectively (P = Pi/g=pip/a; Pi(M,t) = p(M,1)p.(M, 1)),
II,,I1,7 current reversible power received by M,
&, d, ¢ current intrinsic dissipation received by M(® = — P, —TI; ete.),
E,E,e current internal energy received by M,
Q.,Qs,q: current internal intrinsic heat supply received by M,
Qe. Qe,qe  current reversible heat supply received by M(Q.x for Kelvin effect),
K,K.k current kinetic energy received by M,
Sy limit stress of the Huber-von Mises eriterion TT, = S5 (associated eylinder
of radius Qp = \/QS;.},
A, ¢t Lamé parameters or similar parameters,
0, relaxation time parameter of the Oldroyd pattern,
M. viscosity parameters of the Oldroyd pattern,
L' equality giving a definition,
et identity,
d;;  Kronecker delta,
£k relative alternator (eqjx = VaEiik),

1. Introduction

THE MAIN RESTRICTIVE assumptions of the study are as follows:
1. The behaviour of the material is supposed to be isotropic.
2. Fatigue effects as well as ageing effects are neglected.

3. Rate-independent hardening effects are neglected for the sake of simplicity,
in spite of the fact that they can be taken into account, to a great extent, through
an effective modelling defined previously [4].

4. Rate-dependent hardening effects are taken into account through a ther-
momechanical modelling which have proved to be effective in the case of a solid
polymer [14].
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5. The temperature is supposed to be constant for the sake of simplicity, but
it is worth noting that the temperature-dependent case can be taken into account
through effective modelling, including the cases of shape memory effects and of
thermomechanical coupling effects [4, 14].

6. The limit plastic behaviour of the material is supposed to be of Huber -
von Mises type for the sake of simplicity, but the Coulomb-like case has been
previously taken into account through effective modelling able to describe the
isotropic-deviatoric coupling effects exhibited by granular materials [5].

7. The cyclic loading paths which are actually considered in this prelimina-
ry paper are “rather simple”, namely not of demagnetization type [7]. Owing to
the above restrictive assumptions, the study is devoted mainly to a simultaneous
modelling of the first and second order effects which are specific of the (ela-
stoplastic) pure hysteresis solid behaviour [1, 3] in the isothermal, isotropic and
without hardening case (cf. Fig. 1a). Moreover, the definition of a rate-dependent
thermomechanical modelling is up to now introduced (cf. Fig. 1b, d) in order to
compare the theory with thermomechanical experimental results obtained thro-
ugh the study of a solid polymer [14].

It is possibly useful to give some hints concerning some of the features of
the presentation. First, the study is mainly confined to the case of shear-type
kinematics, a feature which may suggest that one neglects the use of the classical
way, going from a general framework to a special case, or conversely. This feature
of the presentation is connected with the fact that the case of rotational kinema-
tics is, in essence, the only one which is of fundamental theoretical interest in the
framework of the proposed approach. On the contrary, in the framework of this
approach, the case of irrotational kinematics, of course being of a fundamental
technological interest, may be investigated (in the isotropic case) through a much
simpler study than that of the rotational case.

Second, the (idealized) homogeneous kinematics is the only one introduced
in the study, giving only the opportunity to define some extremely special initial-
value problems. Moreover, with regard to the matter of the Lagrangian-Eulerian
dilemma, the approach is old-fashioned for it follows the line of LODGE [15].
Consequently, a feeling of doubt may arise concerning the effectiveness of such
an approach with respect to the matter of boundary-value problem. It is worth
noting that a comprehensive study of implicit numerical strategies has been given
elsewhere, concerning the step-by-step advancement of quasi-static elastic-plastic
solutions of large size problems discretized through finite elements such as, for
example, notched bar problems, plate with hole problems, necking problems with
shear-band localization and shell problems [16 to 21].

Third, this preliminary paper does not provide any hints concerning a compa-
rison between our proposal and the set of current approaches to cyclic plasticity
and ratchetting effects. On the one hand, it is well known that many papers
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on cyclic plasticity appear every year. On the other hand, it is worth noting
that one of the most impressive efforts ever achieved in the field of fundamental
technological research based on continuum mechanics, has been indeed applied
to the matter of (quasi-isothermal) second order effects of ratchetting type (see
Fig. 7 of [22] and [23 to 25]). Consequently, it should be useful to give, in a
concise form, a clue allowing to imagine the sketch of the comparison mentioned
above. In order to be concise, it is convenient to avoid the introduction of va-
rious theoretical elements concerning the notions of reference frame (0, e;) [26],
of motion 2*(M(z*),t), of current metric tensor G(M (z¥),t), of current strain
tensor Alye(M(a*),t), of current strain rate tensor D(M (z*),t) and of discrete
memory of a previously selected metric tensor (Cauchy tensor ;,G), and of a pre-
viously selected stress tensor (owing to [27] let us say the “Slebodzinski-Cauchy”
tensor %S). Secondly, it is also convenient to make use of the fact that the vario-
us approaches of Armstrong-Frederick-Ohno-Wang type are well known. Hence
the introduction of the following elements allowing a comparison between the
proposed pattern and the usual set of theories:

(1) The strain rate tensor D involved in the constitutive pattern of irreversible
behaviour is implemented without the aid of some splitting up (of D+ DP type).

(2) From (1) it follows that the hardening notion is not involved before the
definition of a hardening-independent and rate-independent basic behaviour (pure
hysteresis [1 to 3]) which is always irreversible, independly of how small are the
cycle amplitudes of the loading-unloading cyclic path. With the aid of this basic
theory. the effects of transient rate-independent hardening and of rate-dependent
hardening are more easily distinguished and classified.

(3) Following Gibbs (plasticity cannot be described in the framework of the
thermostatics), one drops the idea of some “T.I1.P.- like” generalization of classical
thermodynamics.

(4) Following the old-fashioned sketch of Prager allowing continuous transi-
tion between quasi-elasticity to quasi-perfect plasticity, the basic classical notions
involved in the pure hysteresis pattern are only those of infinitesimal Hookean
behaviour and of single limit surface of plasticity. Moreover, owing to the fact
that manufacturing processes often involve large strains and large temperature
variations on which depends the future material behaviour, the theory must be,
from the outset, defined in the finite strain form.

(5) From (3) and (4), the current Cauchy stress tensor S(M (z*),t) of the
material point M is the only stress tensor involved in the constitutive definition
and, owing to the perfectly closed cycle problem, one admits the use of

‘RS = S(tR) tp <.t; rate of ﬁ?S =i

an assumption involving the use of ARS = S —§S and of rate of ALS equal
to the rate of § along a branch of cycle. Consequently, the use of the discrete
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memory notion is accepted, as well as the implementation of differential-difference
equations in which the delay %8 is a piecewise constant (tensorial) functional of
the loading history.

(6) From (1) to (5), the pattern cannot be based mainly on differential-di-
fference equations specific to a given material. It must be founded, to a great
extent, on general rules involving explicitly both several ordered discrete sets of
pure scalars and the intrinsic dissipation functional @ of discrete memory form.
Thereby a process is allowed of comparison between elements of ordered discrete
sets of energy levels or, still better, between elements of ordered discrete sets of
intensities of rates of &.

(7) From (5) and (6), the pattern is rate-form and the stress rate definition
is a basic issue. Hence the role of Preferred Reference Frames.

(8) The generalization to second order effects must make invariant the basic
ingredients of the first order pattern.

(9) The implementation of Preferred Reference Frames is accepted as rele-
vant [3].

Fourth, a comment may be useful regarding the “rather simple loading path”
restrictive assumption. It means that the features of the ratchet effect during
demagnetization-like cyclic loading processes is not studied in this paper. This
is the main theoretical gap of the study, because the proposed approach already
covers, in the three-dimensional case, the first order effects of plastic hysteresis
and of ferrohysteresis including application to electromechanical coupling effects
[28 — 30]. Owing to this gap, it should be useful to find some clues in the field of
the current ferrohysteretic modelling.

However, the three-dimensional first order effects of ferrohysteresis, including
the intricate case of demagnetization processes, remain difficult to describe thro-
ugh the usual non-mechanical approaches [31 to 35]. Hence the difficulty to find
from now on, concerning second order effects involved in three-dimensional situ-
ations, some useful clues in order to guide the study to come.

1.1. From a constitutive pattern of the first order effects to taking into account the

second order effects

Up to now, only simple hints have been given about the Preferred Reference
Frame definition (cf. [6], Sec. 3.3, 3.5.4. and Fig. 16, for example). This definition
seems to provide an effective and rather general theory in order to deal with
the problem of a simultaneous treatment of the first order behaviour and of
the second order effects. Consequently, it is useful to give immediately a short
reminder concerning the treatment of the first order effects (such as those involved
in the field of multiaxial cyclic plasticity and viscoelastoplasticity). Then, it will
be easy to state how it is possible, with the aid of the relevant PRF, to take into
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account the second order ratchet effects. At first, the two-fold foundation of the
initial constitutive modelling is suggested (Sec.1.2). Next, some simple intuitive
hints (Sec. 1.3) are given regarding the modelling of the second order effects.

1.2. From stress splitting approach and preponderant role of the pure hysteresis
stress contribution to the associated viscoelastoplastic theory

1.2.1. A clue of special interest is as follows: owing to the status of the strain rate
notion and to experimental evidences (at microscopic and at macroscopic scale),
it is not reasonable to introduce a splitting process of this tensor (cf. [6], Sec. 2.1);
consequently, the first assumption which must be introduced in order to respect
the thermodynamical distinction between reversibility and irreversibility, is that
of a splitting up of the stress. Let us suppose that (cf. Figs. 1, 2):

def

(1.1) S=S,+S,+8,; sze{P,,+P,,+P,~,

so that the internal powers associated with an always irreversible process, with a
viscous-viscoelastic process and with the reversible (elastic) process, are respec-
tively:

pn igm Pa/\/ﬁ 2[ - tl'(Sa.D);
Pu if-l_;lll R’)/v@ 2" - t.l'(S]/D);
B = BJyi= —tx(S,D).

Then we postulate the following associated splitting:

E = [‘“Pu 3 Qiﬂ] 57 [—P,, =+ Qiu] =+ [—Pr + Qek] s
E = (Hu . Pr) +’}'?1 +h+@ck)-

of the first principle and of the fundamental equation of Gibbs. Note that the
internal intrinsic rate of heat supply has a non-viscous part Q;, which is comple-
tely non-classical [1]. This splitting allows to preserve the role of the fundamental
equation of Gibbs, namely the role of a hinge between the first principle and its
“entropic” form. Such a formalism results indeed in the following equations of
rate form:

e G, + b, = ([, + I,) + (—Qia — Qi)
= —P—*(Hu"‘Pr)z(_Pﬂ_Hﬂ)*PD'
http://rcin.org.pl
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The main implicit equations of the rate form of the stress splitting approach
(1.1) are:

Ec: ‘_Pn+Qm-. Ea =Hn.+jm

{1-2) Ev = _Pu+Qiu; Eu=()+-fr:a
rz_Pr'{'Qaka Er:_Pr+0+Qek:

and ) ) . ) .

(1.3) S=8,+8S,.+ 8g; SAM, 1y =1 (D(M1),...);

S.(M,0) = 0; C=1,7,0.

Let us suppose that the explicit forms of the reversible stress rate S, and of the
pure hysteresis stress rate S, are well defined. Then, the above stress splitting ap-
proach becomes obviously a strongly constraining approach. The only remaining
“degree of freedom” of the modelling is that concerning the viscous stress contri-
bution. Consequently, the whole theory is not flexible and has two fundamental
epistemological advantages: firstly, it may be easily invalidated through some
experimental evidence; secondly, the definitions of the explicit forms of viscous
type are almost necessarily simple and straightforward as regards the physical
readings of the formalism.

Let us consider that a promising modelling may be founded on the most
effective viscoelastic modelling currently available, namely that of Oldroyd. One
obtains immediately the one-dimensional purely mechanical pattern of the form:

def def def

S, = S51+8;  Sp=mD;  Si/(Oum)+S1/m = D
and an associated global mechanical rate form:

(1.4) 0,8, + Sy = (m +m2)D + 0,1 D,

which is easily generalized to the tensorial case (Sec. 3.1). It is then obvious that
the associated itemized thermodynamical forms are:
E; =0 ~Qy = SoD = naD?,

Ey = S1(81/m) = (8u/m) (S — $2)(S, — S2);

~Q1 = S1(S1/m) = (1/m)(S, — 52)?,
resulting in the global forms:

(1.5) m'E == (9zz/?}1)(8u = T}zD)(Su - ?}'QD);
_QV = (1/??1)(5:1 = ?IQD)Q 37 ?}'QDQ.
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Consequently, the set of basic forms defining the viscoelastoplastic theory invol-
ves, regarding the viscous features, a tensorial generalized split into its isotropic
and deviatoric parts:

Eu = Ev(} + E"uda QU = Quﬂ =t QUd\

with
E,q = (0, /2n51)tr (S, — 2?}525)@» — 2ns2D)
(1.6)
_Qud = (1/2?3<Yl)tr(§u = Q‘Wasﬁ)g F QUEBt'rnﬁz-.
and . _
Eyo = (0,/3)[1/(3no1 + 2n81)] 1w — (3102 + 21m52)] (Lo
—(3n02 + 2ns52) I p,
(1.7)

—~Quo = (1/3)[1/(3n01 + 21s1)] L — (3102 + 2152) I D)
+(1/3)(3n02 + 2n52) 13-

Regarding the pure hysteresis contribution one has always the thermomechanical
equations:

wEa = —whPj; — Do+ Cy; “W(;)a =@+ Cy; w=1or2;
—Piy = SaD; Co = -SaAEQG; tRSa =05
ARSs = Su = D + BB ARS,;
B~ =2u/(wQo)?;  B.= ARS.D,

but the tensorial generalizations of @,, of C, and of the mechanical rate form
giving S,, already suggested elsewhere (cf. [6], Sec. 3.5.1, for example), cannot be
easily recalled in a comprehensive form in the present short section (cf. Sec. 3.2).

A heuristic illustration may be obtained through the one-dimensional numeri-
cal simulation of a viscoelastoplastic cyclic behaviour. This illustration is inspired
by the famous experimental study of MADELUNG [9]. More exactly, the qualitative
modelling regards the results obtained by Madelung at relatively moderate rates
and exhibiting therefore moderate viscous effects. The parameters of the pure hy-
steresis stress contribution (Fig. 1a) are: p = 150 GPa and S, = 200 MPa. Those
concerning the viscous effects (Fig. 1b) are: m; = n2 = 100 GPa s, 6, = 100 s.
The reversible pattern (Fig. 1c) is of power type (cf. Sec. 3.1) in order to obtain
the qualitative features of ferrohysteresis (Fig. 1d). The rates E,, E,, —Qq. —Q,
are shown in Fig. 2 (parts a, b, ¢, d, respectively).
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1.2.2.  The preponderant role of the pure hysteresis siress contribution S, has
been suggested previously (cf. [1] to [8], particularly in [6] and [7]). It is made
conspicuous through the above illustration.

1.3. Short reminder intending to suggest the modelling through the heuristic case
of the rotational triaxial kinematics with only one shear

1.3.1. Let us consider one of the three stress contributions S, S,, S, involved in
the splitting of the actual stress S. For the sake of formal simplicity it is convenient
and not restrictive to choose the reversible contribution S, in a Hookean form.
The obvious generalization of the thermomechanical definition of S, is done “in
the PRF”, namely

[BS:J /6t]hr‘i ® hr_} d:‘rf BT".jhl‘,; ® h-r.‘ = Br;

def

Brid = A\ 1,69 + 2u,DY;  Q, = 0,

E, = tr(SD) = (1/3)I+14 + 57 D"

= (1/3)[1/(3A + 2w Lrfor + (1/21:)875..

It is formally similar to the infinitesimal Hookean form, except that it implies fir-
stly, a time derivative in the PRF, secondly, an appropriate definition - presented
below — of the base vectors hr,(z¥.t) at the material point M(z*) and thirdly,
no energetical drawbacks (cf. [10], for example). One of the obvious consequences
of the new constitutive definition is that its expression in the fixed frame (0, e;)
involves a complementary term [X.]. Starting from

8S,/0t =" [zﬁiek ®e1] /ot =" o [S:.dhr,; ® hrj} ot
and substituting the above stress rate definition, one obtains:
SHer ® e = Bhr; @ hr; + [Z,] = B¥ley ® ¢ + [2,),
[2,] = S¥(ZH)(hr; @ br; + hr; @ hr;);  Br¥ = A 1,6% + 24, DX

1.3.2. From the hints given above, one may conclude that the derivation of the
additional tensors [X] results in forms which are not working and which are
similar to that of Jaumann regarding the role of the stress, but which are utterly
different regarding the role of the kinematics. These points are made conspicuous
below (Sec. 1.3.4 and 1.3.5) in a special case and are studied further in the main
part of the paper (Sec. 2.5).
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1.3.3. However, a special comment is required concerning the third additional
term generally involved by the stress splitting up approach, namely concerning
the tensor [¥,]. Let us consider the deviatoric part of the contribution of pure
hysteresis type defined as follows:

PR&SH::} ha; ® haj = ()
[Zﬁ—ﬁ:,} } ha; ® ha; = {?1 ha; @ ha;
ar [zg,ﬁ*-* + 8%, A 5| ha; @ haj.
[t is necessary to know if such a definition results in the relation
or > _
AALTN ot = BY + [ALT M [ALS,]
= ALSY (A TH) (ha; ® ha; + ha; ® hay).

A short derivation shows that it results in the former expression involving [Z,].
Consequently, there is no amalgamation of the intrinsic notions of discrete me-
mory (’Rgff) and of stress variation (A%SY) with a spin effect which cannot be
entirely intrinsic, due to its partial dependence upon the loading process (a fe-

ature suggested below in Sec. 1.3.5), and studied further in the main part of the
paper.

1.3.4. Before dealing with the definition of the base vectors hr;, ha; and hv;,
let us consider once again the case where S may be represented by only one of
the three possible types of stress contribution (for example: S = S,;h = h,, like
above, Sec. 1.3.1). The formal consequences of the approach are easily introduced
in a simple kinematical case, namely that of a simple or pure shear defined in
(0, ex) through the following forms:

0= -2+ ._I121 = —22 + J‘222 = 2"\;:;(t)23 = —23 =5 J;;Zg,
(Gh=1+Ks n=1238)
3

D= ZDn.en K e, + Dfl(e2 ®6‘3 +e3® eg), Dn == I.(n/'}ns
1

J3Dy =5 +Ds,
3
Si= ZEﬂen Re, + 14 (e-2®e3 +e;®es),
!
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0 = —h;+e;=—hy+ecosa+ezsina = —hz — essina + ez cos a,
a(0) = w(0)=0;  a(w(t) < /2,
where the subscript r is omitted. One obtains:
¥ = (A+2u)Dy + ADg + ADs,
Yo+ 2846(y3,%3) = ADy + (A + 2u) Dy + ADs,
$a — 2846 (73,93) = AD1 + ADa + (A +2u) D3,
L4 — (22 — £3)a(y3,43) = (u13/J3)Da + (2u/Ja)s

The complementary tensor is deviatoric and does no work (E = 2(25 — X3) 4
—2%4(X9 — E3)& = 0). The right-hand sides of these equations are 0, 0, 0 and
2uy respectively, in the simple shear case (D, = 0, n = 1,2,3). Consequen-
tly, one may imagine firstly, that the second order effects are exhibited through
such a system of differential equations (giving the relationships between S ... Sy
and Ky, Ko, R’g,'}g) and that, secondly, ratchet effects are involved in the pure
hysteresis case, namely in the case where the system of equations is of differential-
difference type.

I

1.3.5. It remains to suggest the definition of the base vectors h;, both in the case
of a unique contribution and in the case where several contributions are simulta-
neously involved, in order to define a relevant pattern of the actual behaviour. It
is convenient to consider at first the more interesting contribution, namely that
of pure hysteresis, making the assumption: S = S,,.

Let us suppose that the problem of the initial position of the PRF is solved.
The definition of the current motion of the base vectors ha; is then given by the
following set of rules:

1) The motion of the PRF is continuous and defined by the angular velocity
which is generally the sum of two terms, kinematical and thermomechanical,
respectively.

2) The kinematical angular velocity cs of the PRF is given by that of the
principal directions of the strain rate tensor D. Consequently, s is obtained
through the time derivative of

(1.8) tg 2a5 = 2(Ja¥ — vJ2)/(JaJ2 — JoJ3),
so that the second derivatives of the stretches are involved in the &é form:
(1.9) g = [(Jay — Ja)Ja — (Jory — Jod) Iy
+ ((Jgjg == JQJ:;)'Y] [Jz cos 2(](5/(.]3.}2 = .}2.}3)} .
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It is worth noting that, for the isotropic continua, pure shear kinematics Ko =
K3 = Oresult in g = 0, like in the case of triaxial kinematics with fixed principal
directions of stress and strain.

3) The (complementary) thermomechanical angular velocity of the PRF, cy,,
is defined by three-fold approach.

a) In the first step one considers the angular velocity QV, of the principal
directions of the “@,-inertia” of the deformable material point endowed with a
homogeneous field of intrinsic dissipation @,. The role of @, is prominent because
it allows the cases of homogeneous mesostructures to be distinguished from those
of heterogeneous types.

b) Secondly, the explicit relationships between Q@and the kinematics is obta-
ined (in the homogeneous case), by means of the time derivative of

(1.10) tg 20, = 4y3J3/[(J2)? = (J3)* + (213)7],
(cf. Fig. 8), so that 9¢ is a linear form:
b = A1 K\ + AsKy + A3K3 + Agy; A =0

Ay = -—4‘7.}2J3A_1;
(1.11)

o
[
I

2y(4y2 + J2 + J3)A7,
Ay =20(J2 - B -42)A7Y,  A=16v2T2 + (42 + J2 - J3)?,

with respect to the rate of stretches, the coefficients A being however non-linear
functions.

¢) In the third step, the thermomechanical angular velocity is defined as a
“small” and constitutive part of the spin 9;,, defined by the general condition

(1.12) gy < 0,

and by a constitutive definition of pure hysteresis type:

[ ) t n
R®pa rOs =0,

(1.13) Gga = Ahage = F'((AL04)/w)b4,

ARaga = wF((AR0y) /w),
suggested in Fig. 3 (where the ag, — 0, and ay, — 6, diagrams are able to make
conspicuous the relationship between ¢y and 6, as soon as the reading is done

under the assumption: 6, = 1). This definition may be obtained through the time
derivative of a form such as:
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Cyr

lx‘-

k

F1G. 3. A sketch suggesting the definition of the thermomechanical angular velocity
involved in the definition of the PRF.

(1.14) F(8) = —ao(1 — exp —(—6%/Rg))th(8/ Ry);
0<apxkl; 0< Ryk 1,

where the constitutive parameters are o (intensity parameter, ~ Sp/u) and Ry
(location parameter, ~ So/pu).
4) Finally, following the splitting rule 1:

(1.15), Gy = O + Qga; h,2 = (—sinages + cos age3)dy,;

h,3 = (cos ages — singe3)d,
and, if a reversible contribution is involved (S = S, +S;.), one has also (cf. Fig. 3):
(1.15), Gr =G5+ Gpr;i  Gpr = Fg,(0,)00;  agr = F(0,)

in order to define the base vectors h,.,. Consequently, it is not necessary to make
use of a specific set of constitutive parameters o, and R,,.

5) It is worth noting that it is not effective to modify the definitions of &,
and &, making use of a very simple form of tg26,,, such as 2vy3/.Js, resulting in

(1.16) 5',,, = (24303 — 2v3K3)/(J3 + 443).

1.3.6. An example of illustration is given in Fig. 4 a,b where the “axial stress-
shear strain” diagram is obtained by a numerical simulation of the above pattern
under the following conditions: 8 = S,; v3 > 0, K,, = 0, n = 1,2,3, resulting
in fixed principal directions (s = 0) of the strain rate tensor D. The constitu-
tive parameters are: A = 2u = 150 GPa; Sy = 200 MPa; o9 = (1/2) So/u:
Ry =4 (So/pt). Note that the ratchet effects are also obtained using the intuitive
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definition (1.16) of the spin #, but that these effects are not physically relevant
(Fig. 4 ¢, d). The intuitive approach is no more satisfying in the case of “not
symmetrical” sets of cycles of different constant amplitudes (cf. Fig. 5 a, b for
the thermomechanical approach and Fig. 5 ¢, d for the intuitive approach, both
obtained under a small initial compression —Sp/1000).

]I‘_ | Rl G il Wl RO oy i o (b I_ ]1 L T . i a0 Tl S 1

1 8 ‘

-3 1 a0 ;

O.H Lt e I |- U_- it o] G ) 1S Y O R 1-

0. 1 1. 0. i [
(b) [d)

2 R B T T A D R L R I_ 2~'[ | Pt [ A Pl TR N e Gagk ¢ i

S 1 Sz !
(10%) (10%)

_2- T S s il Pl e S '2-' O T UL TP 1000 W 0 N0 A

0. i Il 0. Y 1.

Fi1G. 4. Ratchet effect (b) exhibited after a small traction through the cumulative increase
of the axial stress compression S35 during the eyclic simple shear (a).
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Fic. 5. Ratchet effect (b) in the case of several sets of cycles (a). The intuitive approach
based on (1.16) results in (d) for a first order behaviour (¢) identical to (a).
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1.4. Towards a rather general pattern of rate form defined in the PRF

The first part of the paper is devoted to the definition of the PRF (Sec. 2).
Some remarks are added concerning the three basic stress contributions of the
viscoelastoplastic pattern (Sec. 3). In order to supplement briefly the illustration
given by Figures 4 and 5, comments are added concerning the results available
from now on through various numerical simulations (Sec. 4).

2. Definition of the Preferred References Frames

In this section the clue of the presentation is that suggested above (Sec. 1.3.5),
namely a series of relationships, firstly between frames and spins, secondly be-
tween spins and spins, finally between spins and frames. In the first part of the
paragraph (a generalization of point 2, Sec. 1.3.5), one starts from the frame
(M,d,,) of D to derive the “kinematical” spin €2;. The cumbersome formalism
is two-fold: a) that of giving, through d,, the notions of the principal direc-
tions; b) that associated with the basic “direct” form £3d A d. The second part
(a generalization of points 3 a,b, Sec. 1.3.5) is devoted only to the definition of
the “inertia-like” tensor I (the derivation of the relationships between the fra-
me (M,1i,) and the spin € is omitted because it is similar to that concerning
(M,d,,) and §25). The third part of the paragraph (a generalization of point 3c,
Sec. 1.3.5) is the only one which may be interesting from the constitutive point
of view. One defines a constitutive relationship between the spin €2, and the
thermomechanical spin £, in order to obtain the spin of the PRF through the
spin splitting, similar to (1.15):

Q= Qs+ Q,(82); Q, = fQy.

Note that the proposed relationship between €2, and €, is isotropic, and that the
definition of the involved scalar factor f is a basic issue. The fourth paragraph (a
generalization of point 4, Sec. 1.3.5) deal with the relationship between the spin
Q and the PRF. The cumbersome formalism is that expressing the rates of the
base vectors in terms of the basic “inverse” form Q A d.

2.1. The “kinematical” term involved in the splitting of the angular velocity of the PRF

2.1.1. In spite of the fact that, in the isotropic case, simple kinematics is sufficient
to study the constitutive functional relationships between the space of strain and
the space of stress, the anisotropic generalization must be kept in view. Therefore,
it 1s not suitable to consider an oversimplified form of the strain rate tensor. In
(0,e,), an interesting expression of

18— E;Dnen R e, + Dd(ez ®e3t+ez® 92) + D5(83 ® ey + e ®e3)
+Dg(e; ® ez + e ® e;)
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may be, for example, that obtained in the case of a six-parameter deformation in
the reference planes of the fixed frame (0, e,):

0 =2+ 12! + 2972, 2! =Z'  for example,

0= —224+02%2 42322 22=2% for example,

0=—-234+02%+2%2', 2°=2Z3 for example.
One obtains immediately:

D = (1/2)0G/dt = [g' @ g'|[J1h + dm#] + ...

+ g ®g® +8° ®g|[Joys + Jaks] + ...
= ey ® e1][(J1 /1 + 8niv2ys/ T Jods) (1 + K) 71 +...
+ea ® e3 + €3 ® e3][(4a/ Js — 2y /oy — Joy3/ 2 T3

+2vom Ja/J1 Jads)(1 + K)~Y +...
= [e1 ® e1][J1/h + 8mAeys/ S o)1+ K) '+ ...
[e2 ® e3 + €3 ® €3][C3/J3 — (272/J2)(C1/Th)]
Co="4n = (n/Jm) W m(n) =3,1,2%  n=1,23

K = 8yi1v2v3/J1J2J3.

This form make conspicuous the difference between 3-shear and 1 or 2-shears. In
the current study T is supposed to be constant and D is not modified by Dr.
However, it is worth noting that the stress splitting approach may be generalized
to the variable temperature case [4].

2.1.2. In order to introduce an explicit overview of the algorithm giving the kine-
matical spin €25 for a given D (and giving also 24 for a given I), it is useful to
set the notations needed for the derivation of the components in (0,e,) of the
unit vectors d,,. The notation of the determinant equation and of its associated
roots (supposed to be unequal) are:

det[Drs a dérs] - elijk[Dlt' - d5ll][D2j s ddlr][DiL T dél}k] =0,
d® — Ipd® + IIpd — detD = d* + pd® + qd +r = 0;
Ip=—-p= D)+ Ds+ Dg,
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p = (1/2)(Ip — Di;Di;) = q = D, Dy + DyD, + D, D,
-D3? - D? - Dg; IIlp = detD = -,
dm = 2y/—a/3cosly/3 + (m — 1)27/3)], m=1,2'3
cosy = (=b/2)/(a®/21)'/%,  3a=3¢q—p*  27b=2p® — 9pq+ 27r.
The notations concerning the principal directions are:
(Dps — didps)ds, = 0; din=d%e;

giving, in (0, e,), the three unit vectors d,,, (associated with the above roots d,,
and giving the principal directions of D); it is also possible to derive the explicit
forms giving the components d5, of d,, in (0,e,). The derivation is obtained
through the implementation of a relevant set of minors:

M = (1/2)e7%e™t(Djs — dndjs) (Dt — dnbye) of (D — dnd).
Explicitly:
Mt = (Dy — d3)(Dgy— dy) — (D)% M = DyDs — (D3 — dy)Dg;
M}3 = DgDy — (D3 — d,,)Ds;

M2 = (D3 — dpy)(Dy —dn) — (D5)%;, M2 = DsDg — (D1 — dy)Dy;
M = (Dy — dn)(Dz — dn) — (Ds)?

d, = (M!e; + M 2ey + MI3es)/[(M2)? + (M2)2 + (M13)%)1/2,
nudi=1,2:3.
d,, = (Ane; + Bres +Cres)/En;  E2= A2 + B2 402
Ap = MPY B,, = M3%; Cn = MP,

mn

associated with the convention i = n, namely with the implementation of the set
of minors [M"™!, M™% M™] with the root d,, for the derivation of the vector d,,.

2.1.3. It remains necessary to obtain the explicit form of the components 2§ of
the angular velocity pseudo-vector:

(2.1) Q5 = Qfe, = (1/2)Z3du Ady;  dy =dTem
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The rate d"::‘ involves the rates A, ..., E,, namely the rates of the products D, Dy
and D,d,. Hence, the second order time derivative K and % are involved. One
has indeed: ]

Ay = 0[(D2 — dy)(Ds — dy) — (Da4)?)/0t;

E3E3 = A3As + B3B3 + C3Cs, ...
(1 + K)Dy, = Ji/Jy = (H1 /1) + (2 Ty — 2n 1/ TE) [4v2v3 / Ja ]
+(/0)[[0(r2/ J2) /0t (v3/ J3) + [0(73/ J3)/ 0t]]
(y2/J2)] — DnOK/8t; ...
dn = 0[2(—a/3)"/? cos /3] /t;

—sin®P = 9|(b/2)/(—a>/27)/2]/0L; ...

27b = 6p%p — 9pq — Ipg + 277 a =G — (2/3)pp, ...
—p = D; + D2 + Dg;

G = DyD3+ DyDy + D3Dy + Dy D3 + Dy Dy + Dy,

—ZSED.,LD,];

The Euler’s angles of the frame (M, d,,) can be obtained by the integration of the
usual forms involving the components 2§ (05 = Qg cos 5 + .f?f sing; ¢s sin fs;
¢pssinfly = Q} sin s — .Qg coss; ...).

2.2. The “power inertia” tensor L

2.2.1. In order to follow the clue given above (Sec. 1.3.5, point 3a,b), it is necessary:
i. To define I giving the inertia-like frame (M, i, (M, t)) and £24(M,¢);
ii. To define the scalar function (or functional) f involved in the splitting
giving the spin of the PRF. The second issue is studied below (Sec. 3). Here the
attention is focused on the definition of L.

2.2.2. As soon as a rather general approach is needed, the relevant method of
definition of I4(M,t) must be, in principle, introduced working “on the chart
of the convected co-ordinates z*, in the field of the DARF, (M,g;)". The two
main steps of the approach are, first, to define the relevant field of power (say
@) and, second, to define the inertia-like tensor of the material point in the
four relevant cases, namely: a) the @ — homogeneous and isotropic case; b) the
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@ - homogeneous and anisotropic case; ¢) the @ — heterogeneous and isotropic
case; d) the @ - heterogeneous and anisotropic case. In this preliminary study
it is reasonable to deal only with the isotropic cases a) and c). Let us consider,
in the @ — homogeneous isotropic case, the pseudo-scalar field @(t) of intrinsic
dissipation. The problem under consideration being kinematically homogeneous,
the co-ordinates: ¥ = ident = Z*; k = 1,2, 3 are rectilinear at the initial time
t = 0, and remain rectilinear during the deformation. At the current time:

(2.2) I(M,t) = I'g; @ g;

= [ / / . / ot (M) (;M)qb(t)p(gﬂﬂd;-:"dz:jdxk] g ®gi

— [/ / / I*'(M)rf(M)é(t)d:r*'dmx*] gi ® gj.

Performing the integration from —1/2 to 1/2 one obtains

[12/D()1(t) = g1 ® g1 + g2 @ 82 + g3 ® 3.

The frame (M,1i,,) is therefore defined by the principal directions of I =
dg; ® g;. Instead, making use of the covariant form I;; and of the associated
determinant equation det|[(] — d)g;; — I;j] = 0, I = g;;I9, it is relevant, in a
theoretical study of “homogeneous problems”, to express the tensor I in the fixed
frame (0,e,):

I= (e +2ve3) @ (J1e; +2vie3) + (2721 + Joe2)
® (272e1 + J2e2) + (273€2 + J3e3) ® (273e2 + Jze3)
= [(J1)% + (272)%]e1 @ e1 + [(J2)? + (213)Ye2 ® €3
+[(J3)% + (271)%es ® e3 + [J3273)(e2 ® e3 + €3 ® e3)
+[1271](e3 ® e1 + €1 ® e3) + [J2272](e; ® ez + e @ €1).

It is worth noting firstly, that in the heuristic one-shear case, one obtains imme-
diately not only the usual results: tg26, = 0/0 or tg26,; = 0 and J3/2v; for the
cube, the rectangle and the rhombus, but also the previously introduced expres-
sion (1.10) of tg20,; secondly, that the initial orientation of the PRF (M, Hy)
may be chosen arbitrarily (0/0 form). From the above expression of 1, one obtains
the frame (M, i, ) using the previous forms (cf. Sec. 2.1). The only difference with
the treatment concerning D comes from the fact that the time derivative of the
components in (0,e;) of I does not involve the second derivatives J, and ¥ of
the stretches.
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2.2.3. Let us now consider, in the heterogeneous isotropic case, a material point
endowed with a characteristic sub-structure at a physically relevant mesoscale of
Néel-Krumhansl type. For example, the field of power (intrinsic dissipation @ or
elastic power E',) is so strongly heterogeneous that it is almost homogeneously
located near the faces of the material cube. Owing to the definition of I, two
basic types of mesostructural processes must be distinguished, according to the
existence or absence of a perfect dragging along of the power field. In the first
case the principal directions i, are insensitive with respect to the mesostructure.
On the contrary, if the microprocesses taking place in the walls involve a typical
invariant micro-length ey and an associated typical meso-length Jy (and if the
process is sufficiently slow to allow the homogeneity of the power in the walls),
then the vectors i, are dependent on the nondimensional parameter: e = eg/J.
For example, in the two-dimensional case, one obtains the i, from:

I =T I(COI‘@) = [(J2)2 = (2F3)2162 X es [(.fg)2]eg @ es
+[J32I3)(e2 ® €3 + e3 @ €2) — [(J2)? + (273)%|ex ® e
—[(J3)%es ® e3 — [J3273](e2 ® €3 + €3 ® €3).

In spite of the fact that sophisticated mesoscopic modelling [11, 12| are not cur-
rently included in the theory, it is worth noting that the definition of the Pattern
of Rate Form in PRF may, in principle, be mesoscale-dependent, through the first
order effects (for example those of anisotropy) as well as through the second order
effects, as suggested above: the theory is not “incomplete” in the sense supported
by Bunge.

2.3. The definitions of the thermomechanical spins through spin-spin isotropic constitutive

relationships

2.3.1. Pure hysteresis (S = S,) and ® - homogeneity, Let us consider the current am-
plitude of rotation and the current amplitude by branch:

t t
(2.3) AR, = / (tr22)2dr,  ALR, = / (tr22)2dr

0 R
given by the integration in (0,e;) of the history of the spin €4. The thermo-
mechanical spin §2, is defined as equal to Q4 up to a scalar functional f; of

Ra):

(24) Q,u = fnd
where f is defined by taking as previously (Sec. 1.5.5, point 3c¢) the derivative
(2.5) falRofw) = OF [Rs/w]/0R,
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with respect to Ry of the constitutive scalar functional of pure hysteresis type:

Fa(ARRy) = —ao[l — exp —(AR Ry/Ro)*|th( AR Ry /wRo);
(2.6)
0<ag<l; 0< Ry < 1; w=1or 2,

The resulting global spin components 2* in (0,e,) of the PRF are such as

.Qk — Q:;(Jn_- Tns jm Vs Jns ;];'u)
+F[A%LR) 25 (Tny Yai Jns An)-

2.3.2. Reversibility (S = S;) and homogeneity with respect to the reversible power. The
approach is similar, but now f is defined as a function:

(2‘?‘) fr(Rcﬁ) = BF?~(R¢)/8R¢:
(2.8) Fr(Ry) = —ap[l — exp —(Ry/Ro)?*|th(Rs/Ro);
0<ap<kl; 0< Ry < 1.

2.3.3. The coupled cases S = 8, +S,,or S =S, +8,,0r S =S, 48, ,0r S =S,+485,+8S,, with
associated “homogeneity” with respect to the inertia of the powers. In the first case the
approach is similar (F, = F,) to that suggested in the Introduction (Sec. 1.3.5).
But in the three cases including S, the theory cannot provide reasonable physical
arguments to choose between the two following types of definitions: firstly, a
partial spin splitting up obtained through the amalgamation of h, and h,, leading
to the unique PRF of base vectors h,.,; secondly, a perfect splitting leading to
separate definitions of h,, h, and h,. The partial splitting associated with the
first definition may be defined as above. On the contrary, the total splitting
associated with the second definition imply that the base vectors h,, are defined
by a viscous pattern.

2.4. From the differential-difference equations and/or differential equations of the PRF
to the constitutive equations in the fixed frame

i. The base vectors h,, of the PRF (in fact each type, h(a), and h(rv),, of
base vectors of the PRF(a) and of the PRF(rv)) are obtained by the integration
of the differential-difference system (cf. Eq. (2.7)) defined above (cf. Sec. 2.1.3).

ii. In (0,en,):

h, = H"em = 2 Ah, = 2 A (H"e,) = [Q™em

=
1

- 5 ! !
= HE.Q“ - H,;J’?S: M= Hll =cospeosty —sincosfsing;...;
F3$ = cos@.
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The generalization of (1.11) results in intricate forms of the complementary de-
viatoric tensor [£]. It is indeed linear with respect to the components ¥ and
(P

[E]“ a 2(_(2‘2213 1 !23}:12); s [2123 A 01(222 e 233)

—220¥ - P58
but ' are given by (2.7).

2.5. Remark concerning the comparison between the PRF spin term and the usual spin terms
Instead of the constitutive definition such as:

[0S /ot]h; @ h; = Bhr; @ hr; = B

given in the relevant PRF, let us consider similar usual definitions of Oldroyd
type, of Rivlin type and of Jaumann type:

def

(LvS)y = [05Y/ot)g; @g; = Bigr, 2 gr; =B,
(Lv.S). = [8Si;/0tg' ®@g’ = Bigr'@gr =B,

(Lv=8); = (1/2)[(057/0t)g: ® &; + (9Si;/0t)g' ® &)

= Bgr, ®gr; = B.

In (0, e;) the constitutive definition involves the complementary terms of Oldroyd,
Rivlin and Jaumann types:

Z], Sij(Efé)(ga_' ®g; +&i ®g_;:),
(], = S;(EH) (e e +g ®e),
[Z); = @/2)([2], + [2],),

respectively, instead of

I

[Elpre = $7(Z*)(h; ® b; + h; @ hy).

The linearity with respect to the stress components £* in (0, e;) is a feature the
four constitutive definitions have in common. But the main difference between
the PRF definition and the usual ones lies in the fact that the PRF definition is
not directly linked to the kinematics. A constitutive ingredient may be involved
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through the definition of a wectorial function or functional of the power-inertia
spin £2,. Moreover, it is even possible to make use of a scalar function or func-
tional, if one addmits, like in this paper, that the orientation of 2, needs not
to be modified. The point deserves thinking about with the aid of a formally
simple illustration. In the special case of the one-shear kinematics, for example,
the explicit forms of the [£ | tensors are:

[Z], = (2Z1D1)(e1 R e1) + (282D5 + 4X4Dy)(e2 @ €3)
+(2X3D3)(es @ e3) + 283 D4 + La(Ds + Ds)](e2 ® es + ez R ea),
[Z], = (=251D1)(e1 ® €1) + (—2Z2D5)(e2 ® e2)
(=253 D5 — 44 D;)(es ® e3) + [~2Z2Dy
—Y3(D;y + D3)](e2 ® e3 + e3 @ e3),
(Elprr = (Z4d)(e2 ® e2) + (—Xad)(e3 @ e3)
+((23 — Ea)a(eg ® e3 + e3 @ e3).

If Di = (3 + 43)D2/J3 may be reduced to 43, the components of [L]; are
factorised by 43, but that of [E]prp are factorised by a function or functional, as
it has been stressed in Sec. 1.3.5.

3. Remarks on the definitions of the three basic sets of thermomechanical
rates, of viscous type, of reversible type and of elastoplastic type,
respectively

3.1. The viscous and reversible stress contributions

i. An Oldroyd-like viscous stress contribution is defined through the usual
covariant pattern:

S, =81+8y; Sy = (baA2)Ip8 + 2(O2p2)D = no2Ipd + 215D
associated with the unusual rate form:

(0SY /otlhv; ® hv; = (1/8,)[=SY + n01Ipd™ + 2151 DV hv; @ hv;
defined in the relevant PRF. Eliminating S; and Ss one obtains the global form:
[0S} /0t] — B(n02Ipd* + 2n52 D) /Ot]hv; @ hv;

= (1/8,)] = S + (o1 + no2)D¥]hv; ® hv;
and the associated splitting into isotropic and deviatoric forms:
8,1, + L, = [3(no1 + 102) + 2(ns1 + Ms2)Ip + 6, (3n02 + 2ms2) I,
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[933 B } hv; ® hy; = [2(% +7152)D7 + 0,205:D " | hv; ® hv;.

The thermomechanical rates have been already given (Sec. 1.2). Owing to the
fact that the definition of the PRF (M (%), hv;(M(a*,t)) is obtained through
integration of an angular velocity with respect to the fized frame (0,e;), the only
possible interesting invariance of the above constitutive pattern is that under
constant rotation of the co-ordinates system z* referred to the fized material
reference frame associated with (0,e;).

Moreover, the boundary conditions are specified in the fixed frame (0, e;) of
the experimental machinery, whatever may be the underlying clue of the strategy
of the loading. This specified program, actually “defined” in (0,e;), is endowed
with the above invariance.

The set [constitutive equations ; boundary conditions]| is then endowed with
the invariance introduced by W.A. Fock [13].

ii. The simplest differential definition of the generalized Hooke law is:

S¥hr; @ hr; = (A Ip6"? + 2, D¥)hr; @ hry; I = (3A\- + 2,) I p;

S,hr; @ hr; = 2,D

In order to obtain a diversity of qualitative simulations, it may be supplemented
with:

Sihr; ® by = ([ + (200/3)(1 = (Q/Qo)")pd"
+2u, (Q/QD)"DI'J]hI‘j ® hrj,

Io= @\ +2u)Ip; S, hr; ® hr; = 2u,(Q/Qo)"D,
Q% = tr[(Z:'z?E)Z]; Z;’ZE = Afe — (1/3)Gtr(A%e);

ot = t
for example, or with

Sijhl‘i ®hr; = (A,-I;)(Sjj + 2u,. DY + Erﬁ,._gj‘;) hr'® hr;
= I, = 3\ + 2u,)Ip;
S hr, @ br; = 20,0 +B,P,5,; P, =tx(5,D);

1 o 2
By = 2,/ Qp-
in the case where bounded stress states have to be simulated. The last form
may be easily modified in order to obtain a classical “three stages” behaviour
along the first loading paths. The thermomechanical rates have been already
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given (Sec. 1.3.1). Concerning the question of invariance, the useful remarks are
similar to those given above.

3.2. The pure hysteresis stress contribution

Some rather detailed analysis of the formal features of the tensorial pattern
have been introduced recurrently (cf. particularly [5, 6] and [7]).

The basic features which are to be considered here are the following:

i. The definition is built in the Iliushin space, making use of the components
in the PRF of the relevant tensors.

ii. For each stress (or strain) path it gives the corresponding strain (or stress)
path.

ili. To a fixed rotation of the co-ordinate system referred to the testing ma-
chinery, is associated a rotation in the Iliushin space. Consequently, the question
of invariance arises as stated above.

3.3. Remark concerning the boundary conditions specified in the fixed frame in order
to study a pattern defined in the PRF

Regarding the complexity of the loading processes it is worth noting that the
constitutive patterns defined in PRF do not result in more intricate problems than
those following classical approaches. Let us consider an example of one-shear test,
namely that performed in order to obtain, in the stress space, a deviatoric path
along the circle: Iy = Qs— Qo = 0. The path definition involving an invariant, one
can make use of the components in the PRF or of the components in the fixed
frame: the representations are identical. The complexity of the control stems from
the classical geometrical non-linearity associated with finite strains: the rotation
of the PRF is not involved.

Let us now consider a much more intricate case, namely the case of a path
defined not only by relations which are invariant in the ordinary sense (such as
I = 0. for example) but also by non-invariant relations between components in
the PRF. In such a case, the rotation of the PRF is explicitly involved in order
to obtain the relations of the above components with the components in the
fixed frame and finally, with the forces on the facets of the material point. The
complexity of the problem is of a standard level: well-founded approximations
of the spin forms are useful. The last issue is all the more important that the
strains are large because the classical geometrical nonlinearity is able to hide the
genuine constitutive features. In the one-shear case, for example, the forces on
the faces n(n = 1.2.3) of the “cube” of dimensions 0 < 2 < 1, k =1,2,3,

F{,,J = gisf \/EV_:'M =% gisf \/5(5?9
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the associated forces per unit area f(), and the normal and tangential compo-
nents p'™ and t(“’associategl with the forces f(™are indeed connected with the
mixed stress components S in (M, g', g;), and with the stress components Xy
in (0. ex) through the following equations:

£ = FO/ Ry =g'sth;  pP =81 =2u; V=0,
£® = F®) /7,0y = g253.J5 + g S5 Ja;
p® = 83— (29/5)S3 = Saz;  t¥ = S}Us/ Sy =T,

£ = FO/J1\[ 3 + 472 = (€253 + S (JaJa/\/ 13 +4%),

p? = 83— [(2v])/(J3 + 4S5 ) = S3(Jaa/ (I + 497,
S3 = Tgp — Toa(2v/Js); 3 =Das +Tas(2y/Js);  S3 = Taaa/ s,
S5 = (So2 — Sa3)((2v/J3) + Ba3[(J5 — 49%)/ o 3.

The geometry is involved (with 2v/J3) in the relationships between
Yoo, Y3, o3, p@ and (2, resulting in a noticeable experimental difficulty if one
tries to perform accurately a path selected in the stress space of Iliushin associa-
ted with the stress definition in PRF. For the facets n = 2, intricate rate-form
equation are involved.

4. Concluding remarks

A number of numerical simulations has been performed. It may be useful to
give a brief account of the features of this study and of the results from now on
available.

4.1. Features of a short span numerical study of homogeneous problems

i. The numerical study has been restricted as follows.

In order to suppress the effect of hardening one considers the pure hystere-
sis case such as S = S,. Moreover, the global form of the pattern is strongly
simplified, firstly because only its deviatoric part is of pure hysteresis form (its
isotropic part being reversible), secondly because the plastic limit is as simple as
possible, namely of Huber - von Mises type. The physical parameters are always
A = 2u = 150 GPa, Sy = 200 MPa for the first order pattern, and ap = Sp/2p,
Ry = 4Sp/p concerning the definition of the PRF. Regarding the kinematics,
only the one-shear case is implemented. Generally, the loading programmes are
either such as J, = Jo, = J3 =1 or such as S| = S5 = 0.
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ii. All the loading programmes have been two-fold:

a) firstly, a preliminary irrotational loading is specified through v3 = 0 and
Y3 increasing from zero towards a small fraction of Sp : 3 = £Sp/n (in fact,
n =2, or 10, or 20, or 1000, or 10000);

b) secondly, a cyclic loading is performed (under the constant axial stress
Y3 = +Sp/n previously reached) through a cyclic shear v3(7) on constant inter-
vals, “symmetrical” or “not symmetrical” with respect to the origin of the shear
axis.

iii. In order to compare the thermomechanical definition of the thermomecha-
nical spin §2; with an intuitive definition, each simulation has been performed
two times, making use first of (1.11) and then of (1.16).

iv. The numerical study being not devoted to the identification of a well-
specified actual material, a last simplification has been implemented trough the
assumption ¢s = 0, an assumption which is exactly verified only in the case
Jr=hb=di=1,

v. The case of loading involving “nonsymmetrical” cycles has been studied
also under the stress control, namely under the conditions Sy = S; = 0, and for
the small traction Sz = Sp/10000. Simulations have been performed for several
values of the axial stress Sy (for a unique set of cycles). The result is as follows:
for large axial traction S3(Sp/2,S50/10, for example), the two definitions of the
spin give the same ratchet, but for small S3(1073Sp or 1074Sy, for example) the
intuitive definition of the spin results in irrelevant effects.

vi. The same conclusion has been obtained in the case of a special stress
control, of tri-traction type, which may be a priori able to reduce a ratchet effect
existing under small axial traction (and even under small axial compression, of the
order of —10=*5). The stress control S; = Sy = Sy/100, S3 = 10~4S; has been
studied only in the case of a unique set of “symmetrical” cycles. The intuitive
definition of the spin results in a “ratchet” effect of the first order magnitude,
which is irrelevant to experimental evidence.

4.2. Provisional results

i. With the aid of the proposed pattern, the ratchet effect is hardening-
independent and existing under zero axial load, or even under a small compres-
sion, in accordance with experimental evidence [14, 15].

ii. Saturation of the ratchet effect may be obtained after a suitable number
of cycles (50 cycles; X3 = Sp/10, cf. Fig. 6).

iii. In order to define the thermomechanical spin £2,, a thermomechanical ap-
proach has proved to be effective up to now. Moreover, it allows to avoid the
implementation of intricate approaches extracted from a general tensorial forma-
lism, or the implementation of non-effective approaches based on some intuitive
sketches.
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F1G. 6. Saturation of the ratchet after 50 cycles (initial traction S; = Sy/10).

4.3. Remark

One of the main gaps in the study is that concerning the features of the

ratchet effect during demagnetization-like processes 7]. Some hints are already
obtained, but this interesting issue has not been studied as yet (following, for
example, the method proposed in [7]).
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