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Application of homogenization to evaluation of effective moduli
of linear elastic trabecular bone with plate-like structure
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Cancerrous Bone with plate-like architecture is modelled as an elastic cellular solid
with regular microstructure. General formulae for the effective moduli are derived.
Specific examples concern plate-like cancellous bone with isotropic trabeculae.

1. Introduction

BONES OCCUR IN TWO FORMS: as a dense solid (compact bone) and as a porous
network of interconnected rods and plates (cancellous or trabecular bone). The
most obvious difference between these two types of bones appears in their relative

densities measured by volume [ractions of solids, cf. F'ig 1.

F1G. 1. Photograph of proximal part of the human femur.
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Bone with a volume fraction of less than 70% is classified as cancellous while
that over 70% is compact, cf. [13]. Most bones in the body are of both types,
the dense compact bone forming an outer shell surrounding a core of spongy
cancellous bone. This paper investigates cancellous bones of volume fractions of
solid less than 70%. Typical examples of trabecular bones are shown in Figs. 2-4.

I1G. 2. Micro-C'T image of a trabecular bone specimen with rod-like architecture and a
bone volume fraction of 26%, after [33].

These figures provide interesting visualization of human trabecular bone
architecture obtained by micro-computed tomography [24, 33]. According to
MULLER and RUEGSEGGER [24], specimens with diameters of a few millimeters
to a maximum of 18 mm can be measured. Microstructure analyses of trabecu-
lar bone have followed the general approach used in the cellular plastics fields.
McELHANEY et al. |22| developed a porous block model of trabecular bone ba-
sed on integration of spring stiffness loaded in parallel or in series. Using this
model, they found good agreement between the prediction of apparent stiffness
and the experimentally measured stiffness values in some internal layer of human
skull. PuGH et al. [27] modelled the subchondral trabecular bone as a collection
of structural plates and concluded that bending and buckling were major modes
of deformation of the trabecular bone. WiLLiAMS and LEwis [34] modelled the
exact structure of a two-dimensional section of trabecular bone with plane strain
finite elements to predict the apparent transversely isotropic elastic constants.
GisoN [12] developed the models of trabecular bone structure using analytical
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Fia. 4. Micro-CT image of a trabecular bone specimen with plate-like architecture and
g I
a bone volume fraction of 26%, after [33].

[337]
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techniques for porous solids. He predicted the dependence of apparent stiffness on
apparent density for different structural types of trabecular bones. BEAUPRE and
HavEs [3] developed a three-dimensional spherical void model of trabecular bone
and used finite element analyses to predict apparent stiffness and strength, as
well the stress distribution within the trabecular bone. HOLLISTER et al. [14, 15]
applied the homogenization theory [6, 19, 28, 29| for an investigation of mechani-
cal behaviour of rod-like structures modelling the trabecular bones. By using the
finite element method they evaluated the apparent, orthogonal Young’s moduli
and compared them with the experimental data obtained for proximal humerus,
proximal tibia and distal femur. Bone may be viewed as a structurally hierarchi-
cal porous material. It is then possible to use the iterative homogenization [6] to
derive the formulae for the macroscopic elastic moduli, cf. [1, 2, 10, 11]. Optimal
design of structures often involves the homogenization and relaxation methods
[4, 5, 18, 19, 21, 30]. Such an approach may be used to model bone microstruc-
ture via adaptive elasticity. PAYTEN et al. [26] presented an optimisation process
that has, as its basis, an algorithm originally developed for predicting anatomical
density distributions in natural human bones.

2
s

(c) (d)

F1G. 5. Models for the structure of cancellous bone: (a) the low-density equiaxed structu-
re, (b) the higher-density equiaxial structure, (c) the stress-oriented prismatic structure
and (d) the stress-oriented parallel plate structure, after [13].

The microstructure of bone is such that at the macroscopic level its behavio-
ur is anisotropic. To model bone anisotropy one can use Cowin’s fabric tensor,
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see [9, 16, 20] and the references cited therein. JEMIOLO and TELEGA [16] pro-
ve that compact bone is close to transverse isotropy whilst trabecular bone is
approximately orthotropic, cf. also [35]. The approach employed in [16] exploits
Cowin’s fabric tensor. In [35] the authors claim to use the homogenization me-
thod for finding the orthotropic elastic constants, yet no precise formulation was
unfortunately given.

A challenging problem in the estimation of bone elastic moduli is the influence
of marrow. No satisfactory modelling of this problem seems to have been pro-
posed so far. KASRA and GRYNPAS [17] proposed an idealized three-dimensional
finite element model of a rod-like trabecular bone structure to study its static
and dynamic response under compressive loading. Static analysis of the model
predicted hydraulic stiffening of trabecular bone due to the presence of bone nar-
row. The predicted power equation relating the trabecular bone apparent elastic
modulus to its apparent density was in good agreement with those of the reported
experimental data.

The aim of this paper is to develop a macroscopic model of cancellous bone by
using the homogenization methods. In contrast to numerical considerations ad-
opted in [14, 15] for the study of strut-like trabecular bone, our approach applies
to plate-like architecture of cancellous bone and was inspired by the papers [7, 8].
General considerations are performed in Secs. 2 and 3 and extend those obtained
in |7], where only the scalar case was investigated. In fact, the homogenization
problem considered involved two small positive parameters: € and 7. The first
parameter is standard in the homogenization whilst the second one characteri-
zes the thickness of the trabecular plates. To derive the formula for the elastic
macroscopic moduli, we first pass with £ to zero and next we let 1 tend to zero.
It means that a two-parameter homogenization has been performed. Section 4
deals with a specific case of trabecular bone with plate-like structure, where the
trabecular plates are isotropic. By properly choosing the geometry of the basic
cell one can model anisotropic (orthotropic or transversely isotropic) behaviour
of the cancellous bone at the macroscopic level. If & = 3 = 1, at the macroscopic
level the bone reveals the cubic symmetry, cf. formula (4.1).

2. Formulation of the problem

Let £ denote a bounded open subset of R®. As usual by Y we denote the
basic cell, cf. [6, 19, 28, 29]. The part of ¥ occupied by the material is denoted
by Y*. It is assumed that the hole T in Y does not intersect the boundary 8Y,
cf. [7, 19], though this assumption may be weakened. By 27 we denote the part
of £2 occupied by the material. Here £ > 0 is a small parameter. We asume that
the holes do not meet the boundary 02
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Let us consider the following boundary value problem of linear elasticity:

2 (aw()) im0 n
brt

(2.1) tig, =0 on @,

Coni ( ) ‘;“"; =0 on 82\,
where n = (n;) is outer the unit vector normal to 9§27 \912.

We make the following assumptions:

(i) f € L*().

(ii) C ijkl € LY ™), ukt Ck(f;j = Cjikh i,Jj, k1 =1,2,3.

(iii) There exist a positive constant ¢y such that for almost every y € ¥:

:jk!(y)eueki C[}exjezj for any e = (eij): €5 = €ji-

(iv) The material coefficients C;;(y) are Y-periodic.

The passage with £ to zero is now standard. Let us recall the related basic
results which will next be exploited in Sec. 3, where we will let n tond to zero.
Under these assumptions, there exists an extension P.u® € [H{(£2) ] of u® such
that, cf. [7, 19],

3
Pou® —u in [H(}(m] weakly,

with u = (ux) being the solution of the equation

9%y |Y*|

h k :

(2.2) ijuaj:jamf vy fi= 0 in £,
u=0, ondf.

Here [Y|=vol Y.
The homogenized coefficient C',f} x are given by

A 8X§:nn)
(23) Ct_',-mn =< Cijmn > S CiquT >,
Yq

where {
(2.4) <->=mm [y

Y1

} -
The Y-periodic functions ,\'}(,mn) are solutions to the local problem
0

J
rq) p 'ff g £ *
(25J (Ca_,mm (;)U (Xfm + 5 )) =0 inY ?
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-

3]
(2.6) Cijmna (xi,f;’” + rf&y"’) N;=0 ondT.

Here N stands for the inner unit vector normal to d7". Written in the weak form,
this problem is expressed by

. .ok aw; ow; ;
(2{) /ij.m,-,_-m (jy: dy — —/C{quﬁ dy, v J/j S Hpcr(y ),
v Y-
where
Hper(Y*) = {v € H'(Y*) | v is Y — periodic} .
For 'pj - X-gmu) we get
(mn) (mn)
LY dx; ox;
2. ——-—J —= —‘/ Jas "—""-—'J £ .
(28) [ Cuimn g 4 | Cum—gg iy

3. Plate-like structure

In this section we shall derive the macroscopic moduli for a cellular solid with
plate-like architecture. The plates are characterized by a small parameter 7 > 0.
The second step of homogenization consists in passing with 7 to zero. Let now
the basic cell Y be given by

N D HED !

Due to periodicity, the homogenized coefficients do not depend on the basic
cell and consequently, one may take a translated cell of the basic one. Consequ-
ently we take the translated cell represented in Fig. 6.

We observe that the thicknesses of three orthogonal plates are not necessarily
equal, thus allowing for a macroscopically orthotropic response of the trabecular
bone. Let us introduce the following notation:

%= {yevini<3},

YEY,]y2|‘§.Qg‘},

(3.2)
2

yeY nl<

o3

¥y = {

| n
Y; = {.YEY,I‘U3| Qﬁ—},
Yi2 = { and |ys] < ag},
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3.2)
[cont. ] Yoz = {y €Y, |y] < ug and |y3| < 3 g}
Y= {y eY, |yl < % and |ys| < ;}
Yio3 = {y €Y, |yl < 2 and |ya| < <ad and |ys| < H}-
2 2 2
. I 1 n
Y; = {yevinl<Forlml<aforml<sp}.
b
; 7 i
g, Bead X Sl Read Jet :

BM

N

: S
_J’l / E ’a'
: %

S

We follow the paper [7], where only two-dimensional scalar case was examined.
Since |Y’| = (1+a+B)n—(a+B+a ) 0’ +a Bn?, we get the following estimate:

(3.3) |[ey(x(w;))||!‘;,”_.] <en'?,

n

Obviously x4 depend on «, 3 and 1. The constant ¢ is independent of 1 and

1 (0w ow;
Y = St s
e’(w) 5 (U’!}J + afh)
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Using this estimate in (2.3) we conclude that
—l h *
Cz_',lnm Cijmri

(after extraction of a subsequence, if necessary) We can pass to the limit as 7 — 0
in the homogenized equation (2.2), whose solution is denoted by u”. We have

ul = uj, in Hy(82) weakly,
where u* is the solution to the equation:

2
_OTup
ijkn SIJ azn

u* =0 on a12.

(3.4) +(1+a+p)fi=0 in £

We observe that now |Y] = 1.

Let us pass to finding the limit coefficients C7;y.,..

Using Eq. (2.3) and the decomposition of Y™* given by (3.2), we obtain:

aY(mn}
('35] = C:;mn — n_lly*lcijmﬂ Py ??_1 f C:‘jpc,tL dy
Y

Ayq
—p—L s
n um
Yo
(mn)

Ixp
/ C‘JP‘} 1
( mn)

(mn) 6
_.I /Cz_mq dy — "‘ ./.Ctﬂ,q By dy.
q

Yi2a

(-nm} ( mn)

_i/(jupq oun dy

a (mn)

dY+7}_1fCegmf 80 dy

We have to pass to the limit with n — 0 in (3.5), where the integral terms
are taken over domains depending on 7. To avoid this difficulty we transform
Y], Yg._ Yg, Y]Q_, Yg;;, Y13 and Ylgg in ?

For instance, using the a priori estimate (3.3) we have

Y
Hence, after transformation
zi=0""y, 22 =Y, 23=1Ys,
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and using Korn's inequality we get

2 2
0 {nm) 6x(rrm.) oxfm.n)
rl rl dz <
Y/ (n 641 i 332 i 823 sl

where x( " = xE,T'n) (21,29,23) = _x;(,m"}(nzl, z9,23) and ¢; does not depend on 1.
Thus
(mn) A (mn) (mmn)
(3 6] a}kpl }(nm} 0Xp1 i h(mu) axpi h(mn)
- ?? 9z 2 pl,l 3 322 pldina 823 pl,3
in L?(Y) weakly
and similarly
8)(;[;27“1) o ’,_(mn) il 33{;1;“) g h{nm) 8)(5:31“} ey h[mrt)
Oz 2,1 0 1 —“3z2 P22 T ha P23
in L%(Y) weakly,
6)(;(;;”” h(mn] 3)(;7:?“) h(mn) 16 (”m} ey h(mn)
92, Pl 2 P13 833 Py

in L2(Y) weakly,

(mmn) (mmn) (mn)
TI—UZ 6\;;12 W (mnn) }_1'/2 a\’plQ i h(mn.) 6 pl? h("fn)
3"] pl2 1) 632 pl2,29 82:3 pl12.3»

in L2(Y) weakly,

(3.7)
5. (mn) (mn) (mn)
(')pr?:zlil !(:ﬂn] ,._1;2 6‘)(;12% R (mn) —-1/2 d Xp23 g h(mn)
W 1p23.1s T Bz p232: 11 R 3 p23.31
in L%(Y) weakly,
(7 (mn
6\’pr) iy, h{mn) 3)(;;?-;1) e h(mﬂ.) T..],l), axpl.] ) S (mn)
31 p13,1s _022 p13,2: 7 923 15133
in L2(Y) weakly,
(mmn) (mn) (mn)
8)(;.-1:2‘?1 s} (mmn) 8)(31]23 o} (mn) 6 Xp123 —s } {mmn)
T tp123,1 7622 tp123,2+ —8,_, 151233

in L%(Y) weakly.
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Here

(mmn) (m (rmn)

n)
Xp2 = Xp2 (21,22, 23) = Xp (21, am22, 23),

{mn) (mmn)

Xp3 = = Xp3 (21,22,23) = {"m (21, 22, Bnz3),

x5 = X1 (21, 22, 28) = X" (21, omza, 23),
X = x$a (21, 22, 23) = X™ (21, amza, Bzs),
X = x5 (21, 22, 23) = X" (921, 22, Bnzs),

xoiss = xX\ied (21,22, 23) = X" (21, amaa, Bn2s).

n)

We observe that due to the periodicity of x]{pm one has:

/ B dg = 0, / W iz = 0, / R 4z = 0,
Y x e
(mn) - (mmn) A (mn) =
(3.8) h‘p'z,:j dz =0, hp&l dz = 0, hpw dz.= 10,
¥ v

/ ;r{g'i);d = /);’;g’-‘% dz =0, /hg{gg dz = 0.
)n’

By using (3.3) one finds

ax(mn] 6){(1““)
1/@:;"; S <an'?, |In ‘fC'sma—p—dy < en'/?,
Yq Yy
Yog
6 {mn) ax(mn}
-1 1/2 -1 P
n /G"'JPU , Cl"'} f “ Ui / C:‘jpg 8_——1 dy -\<~_ c17.
Yq Yq
Y123

We now pass to the limit in (3.5). Taking into account (3.6) - (3.8), one obtains:

(39) (‘t):]rrm = (1 + o+ [5) ijmn + C‘JI’I /h;(:lml])

0T / B 4+ B Cing / W dg
Y

http://rcin.org.pl



346 A. Garka, J.J. TELEGA AND S. TOKARZEWSKI

The last step is to calculate explicitly the integral terms of this formula. Let ¥;
in (2.7) be a smooth function, Y-periodic and dependent only on y;. We find

3 (pq) BLP
??“1/ lj?rmi fy
i ayn 8y1
Yi
n/2 12 12 . oo
=17 Chjms. [ oYy ] / IXin_ o s | iy
O on
—n/2 ~1/2-1/2

v,
- Cljmla_yf"(o)/hsrf?] dy,
}f
5 D ow; o,
lfcljfnn Al a de —* Cl}rnl/hgg)l 8 J

= axh? ow; ) O,
U] ]/CI.jmn'_a"?;:‘ c’?yj dy — Clji?llffliﬂgl o == dy,

y ov; ov;
1) ly/ ClquaTJ':dy = Clqu?,-‘i(())'

Multiplying (2.7) by 5~ ! and passing to the limit (n — 0), we obtain

" v
(3.10) Crjmi ] (h2, + h22)) W;f dz
J ‘

3J1 (Cljml f ’*Jf{f}l ffZ+Clqu) =0.

To proceed further we need the following result, cf. [7].

LEMMA 3.1 Let w be a periodic function in L2(—1/2,—1/2), and let a be
a real constant. If the following, relation holds true:
1/2
al(0) + ] w(z)¥(x)dx =0,
-1/2
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for any smooth and periodic function ¥ defined on (—1/2,1/2) and such that
1/2

/ V(z)dz = 0, then
-1/2
a=0 and w = const. (]

Applying this lemma to (3.10) we obtain
plrPe) —! -
/ tml1 )mj Clipgs

where (Cl_l) _are the components of the matrix inverse to (Cjy,;1). Similar
mj

computation with ¥; depending only on gy, leads to

D . —1) B
f m2,2 - 2jpq
Next, if ¥; depends only on ys, then
h(?’q} = —1) Ol
/ m3,3 = ¥ 3ipq
Here (C{') ~and (03—1) _are the components of the matrices inverse to
my my

(Camj2) and (Cymjs) respectively. From (3.9) we eventually obtain

(3‘11) C;:nrm = (1 2 ;8) Ct'jmn — Lijpl (Cl_l)pq Clqmn
=1 -1
- Cijp? (Cg )pq C‘quf: = ﬁcijpll (03 )pq C3qmn-
If we take a more general basic cell:

yh[_l 1)){ AA)X{ B B
— 722 2'9 2’2)

then we obtain the following formula:

: . B .
(3.12) Cunm = (1 i Z = B) Cijmn — Cijp (Cl l)pq Crgmn

o - B =
_Z Cijp? (CQ l)m C2q'nm = § Cijpl} (Cg l)pq C‘qun-

4. Specific case: trabecular plates made of a homogeneous and isotropic
material
Let the plate trabeculae be isotropic and homogeneous; then

C'ijmn =M (61113‘(511;' T 611;2"511_]5) i '\Jijé.m'n-
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From (3.11) we obtain the following form of the elasticity matrix:

(4.1)
[ dp(a+ B)A+p) 2alu 2aAu 0 0 0 ]
2u4+A 2u+ A 2u+ A
2 8M\u 4p(1l+ B)(A -+ 1) 22 0 0 0
2u+A 2+ A 2n + A
. 2alu 2 4p(1 + o) (A + p)
C = 20+ A 2u+ A 2u+ A i . 3
0 0 0 2 0 0
0 0 0 0 2au 0
| 0 0 0 0 0 28 pn ]

Obviously, here Voigt’s notation has been used, cf. [25].

Having in mind Fig. 6, the physical effective elasticity tensor, now denoted
by C°* is given by
(4.2) sl

B T T
where v is the volume fraction.

In the case of C* given by Eq. (3.12) we have
vAB

:AB+Ba+AﬂC'

Ceﬁ'

-1
By A we denote the matrix inverse to (C%), i.e. A = (C"ﬂ-) . The technical
elasticity constants are, cf. [16, 25)

1 1 1
4-3 E — = E‘ —Tm—— Rir=ir——y
t4:3) SR 2T An '~ As
1 1 1
4.4 G — _ G _— G g s,
(4.4) 12 = 5 13 54 2= 5o
Vig = _An V21=—ﬂ If'1'3=—ﬂ
Ags’ Ay’ ; Azz
(4.5)
K31 = —@ V23 = -@ K32 —@
" A’ Ass’ Ago

Let us pass now to the presentation of specific cases, which show the usefulness
of the formulae (4.2) for the determination of macroscopic elastic moduli of a tra-
becular bone with a plate-like architecture. These particular cases are presented
in the form of Tables 1, 2 and 3 and Figs. 7-9 below.

http://rcin.org.pl



APPLICATION OF HOMOGENIZATION... 349

The third column of Table 1 provides technical constants calculated by using
formulae (4.3) - (4.5). The following data, corresponding to the hydroxyapatite,
cf. [9. 11], are assumed:

E=114[GPa), v =0.2T.

Then the Lamé coefficients are given by A = 52.69 [GPa], p = 44.88 [GPa]. The

calculations have been performed for

== j:-—’ =
fat 1 Jé 7 v

Ut =

250

200

150

MPa

100

50

& ; \ : ; -
0,05 01 0,15 02 0,25 03
v
['1G. 7. Young'’s moduli in the three orthotropic principal directions versus bone volume
fractions; e = 56/67, 3 = 73/134; isotropic trabeculae with E =1 [GPa], » = 0.35.

MPa

0 - - - - -
0,05 0,1 0,15 0,2 0,25 03

[1G. 8. Shear moduli in the three orthotropic principal directions versus bone volume
fractions; ov = 56 /67, 3 = 73/134; isotropic trabeculae with E = 1 [GPa], v = 0.35.
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0,003 I

— V23/E,
0,0025 + - — vi2/E4
---v34/E3
© 0,002 T
a
AT e
- —
0,001 +
— — N -
0,0005 + e
| 1 1 1 [
L] I I I 1
0,05 0,1 0,15 02 0,25 03

I'1G. 9. Poisson’s ratio divided by Young's moduli in the three orthotropic principal
directions versus bone volume fraction; a = 56/67, [ = 73/134; isotropic trabeculae
with E =1 [GPa], v = 0.35.

The second column in Table 1 is taken from [16, Table 1].

Table 1. Technical constants

Technical constants human from (4.3) — (4.5)
(average) cortical bone E =114 [GPa], v=10.27
E, 11.7(1.6) [GPa) 11.7 [GPa]
Ea 13.2(1.8) [GPa) 14.4 [GPa
Es 19.8 (2.4) [GPa] 19.8 [GPa
Gra 4.53 (0.37) [GPa) 1.1[GPa]
Gha 5.61(0.4) [GPa] 3.27 [GPa]
Gus 6.23 (0.48) [GPa] 4.36 [GPa
b 0.375 (0.095) 0.04
Va1 0.416(0.118) 0.03
Vo3 0.237 (0.083) 0.21
vaz 0.346 (0.096) 0.1
V13 0.374 (0.108) 0.19
vas 0.234 (0.088) 0.11

Two further specific cases are summarized in the third and fourth column of
Table 2. To calculate the moduli given in the third column of this table it was
assumed that

A = 52.69 [GPa, p = 44.88 [GPal, a=—,
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Similarly, the moduli contained in the fourth column were calculated for the
following data:
56
A = 17.28 [GPa], p =741 [GPal, a=e,
73

= —, v = 0.043.
=gy
The second column of Table 2 is taken from [16, Table 1|. According to COWIN
[9, Table 9], E = 20 [GPa] estimates the value of the elastic modulus of the wet
human trabecula.

Table 2. Technical constants

Technical constants | human cancellous bone | from (4.3) — (4.5) | from (4.3) — (4.5)
(average) (proximal tibia) E =114 [GPa, E = 20 [GPa),

v =027 v =0.35

Ey 237 (63) [MPa] 496 [MPa) 545 [MPa]

E» 309 (93) [MPa] 552 [MPa] 604 [Mpa]

Es 823 (337) [MPa] 649 [MPa] 706 [MPa]

G 73 (0.37) [MPa| 73 [MPa] 73 [MPa]

Gis 112 (0.4) [MPa] 112 [MPa] 112 [MPa]

Glag 134 (0.48) [MPa] 134 [MPa] 134 [MPa]

V2 0.169 (0.304) 0.08 0.1

vy 0.200 (0.200) 0.07 0.09

Va3 0.063 (0.217) 0.15 0.18

Va2 0.245 (0.626) 0.11 0.14

na 0.423 (0.356) 0.16 0.2

Vi) 0.145 (0.123) 0,14 0.17

We observe that the second column of Table 1 in [16], or the second column
in our Table 1, present technical constants for specimens of human femoral cor-
tical bone, where the 1-direction is radial, the 2-direction is circumferential and
the 3-direction is longitudinal. The second column of Table 2 presents average
technical constants for 9 specimens of human cancellous bone from the proximal
tibia, where the 1-direction is anterior-posterior, the 2-direction is medial and
3-direction is logitudinal. In Tables 1 and 2 the numbers in parantheses stand
for the standard deviations. The second column of Table 2 implies a possibility
of appearance of negative values of Poisson’s ratios. The plate-like architecture
studied in the present paper precludes such possibility. Examples of cellular so-
lids with negative Poisson’s ratio are given in [23, 31]. Thus a natural question
arises: can a trabecular bone, at a certain stage of human or animal life, behave
like a cellular solid with negative Poisson’s ratio? From the theoretical point of
view, such possibility is obviously possible. The decisive answer, however, is to
be expected from experimentalists.
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We observe that according to Table 9 in [9], the value of E equal to 1.17
|GPa] characterises individual bovine trabeculae. This result was obtained by
CHRISTENSEN (cf. [9]) using statistical data analysis. In Table 9 in [9] one also
finds the following values of E [GPa] for individual trabeculae:

E = 10.90 + 1.6 (wet bovine femur, ultrasonic test method),
E = 12.70 & 2 (wet human femur, ultrasonic test method),
E = 8.69 4+ 3.17 (dry human distal femur, buckling test method),

E = 5.3 2.6 (dried human femur, experimental test method with finite
element method).
According to Table 9 in [9], the estimates for the elastic modulus of the trabeculae

of human cancellous bone vary from 1 to 20 [GPal. Future research should be
directed towards resolving this problem of great scatter of Young’s moduli.

Table 3. Technical constants from (4.1) - (4.3)

E=1[GPa] | E=1[GPa] | E=5 [GPa] | E = 10 [GPa]
Technical v = 0.35 pr=),35 v =03 =035
constants | a = 0.836 a = 0.836 a=1079 a=09
3= 0.545 A = 0.545 /=02 A=02
v»=0.1 =03 v =02 v=0,2
B 0.0633 [GPa] | 0.19[GPa] | 0.545[GPa] | 1.14[GPa]

E, 0.701 [GPa] | 0.21[GPa] | 0.603 [GPa) 1.23 [GPa

73 0.819 [GPa] | 0.246 [GPa] | 0.924 [GPa) 1.87 [GPa]
Gas 0.0156 [GPa] | 0.0467 [GPa] | 0.183 [GPa] | 0.353 [GPa)
Gha 0.013 [GPa] | 0.039 [GPa] | 0.165[GPa] | 0.317 [GPa]
Gha 0.008 [GPa] | 0.0254 [GPa] | 0.0366 [GPa] | 0.0705 [GPa]
vay 0.204 0.204 0.238 0.276
32 0.175 0.175 0.156 0.182
V12 0.101 0.101 0.0164 0.0114
121 0.0913 0.0913 0.0151 0.105
Vi3 0.184 0.184 0.232 0.269
V31 0.142 0.142 0.14 0.164

Figures 7-9 correspond to the data listed in the second and third column of

Table 3.

Concluding remarks

The effective elastic moduli for a plate-like cellular solids were derived by
using a mathematically rigorous homogenization approach. The solid considered
is characterized by two small parameters: € and 7. The parameter 7 is related
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to plates (trabeculae) thickness, cf. Fig. 6. The effective elasticity tensor is, in
general, anisotropic. For @ = 3 the macroscopic anisotropy is due to anisotropy
of trabeculae. For o = 3 = 1 and isotropic trabeculae the macroscopic elasticity
tensor reveals the cubic symmetry (three material constants). If e is different from
[ and the trabeculae are isotropic, the macroscopic elasicity tensor is orthotropic.
In Sec. 3 the basic cell was assumed to be given by (3.1). Unequal dimensions of
this cell allong the three axes also influence the effective moduli.

In a separate paper we shall study the macroscopic behaviour of rod-like,
trabecular bone. The first attempt was accomplished by us in [32].
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