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Frequency dependence on space-time for electromagnetic
propagation in dispersive medium
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PROPAGATION OF AN ELECTROMAGNETIC HIGH-FREQUENCY modulated signal in a lossy
dispersive Lorentz medium is reconsidered. A new approximate solution is found to
the equation relating complex frequency of the propagating signal and the space-time
point. This solution is compared numerically with the solution to the saddle point
equation in the special case of the Brillouin medium parameters.

1. Introduction

INTEREST IN PROPAGATION OF ELECTROMAGNETIC SIGNAL through dispersive me-
dia dates back to early 1900’s. Fundamental works in this field are due to
SoMMERFELD [1] and BRILLOUIN [2, 3]. They studied the evolution of a signal
propagating in a Lorenz medium that accurately models some real lossy media.
On the grounds of asymptotic considerations, the authors showed that the main
change in the form of an electromagnetic signal propagating in this medium ta-
kes place at the initial stage of propagation, while at higher penetration depths
the pulse form is almost unchanged. They revealed that two different precursors
precede the steady state signal. At every space-time point, the precursors’ speed
of oscillations and their dumping are functions of complex frequencies, which in
turn are determined by the locations of saddle points in the integral defining the
signal. The works of Sommerfeld and Brillouin are very important because they
gave insight into the mechanism of electromagnetic pulse evolution as it propaga-
tes in a dispersive medium, and they provided approximate analytic description
of this evolution in the mature dispersion regime.

More recently, OUGHSTUN and SHERMAN, in a series of papers [4, 5, 6,7, 8, 9,
10], reexamined the classical theory of Sommerfeld and Brillouin. Equipped with
modern asymptotic methods and access to powerful computers, they were able to
improve the classical asymptotic results by extending them to special instances of
the pulse dynamics, and to provide better understanding of physical phenomena
associated with propagation of various signals in a dispersive material.
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In short terms, asymptotic analysis of a signal propagation in the dispersive
medium reduces to asymptotic evaluation of a contour integral that describes the
signal dynamics in the medium. A key step in this approach is to find, at each
space point and at each time instant, the complex frequencies that determine
the way in which particular parts of the signal oscillate and are dumped in the
medium. These frequencies are derived from the equation which determines the
locations of saddle points corresponding to the phase function in the integral.
Because of the complex form of the equation, it seems to be impossible to solve
the equation exactly. Brillouin found four families of saddle points in the complex
frequency plane and obtained approximate analytical formulas describing them.
Those formulas fail to hold in some instances of pulse evolution. New, better
approximation to these frequencies was found by OuGHSTUN and SHERMAN in
[4].

In this paper we obtain still other approximate formulas for the complex
frequencies that govern the dynamics of the signal propagating in the dispersive
medium. By numerical comparison we show that in vast range of the space and
time coordinates, our approximation surpasses those obtained by Brillouin and
Oughstun and Sherman.

2. Formulation of the problem

Motivated by the works of SoMMERFELD [1], BRILLOUIN [2, 3] and
OuGHSTUN and SHERMAN [4], we reconsider the problem of propagation of an
arbitrary electromagnetic signal in a linear, homogeneous, isotropic, temporary
dispersive medium filling the half-space z > 0. Let A(z,t) represent any scalar
component of the electromagnetic field or its potential. Assume further that

A(0,t) = £(t)

is known for all time ¢, where f(t) is zero for ¢t < 0. Then, (see OUGHSTUN and
SHERMAN [4]),

1 z z
. t) = — : B s ;
(2.1) A1) = o= [ Fwrem [26,0)] da,
¢

where

o0

f@) = [ f®e i

0

is the Laplace transform of the signal evolution at the plane z = 0,

d(w, ) = i -E [f(w)z — wt] = iw[n(w) — 6]
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is the phase function, and
ct
0=—
z

is a dimensionless parameter corresponding to a space-time point. The quantity
n(w) stands for the complex index of refraction of the medium and in the Lorentz
model it is equal to

52 1/2
(2.2) n(w) = (1 - ———u—) A

w? — w? + 2ibw

Here, b, wy and § are medium parameters ([12]). Brillouin chose the following
numerical values for those parameters:

b2=200x102 571, Wy =40x10%s1  §=028x10 s},

which are characteristic of a dispersive, lossy medium. His choice has become a
standard in works by many other authors.

Asymptotic evaluation of the integral in (2.1) for large values of the phase
in the integrand requires that the saddle points of ¢(w,#) are known. At those
points the phase function is stationary, i.e. it satisfies the equation ¢'(w, 8) = 0,
or equivalently,

(2.3) n(w) +wn'(w) -8 =0.
By using explicit form of n(w) in this equation one arrives at

: b2u(w + id) 2
o ,2 — .2 ' ¢ TR e et
k) [u., e w? — wf + 2i0w
= 0%(w? — W} + 2idw)(w? — wd + 2idw),

where w? = w&+b%. This equation determines the exact locations of saddle points

in the w-complex plane. It does not seem possible to solve this equation exactly.
Instead, approximate solutions were constructed (BRILLOUIN [2, 3], OUGHSTUN
and SHERMAN [4]).

In this paper we find still another approximation to the function relating
the location of the saddle points to particular values of #. Below, we summarize
the results known in the literature and present the new approximate solution to

Eq. (2.3).

3. Approximate solutions to the saddle point equation

3.1. Brillouin’s solution

Brillouin’s study of the saddle-point Eq. (2.3) led to the conclusion that for
each @ there are four distinct saddle points, situated symmetrically with respect to
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the imaginary axis in the w complex plane. Two of the four simple saddle points,
pertaining to the Brillouin precursor in the signal, move along the imaginary
axis as ¢ increases from 1 to 6y, one downwards (crossing the real axis) and the
other upwards, and coalesce into one second-order saddle point at # = #;. When
# increases any further, this saddle point divides into two simple saddle points
which detach from the axis and move outwards, approaching in the limit, as
w — 00, the respective points wy and w_. The limiting points are located in the
third and the fourth quadrant, respectively, of the complex frequency plane and
are defined by

(3.1) we = +(wfd — 822 —is.

For any 6 > 1 these saddle points vary in the regions |w| < |wg|. Therefore in the
literature they are referred to as the near saddle points.

The remaining simple saddle points appear in the lower w half-plane and
are related to the Sommerfeld precursor in the signal. As  increases from 1 to
infinity, those points move inwards from +o0 — 2id to «/, and from —oo — 2id to
w! | respectively, where

(3.2) wh = (w? - 0%)2 - is.
Since they vary in the regions |w| 2> |wy|, they are referred to as the distant saddle
points.

The points wy and «’, are the branch points of n(w). In particular, if w = wy,

(3.3) w? — g — 20w =0

and if w = o/,

(3.4) w? —w? — 26w = 0.

In the region |w| > |wi| Brillouin approximated the complex index of refrac-
tion by
b2
(35) n(w] ~]1 - m
By substituting this approximation into Eq. (2.3) and solving for w, he obtained
the following approximate formula for the distant saddle points:

b

RE—Dp7

(3.6) wsp, (0) ~ %
According to this formula, when ¢ = 1, the distant saddle points lie at infinity,
their locations being given by +co — 2id. As @ increases to infinity, this formula
incorrectly states that they move towards the imaginary w axis along the line
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w = —21d. As a consequence, Eq. (3.6) does not provide a good approximation
for the distant saddle point locations in the vicinity of the limiting points w/,.

In the region |w| < |wg| Brillouin adopted the following approximation for
the complex index of refraction:

W b? o 0% (4wd 0% ,
3.7 ) & — + ——w(w 4+ 210) - ———F—F—w".
) ) wo it 2w1wgu'(u‘ +249) 23w e

(In fact, the final term in this expression was appended by OUGHSTUN and
SHERMAN [4] to assure that the approximation is correct to w?). With (3.7)
used in Eq. (2.3) its approximate solutions are

11/2 2
(3.8) Wopy N :I:% 6%{9 — o) — 42—22 f ~ 1%
where $2(4u? — )
(3.9) a=1-— T
(3.10) o= :_; = (14 b2/uR)V2,

According to (3.8) there are two near saddle points which, as 6 increases from 1
to #,, move towards each other along the imaginary w axis. The “upper” saddle
point crosses the real w axis at 6 = #y. Both saddle points coalesce into a saddle
point of the order 2 at @ = 6; > 0. The value of #; follows from equating the
square root in (3.8) to zero, which yields

2522

3] 6 =0 ,
( ) : 8 30:90w§

The corresponding location of the saddle point of the order 2 is by (3.8) equal to
w = —i24/3a.

For higher values of 6 the formula (3.8) incorrectly states that two simple
saddle points move off the imaginary w axis towards infinity along the line w =

—128/3a. In particular, it does not predict that the points tend to "‘"?PN as
0 — co.

3.2. Oughstun and Sherman’s solution of the saddle point equation

The starting point in Oughstun and Sherman’s approach was the Eq. (2.4).
Crucial step in their procedure consisted in expanding the rational term in the
square bracket into a sum of integer powers of w (positive or negative, depending
on which region in the complex w plane was under consideration).
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In particular, for the saddle points varying in the distant regions |w| > |wi],
the terms of the order w2 and higher were dropped from the expansion of
the rational function as w — oo. With that approximation the saddle point
equation Eq. (2.4)) was reduced to a cubic equation which could be solved exactly.
Appropriate solutions of that equation were further simplified to give finally

(3.12) wipy (0) = ££(0) — i6[1 + n(0),
where

b202 \ '/
(3.13) £(0) = (w3—62+92_1) :

82/27 4 b2/(6% - 1)
£%(6) '
If @ is close to unity, £(6) = b/[2(6 —1)]'/2, n(#) = 1, and thus the approximation

(3.6) is recovered. If, on the other hand, 0 is large, £(0) = (w? —6%)1/2, n(0) = 6%/
[27(w? — §%)] =2 0, and hence

(3.14) n(9) =

3.15 wspy () 2 +(w? —0*)V2—di=u as 60— oo,
D 1 3

i.e. present approximation and the Brillouin’s one (3.6) are very close to each
other.

In case when the saddle points vary in the region |«| < |wg|, Oughstun and
Sherman replaced the rational functions by their power expansions as w — 0,
up to the order O(w?). This again reduced the saddle point equation to a cubic
equation. Since the cubic term is small in comparison to other terms, at least
for w not too great, the authors deleted that term and finally obtained a further
simplified quadratic equation whose solutions are given by

Doc
(3.16) wip, = £Y(0) - 310¢(0),
where 1/2
2b2 £
A - 63) 02 — % + —
(3.17) P(0) = 0—3!;2_ < *____‘“33,20 '
02 — 03 + — 02 — 0} + — o
U.vo 0
2b%
2 0> -0+ —
(3.18) ¢(6) = AT 8
2 3b°
0? 6’2 s
th
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and

(3.19) &b =1

2
~ =55
3uwduw?
If 6 is close to 0y, (3.16) reduces to (3.8). On the other hand, if # tends to infinity
then (3.16) approaches w., as it happens in the case of the exact solution.

Approximate value of #; as predicted by (3.16) follows from equating () to
zero. With some additional simplifications it appears to be

402 + 7).

26%b?
Oowd (3awd — 462)°

(3.20) 61 = 6o +

Oughstun and Sherman’s approximation for the location of the saddle points
appeared to be quite satisfactory, both because of its accuracy and its simplicity.
However, as it will be shown in the next section, a different approximation can
be constructed, which provides better accuracy over a wide range of @ values.

3.3. Alternative solution to the saddle point equation

Unlike in the Oughstun and Sherman approach, our starting point is the
original saddle point equation (2.3). We formulate this equation in terms of the
complex index of refraction n. If approximate solutions are found for n from that

equation, corresponding values for the frequencies can be obtained from (2.2) to
give

(3.21)

b2
P SN 00, v T, S 2 A0 =,
w = —(w") 10 \/“-‘0 4 =1

Here the asterisk denotes complex conjugate.

With 7n/(w) determined from (2.2), the saddle point equation formulated in
terms of n now reads

wr:= WAl b? he 9 b2
(322) 'ﬂ-l-"(-—b—?n—)—‘ I:—?.é (w§—52—nz—_1) ‘|‘Lu‘§—(52—n2_1 =9.

As mentioned earlier, for @ increasing from 1 to oo, the near saddle points tend
to wy, and the distant saddle points tend to «’;, respectively. On the other hand,
[n(w)| tends to infinity as w approaches wy, and |n(w)| decreases to zero as it
comes near w’,. This suggests that in the vicinity of those limiting points, the
saddle point equation can be approximated by asymptotically expanding its both
sides for |n| — oo or |n| — 0, respectively. (The right-hand side of the equation
is left intact, as it is independent of n). Now we consider both cases in turn.
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First, consider the case of the distant saddle point, i.e. the case of |n| < 1.
Let the L.h.s. of the Eq. (3.22) be expanded in positive powers of n as n — 0, and
terms higher than cubic are neglected. Then the saddle point equation takes the
following approximate form

(3.23) an* + en? +dn+e~ 0,
where
i0b? 1062[3b2 +4(wg -6?))| 1
(324) a=|wf—+—m— —idyui-—082— =) oL
w? —

2 / =

(3.26) d= -0,
and
T T
wi — 0% —idy/wf — 9
(3.27) e= 7 :

Appropriate solution to this equation is not too complicated (presumably
because the term proportional to n? is missing from the equation) and is given
by

s 1 (6 2
(3.28) n_g—\/4a(g—2c)—g,

where

(3.29) A 4L J ey [(u+ VaZ=0BY3 4 0] — 2,

i 2v3a\| (u+ Vu? —v3)1/3
(3.30) u = 2¢> — T2ace + 27ab?,
(3.31) v = 2%/3(c? — 12ae).

Here, the parameter 6 appears directly under the square root sign and in g via
the variable u.

As 6 approaches infinity, g behaves like #'/3/(2a'/?) and both components in
(3.28) cancel out, thus making n tend to zero. Consequently, by (3.21),as # — oo
the distant saddle points tend to /.. This agrees with Brillouin’s and Oughstun
and Sherman’s results. For sufficiently small n, powers of n higher than 1 can be
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disregarded in Eq. (3.23). If n so approximated is used in (3.21), the following
result is obtained:

{..:.-‘2 — 52
(3.32) W —if 4+ J (w? - 82) (1 + ;7) 2 it e

9 ]

valid for & — oo. It shows the rate at which distant saddle points tend to their
limiting values as @ increases to infinity.

Now consider the near saddle points locations corresponding to the case of
|n| > 1. By expanding the Lh.s. of the Eq. (3.22) asymptotically as n — oo, and
disregarding powers of n higher than n~1, the saddle point equation reduces to
the same form as in (3.22), with partly modified coefficients:

.. N Ww? — 0% — ib\Ju? — 52

b2 ;

' 2 it :
(3.34) C:___u_S_‘__ 5 (wg-oQ—io\/wg-w),

(3.35) )

and

: 2 o 6B zob2[b2 4 4w -0?)| 1
(3.36) e= lu,l - \/W idy/ud — 62 + — 52y =
2 _

It is interesting to note that real parts of the coefficients are the same as in
the case of the distant saddle points. For the medium parameters proposed by
Brillouin, the imaginary parts are only slightly different, as it can be seen from

(3.37) (0.79608 — 0.05586i)n* + (—1.59216 + 0.14681i)n? — On

+1.79608 — 0.07993i ~ 0
which applies in the case of near saddle points, and
(3.38) (0.79608 — 0.05730i)n* + (—1.59216 + 0.14446i)n? — 6n

+1.79608 — 0.083907 ~ 0

appropriate in the case of distant saddle points.
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Now, the appropriate solution to the fourth degree Eq. (3.23) is

i~ _l_ ?_ 2
(3.39) n-g+\/4a(g 20) g

i.e. it differs from (3.28) in the sign preceding the second term. As @ tends to
infinity, n behaves like a=1/391/3. Therefore, the last term under the square root
sign in (3.21) vanishes in the limit and the near saddle points attain the values
wy. This again agrees with Brillouin’s and Oughstun and Sherman’s results.

As it will be seen in the following section, the approximation of saddle point
locations given here are pretty good in a wide range of changing 6, except for
very small values of this parameter, about 1.5 and below. In this exceptional
subregion we propose a very simple, local approximation obtained by expanding

the Lh.s. of the Eq. (3.22) about n = /1 + b2/wg, which corresponds to w = 0.
By retaining only the first term in the expansion we obtain

(3.40) s (‘ﬂ + e) ,
2 \wyo

and consequently

4b®
wyfwo +6)2 — 1’

(3.41) W —id + \/u..‘g—é?— (

the approximation being valid for small w.

3.4. Numerical results

Results obtained in the previous section will now be compared with the exact
ones and those obtained by Oughstun and Sherman.

In Fig. la,b the real and imaginary parts of the distant saddle points are
displayed as functions of the parameter 6. It is seen that the approximate values
obtained in this work are almost undistiguishable from the exact ones, even at
small values of 6.

Figure 2a,b presents real and imaginary parts of the near saddle points as
functions of 6. Again, the accuracy of the present result is very good, except at
very small values of 6. For ¢ around 1 and slightly above this value, Oughstun-
Sherman's result is better. This follows, on the one hand, from the fact that
their approximation is constructed under the assumption of small values of w,
and hence 6. On the other hand, the approximation method used here is not well
suited for small # because dw/dn blows up at @ equal 1 or \/bz/(wg —082) +1.

In Fig. 3a,b the local approximation proposed in (3.41) is compared with
exact solution of the saddle point equation and the Oughstun-Sherman’s appro-
ximation. It is very simple but not as good as the latter result.
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FiG. 1. a) Re(w) versus @ for distant saddle points. — - — Oughstun-Sherman’s appro-

ximate solution, — exact solution and the approximate solution based on Eq. (3.28)
(both plots are undistinguishable except for values of # below 1.5); b) Im(w) versus 6
for distant saddle points. The same caption as in Fig. la.
(43]
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F1G. 2. a) Re(w) versus @ for near saddle points. — - — Oughstun-Sherman’s approximate

solution, — exact solution and the approximate solution based on Eq. (3.39) (both plots

are undistinguishable except for values of # below 1.5); b) Im(w) versus @ for near saddle
points. The samecaption as in Fig. 2a.
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F1G. 3. a) Re(w) versus @ for near saddle points at small values of #. — exact solution,

— .— Oughstun-Sherman’s approximate solution, — — present approximate solution;
b) Im(w) versus @ for near saddle points at small values of §. Same caption as in
Fig. 3a.
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To summarize, the dependence of signal frequencies on the parameter 6, de-
scribing space-time point in the Lorentz medium, has been reexamined. Approxi-
mate formulas for this dependence, based on a new approximation of the saddle
point equation, have been found. The formulas exhibit some symmetry in predic-
ting complex frequencies in the Sommerfeld and the Brillouin precursors. For the
media parameters proposed by Brillouin the approximation obtained here appe-
ared to be more accurate than the Oughstun-Sherman’s one, at least for values
of @ greater than 1.5. The author believes that this observation will be preserved
for other choices of the parameters values. The present approximation, however,
is more complicated in form than both the Brillouin and Oughstun-Sherman’s
approximations.
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