Arch. Mech., 51, 3-4, pp. 311-334, Warszawa 1999

Localisation effect during wave pulse propagation in randomly
stratified elastic medium
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In THIS pAPER the propagation of the planar wave pulses in a two-dimensional random-
ly stratified elastic medium is considered. The waves propagate in the plane (z1,22)
and are independent of the third variable z. The problem is described by means of
the transition matrix method. The transition matrix and the wave equation for a
homogeneous layer is presented. The equations for the wave fields reflected from and
transmitted through the randomly stratified elastic slab are derived. The theoretical
results are illustrated by graphically presented numerical calculations. A possibility of
application of the wave analysis to modelling of the fatigue crack propagation initia-
ted at the interfaces and continued due to sequences of the reflected and transmitted
stress waves is discussed.

1. Introduction

IN THE PAPER we consider wave pulses in two-dimensional elastic stratified me-
dium. The results represent a certain generalisation of those given in [3], where
the wave pulses in a one-dimensional elastic medium were considered. On the
other hand, the paper extends the model presented in [4] for two-dimensional
harmonic waves to the non-stationary phenomenon of wave pulses. The main
mathematical tool used for the analysis of the problem is the so-called transition
matriz method. This method is very effective in solving wave problems in strati-
fied media — both deterministic and stochastic. The historical development of the
transition matrix approach was presented in [5] and our other papers on wave
problems in the stochastic stratified media [3, 4]. The advantage of the method
is the fact that one can perform large part of solving the equation procedure
analytically and only the last inversion of the Fourier transformation of the wave
amplitudes must be numerical.

The schedule of the paper is the following. First we introduce the notation
used throughout the paper and present the derivation of the Fourier transfor-
med wave equation for wave pulses in a homogeneous layer. Then we derive the
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equation for the planar elastic wave pulse and give the expressions for its solu-
tion. In Sec. 3 we consider waves in the medium built of homogeneous parallel
layers. We introduce such a system of independent variables that interfaces of
the layers (where the material parameters change their values) are perpendicu-
lar to the z-axis. Inside of each layer the wave field satisfies the wave equations
derived in Sec. 2 and at the discontinuity planes the displacements and traction
vector are continuous. Finally we derive the equation for the (Fourier transfor-
med) wave field in all the layered medium and solve it, obtaining the analytical
expressions for the amplitudes of the reflected and transmitted wave pulses. In
Sec. 4 we present the results of an example calculating numerically the inverse
Fourier transforms and observing the evolution in time of the pulses. Section 5
gives a discussion of the possible effect of the observed phenomena on the fatigue
crack propagation initiated at the interfaces and continued due to sequences of
the reflected and transmitted stress waves.

2. The wave equation for a single layer

We consider a linear elastic wave propagating in the homogeneous isotropic
medium. The wave propagation is governed by the following system of partial
differential equations [7]:

02
Poe

where o;; is the stress tensor defined as

('2‘].) Ui = Tyj 4. i=1,2.3‘

(2.2) oij = p(uij + wji) + Aug k0

(double indexes denote the summation from 1 to 3; the subscript “1” corresponds
to the independent variable z, “2” to y and “3” to z). In the above equation A
and p are the elastic Lamé constants and p is density of the medium.

We consider waves propagating in the plane (z,y) and independent of the
third spatial variable z. In our co-ordinate system the wave field has got the
following form:

(2.3) u(z,y, 2.t) = (u(z,y,t). us (2, y,t), [})T.

Condition (2.3) makes some elements of the stress tensor equal to zero and
slightly simplifies the governing equations. Since in further considerations we deal
with the problem of wave propagation in a layered medium, where the interfaces of
homogeneous layers are perpendicular to the x-axis, we can equivalently describe
the wave problem (2.1) - (2.2) by the following matrix differential equation

d .

(2.4) —1u = M,
dr
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with the solution @ searched for and the system matrix M defined as:

r 0 —ika K 0 7 [ g ]
—ik 0 0 n T:‘.Q
(2.5) M= ¢ U=
—w?p 0 0 —ik 71
. 0 KB —-w?p —ika 0 | | T2 ]

where 1y, tta, 71 and 75 are the Fourier transform of the non-zero displacement
co-ordinates, 1y, ug, and the non-zero co-ordinates of the traction vector, 73 and
To; the parameters in the matrix are (see [5]):

A _Ap(A+p) e 1 .
+2u)’ = k2 70 R T

In solving the wave problem described by equation (2.4) for a single layer, a
boundary condition:

B0k, w) T
tin(0, k,w)

(2.6) (0, k,w) = tg(k,w) = ,
#1(0, k,w)

L 72(0,k,w) |

representing jointly the incident wave pulse reaching the plane x = 0 and the
pulse reflected from it, has to be introduced. Then the value at the opposite side
of the layer, at x = L, say, can be represented as:

(2.7) u(L,k,w) = T(L)ao(k,w),

where T(L) is the transition matrix for the two-dimensional waves propagating
through the layer of thickness L. This matrix can be represented by the following
Sylvester formula [11, 5]:

4 —
(2.8) T(L) =exp{ML} = 5 (HW) exp {pi, L}

i=1
where p;,i = 1,2,3,4 are the eigenvalues of the system matrix M:
VE2 = w?p ey VK2 (A +2p) — w?p
Vi : P VA + 20 3
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The elements of the transition matrix have got a rather complicated form. They
are presented explicitly in [5].
The transition matrix T(.) makes it possible to express the wave field 1,

Py (e ke, a0) T
us(z, k,w)

(210) ﬁ(’L‘, k,w) == 1
Ti(z, k,w)

To(z, k,w) |

at any point z € [0, L] € R* in a homogeneous medium (inside a layer), provided
the boundary condition g = (0, k,w) at o = 0 is known. This wave field has
got the form (2.7) with T(z) as the transition matrix.

3. Elastic waves in the layered medium

The approach developed in Sec. 2 allows us also to describe the transition of
the two-dimensional elastic wave through a multi-layered medium. In such a case,
knowing the transition matrices through any individual layers, we can obtain the
transition matrix through all the stratified medium as a product of them.

Let us consider the multi-layered medium (slab) built of N layers of elastic
materials, with thickness 4;,7 =1,2,,... , N. Assume that the stratified medium

is surrounded by the homogeneous elastic environment, at * < 0 and # > L =
N

ZAJ" Since the wave field 4 must be continuous at the layer interfaces, the

j=1
wave on the back surface, at = L, can be expressed in the following form:

(3.1) a(L) = Tn(AN)TN-1(AN-1)...T2(A2)T1(A1 )0,

where 0 is the boundary condition at z = 0, a(L) is the vector of the transmitted
wave and T;(.), for j = 1,2,..., N, is the transition matrix for the j-th layer,
depending on the material parameters (possibly random).

In Equation (3.1) all the material properties of the multi-layered medium are
completely described by a 4 x 4 matrix T, being the product of the transition
matrices through the individual layers and interpreted as a transition matrix
through the slab built of N layers of homogeneous elastic materials:

[ Ty Tha Ths Tha
Ty T Tos Toa
Ty Tsp T3y Tag
Ty Ty Tag Ty
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Let us notice that the vector Gy describes jointly the (Fourier transforms of)
incident wave pulse (going to the right) and all the reflected pulses leaving the
slab (going to the left), generated by all the reflections at the interfaces of the
layers, measured at the plane z = 0. Analogously, G(L) represents the transmitted
pulses measured at the plane z = L and generated by all reflections at the internal
interfaces of the layers and transmitted through the layers. To make the obtained
formulae effective we must separate the incident and reflected waves from 1.
The waves in every region of environment surrounding the layered slab can be
described in the following way. In the left-hand environment (for z; < 0) there
is the incident (right-going) wave, represented as:

() | Ay B
(3.3) if‘"iz; = ij exp {—ip1z} + ij exp {—ipsz},
i@ || 4 B
and the reflected (left-going) wave:
i (z) C [ Dy ]
a5 (z) Cy _ Do _
(3:4) sty | = | ey exp {ip1z} + e exp {ipsz} .
73 (2) Cy | By |

In the right-hand environment (for z > L) there is only the transmitted (right-
going) wave, having the following form:

it (z) E o)
ul (z) E, Fy
(3.5) — exp {—ip1z} + exp {—ipsz}.
'F‘I”(*r) E;5 F;}
#r(z) E, Fy

Since the displacements and tractions are related quantities, the number of in-
dependent amplitude constants, A; — Fj, can be reduced. Calculating the Fourier
transforms of the respective Eqgs. (2.2) we obtain:

y dty .y
(3.6) fi=(A+ 2#)d—I + ikty
and i
2 i g i
(3.7) To = ikt + p o

what applied in (3.3) - (3.5), results in the following expressions for the incident,
reflected and transmitted wave:
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LA i
(3.8) USIC(F) =al < & exp {—ip1z}
7" () i[—(X + 2u)p1 A1 + kA
L @) | L iu(kAL —prAg)
B i
By '
S e || R
ip(kBy — p3B2)
[ aff(z) ] [ C T
(3.9) %: @)} ‘ Cy N
1% (z) i[(A+2u)p1Cy + kCy)
| #M@) ] | kG +piO)
Dy
Dy ;
i[(A + 2u)paDy + kDo) Spidnz}:
in(kDy + p3Ds)
i () E
(3.10) () = - exp {—ip 1z}
i () i[~(\ + 2u)p1 By + kEs)]
3" (x) ip(kEy — p1Ey)
" A )
Fy
i exp {—ipsz}.

i[—(X + 2u)ps Fy + k)
ip(kFy — paFy)

In these equations the parameters of the incident wave, Ay, As, By, Bs, are
calculated from the postulated incident wave pulse. The remaining parameters
are included into the wave Eq. (3.2) where we substitute z = 0 and z = L into
the left and right-hand waves, respectively. Then we have got the system of 4
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algebraic equations for 8 unknown parameters, Cy, Cy, Dy, Do, Ey, Eq, Fy, F5.
To solve them uniquely we need 4 additional conditions on the wave amplitudes.
The conditions are concerned with the directions of motion of the wave pulses
(reflected and transmitted) governed by the direction of the incident pulse. The
relations are analogous to the Snelius law known in optics or in the theory of
harmonic elastic wave propagation.

As usually, the derivation of the reflection law is based on the assumption
that the component of the wave vector parallel to the reflection (transmission)
surface must be continuous. Let us denote the wave vector by p. Then the law
can be written as

(3.11) P = P’ = P,
or equivalently: ‘ ‘
(312) pmc sin ‘_pmc = prcf sin '.prcf == ptr sin ‘Ptr’

where "¢, o' and ¢ are, respectively, the angles of incidence, reflection and
transmission of waves of certain type (longitudinal and transversal).

From the formulae (3.8) — (3.10) we see that the Fourier-transformed waves
propagate only in the direction perpendicular to the interface surface. We also
know the co-ordinate of the wave vectors perpendicular to the interface surface;
it is p; = p3 for the longitudinal wave and p; = p; for the transversal one.
Knowing the incidence angle we can reduce the number of unknown constants in
(3.8) - (3.10), using the Snelius-like relations (3.12).

Assume that the incident wave pulse is only longitudinal one and it reaches
the interface surface at the angle of incidence '™ = «v (Fig. 1). This means that
the amplitudes can be represented as

(3.13) A =A4,=0, By = Beosa, By = Bsina.

Hence the incident wave takes the following form:

a44c(z) By ]
e (z) By -
{314) s B ) exp {—1T)3I}
#ine (z) i[=(A+2u)paB1 + kB
f-_.,i"r(;{:) .’;_t.(-lb.BI — P:;BQ)
Bcosa f
B sin v

el exp {—ipsz}.
iB[—(A + 2u)ps cos a + ksina]

ipB(k cos a — pgsina)
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F1G. 1. The model of layered medium (n = 2 pairs of layers).

To obtain the relations restricting the number of amplitude constants, we
transform the formula (3.12) into the more convenient form

inc ref ref

(3.15) ph“c = p'itan '™ = P|" = PT tan oref = p| = pitan ¢".

The solution of amplitude problem requires the calculation of the following
angles:

@ief — the angle for reflected longitudinal wave;

ol — the angle for reflected transversal wave;

@ir . — the angle for transmitted longitudinal wave;

@if — the angle for transmitted transversal wave.

Similarly to the case of harmonic waves [3], the above defined angles satisfy the
following conditions:

(3.16) Plon = Plon = Plon = @
and
(3.17) o =l =0
Using formula (3.15) we find
(3.18) patan @i = ptan @'
or eventually
3.19 3 = arctan &tan o
( -
1
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Knowing the angles, we can write the direction vectors of every wave in the form:

n = (cosa,sina) — the direction vector for incident longitudinal wave (the
same as for transmitted longitudinal wave);

m = (—cosa,sina) - the direction vector for reflected longitudinal wave;

g = (cos 3,sin 3) — the direction vector for transmitted transversal wave;

h = (= cos 3,sin 3) - the direction vector for reflected transversal wave.

Since the displacements of the medium for transversal waves are perpendi-
cular to the direction vector, the displacement vectors are (a is the unit vector
perpendicular to the reference plane):

ax g = (—sinf3,cos 3) — the displacement vector for transmitted transversal
wave;

ax h = (—sinf3, —cos 3) - the displacement vector for reflected transversal
wave.

The displacement vectors for the longitudinal waves are the same as those for
the direction vectors.

Now, using the vectors defined above and the relations analogous to (3.13),
we transform the waves (3.9) and (3.10) to the following form:

[ atef(z) ] [ sin 3 1
el (x cos 3
(3.20) 3" (@) =-C exp {ip1z}
#ef () i[(A + 2u)p sin B + k cos f]
| 7Eef () \ | ip(ksin + py cosB)
[ —cos
sin o
=8 ) ) exp {ipzx} .
i[— (X + 2u)ps cos a + k sin o
ip(—k cos o + p3 sin @)
il (z) | —sin 3
08 (2 cos 3
(3.21) A?( ) =F| N exp {—ip1x}
() i[(A + 2u)py sin B + k cos ]
4@ | | iu(ksing — picosp)
i cos @ i
sin o
+ F exp {—ipsz}.

i[— (A4 2u)p3 cos a + ksin af

ip(k cos a — pysina)
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To complete the wave Eq. (3.1)

(3.22)

and

(3.23)

- r

B .ﬂl!l(‘,(

) (

ie©) | | @70
) (
B

Up = +
|nc{0 ,]',:{ef 0)
| 75°°(0 L 75°(0) |
[ sin 3 i
cos 3

i[(A + 2u)py sin B + k cos f3]

iju(ksin 3 + py cos 3) N

ORI
(L)
(L)
(L)

u(L)
Fir

#r

+F

+D

i[(A + 2u)p1 sin B + k cos 3]

ip(—ksin 3 — py cos B3)

i[—(A + 2u)ps cos a + ksina]

ipn(k cosa — pgsina)

we conclude that

cos o
sin o

i[— (A + 2p)p3 cos a + ksina]

ip(k cos a — pgsina) i
— Cos @
sinc

i[—(A + 2u)ps cos a + ksinal

ip(—k cos a + p3 sin o)
—sin 3 T

cos 3
exp {—ip1 L}

COs ¥

sin o
exp {—ipsL}.

The aim of calculations is to obtain the parameters C, D, E and F from the
Eq. (3.1) if the amplitude B of the incident wave is known.
In the particular case, if the incidence angle a = 0, we have got:

(3.24)

1
0
—i(A+ 2p1)ps

g =B -C

ik

0
1
ik

ippy |
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and
© 0
1
(3:25) u(L)=E b exp {—ip1 L}
i
| —iup1 |
1
F ’ {—ipsL}
-+ expi—tpsly;.
—i(A + 2p)p3
ipk

To proceed with calculations tending to the solution of the algebraic wave
Egs. (3.1) — (3.2), we substitute (3.24) — (3.25) and obtain:

Fexp{—ipsL}
E exp{—ip1 L}
ikE exp{—ip1 L} — i(A + 2u)p3 F exp{—ips L}
—ipupr E exp{—ip) L} + ipkF exp{—ipsL}

(3.26)

Ty Ty Tis Thy D
+ Ty Tzs Toz Tog C
Ty Tz Tsg Tag ikC + (A + 2p)p3 D
| Ty Ty Tyz Ty iup1C +ipkD
Ty T Tis Tu ][ B i
| T T2 Tz T 0
| T T T Tu —i(A + 2u)p3B
Ty Tae Ty Tag | | iukB |

Ordering the terms in (3.26) we write the system of equations in the following
form:
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Tia + ikTys +ipp1Tia Tiy + (A + 2p)paTis + ipkTia

(3.27)

T3p +ikTs3 + ipp1T3a T + i(A + 2

( )

Too + tkTos + ipp1Toy 1oy + i(A + 2pu)paTos + ipkToy
( )p3Ts3 + ipukTsy
( )

Tyo + tkTyz + iup1Tyy  Taq + i(A + 2u)psTys + ipkTyy

0 exp{—ipsL} [ C ]
exp{—ip1L} 0 P
ikexp{—ip1L}  —i(A+2u)psexp{—ipsL} | | E

iupy exp{—ip; L} ipk{—ipsL} JLF |

[ T11 — (A + 2u)psTia + ipkTha
Toy — i(A + 2u)p3Tog + ipkTyy
T3 — (A +2p)p3Tas + ipkT3
| Ta1 — #(A + 2p)p3Ty3 + ipkTyy

4. Numerical results

In Sec. 3 we presented the analytical formulae solving the two-dimensional
dynamical wave problem in layered medium. However, to make the proposed
method fully effective, we have to proceed with computer calculations. The com-
putational procedure leads from the initial wave pulse that travels through the
homogeneous half-space and reaches the front interface of the stratified layer,
to the pulses that are generated by the multiple reflections within the stratified
slab. There result two pulses (with a very complicated structure): the reflected
one that goes back in the homogeneous half-space and the transmitted one that
propagates further beyond the back surface of the stratified medium.

The equations applied for calculations, that is Eq. (3.1) and the following
ones, are written for the quantities (matrices and vectors) depending on two
parameters k and w (the variables of Fourier transformation with respect to the
spatial variable and the time). Solving Eq. (3.1) we do this for a fixed pair of
variables k£ and w. A complete solution of the problem requires the Eq. (3.1) to
be solved in the whole domain of the variables. Thereafter, the inverse Fourier
transformation allows us to determine the evolution of the pulses in the actual
time.

The scheme of calculations for some incident wave pulse can be given as
follows. Let us assume, for simplicity, that the incident wave pulse is longitudinal
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and reaches the front surface of the stratified layer at the angle of incidence a = 0.
In this cas> the Fourier transformation of the excitation, c.f. Eq. (3.14), takes the
following form:

(e, k) | 1
(2, k,w) 0
(4.1) 3 B exp{—ipaz}.
Tlmc(T! k,w) —i(A + 2}1.)]03
L %nc(a:!kaw) d |_ i,u.k i)

We have to remember that the eigenvalues p; and p3 defined in (2.9) are functions
of variables & and w, as the coefficient B must have the form:

(4.2) B=B(kw), kuwe (—00,00).

Moreover, the elements of the transition matrix T defined in (3.2) depend also
on the vanables k and w, 1.e.:

(4.3) T = T(k,w).

To solve tle problem, we substitute the calculated coefficient B in equation (3.27)
and solve t with respect to the coefficients C', D, E and F. All of them are some
functions of & and w. We substitute the calculated values of the coefficients in the
expressiors (3.20) and (3.21) defining the reflected and transmitted wave pulses
(or, more precisely, their Fourier transformations). Those expressions for a = 0
take the fellowing form:

@5 (0, k, w) 0 1
(4.4) i e B g 2 .
#¢(0, k,w) ik i(A + 2u)p3
750, k, w) if1p1 ipk
ﬂgf(L,k,w) Sakt
(4.5) b ) —' : exp{—ip1 L}
(L, k,w) ik
73°(L, k,w) —ipupy |
1
0 3
+ F A+ 2)ps exp{—ipsL}.
ipk J
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Two-dimensional inverse Fourier transformation of the vectors (4.4) and (4.5)
give us eventually the pulses as the functions of time, ¢, and the second space
variable, y, i.e.:

r u:iel' 1 r ref(o y‘ r u&r - r (L Y, )
ulef £f(0,y,t) usf u¥ (L, y,t)
(4.6) = and =
i fco, yyt) i (L, y,t)
Té'ef j ref(o y1 | f Tgtr ] ! thr{L,‘t ,t) |

It should be noticed that practical calculations must be performed in several
steps. First we must choose a grid in the region of changes of the variables k
and w, and then express the coefficient B(k,w) over this grid. Next we solve the
Eq. (3.27) for all points of this grid to obtain the values of coefficients C, D, E
and F in all grid points. Finally, we have got the expressions (4.4) and (4.5) in
the grid points and we can calculate the inverse Fourier transformation that is
the solution of the problem.

As an example, in numerical calculation we have considered a slab built of two
metals: steel and titanium surrounded by an aluminium environment. Material
constants for aluminium, steel and titanium are, respectively, cf. [12]:

AN = 544x10%kg-m™-sec™®, u®=2.75x10" kg -m!.sec™?,

Al

10.71 x 10" kg . m™! - sec™2, ' =8.14 x 10'° kg -m™1.sec™?,

o 7.08 x 10" kg -m~! -sec™?, p®=4.31x100 kg-m™!-sec™?,

Il

p° = 2750 kg - m~3,
p! = 8670 kg - m?,

p? = 4300 kg - m~3

Such a material configuration was chosen because the values of corresponding
parameters differ from each other and enable us to observe the strong effect of
stratification on the wave. We consider the incident longitudinal wave pulse of a
constant unit amplitude and a finite duration of reaching the stratified slab of
the fixed thickness at some finite instant (see Fig. 2). In our calculations the time
axis is scaled in seconds while the spatial variable is represented by numbers of
points of the grid used in calculations (we used 128 points of the spatial grid and
4096 points of the grid over time).
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FiG. 2. Incident longitudinal wave pulse.

In our numerical studies we assumed that the material of the slab is located
in pairs of the same thickness: one layer of steel and one layer of titanium. At
Figure 3 we presented the evolution of the wave pulse longitudinal displacement
(measured at the back surface of the slab) transmitted through the slab built of
only one pair of layers steel-titanium, each of thickness L/2. We observe that the
first wave pulse reaches the back surface after some time (we call it the travel
time through the slab) and then it is followed by a number of pulses generated by
the left and right-going pulses due to multiple reflections and transmissions at all
the interfaces (internal interfaces of the layers within the slab and the interfaces
of the slab and the surrounding environment). We see that the maximal peaks
(except for the first peak generated directly by the transmitted incident pulse)
correspond to the pulses reflected from the internal interfaces of the layers (the
distance between peaks is the doubled travel time through a single layer). If the
number of pairs of layers in the slab grows, we can observe an interesting effect
of homogenisation. Figure 4 shows that for n = 20 pairs of layers (each layer of
thickness L/40), the distances between maximal peaks are equal (approximately)
to the double travel time through all the slab. Figure 5 shows the maps of peaks
for the growing number of pairs of layers in the slab (from n = 1 to n = 20). We
can see how this effect of homogenisation increases together with stronger mixing
of the material in the slab.
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Fi1G. 5. Map of the transmitted longitudinal wave pulses for n = 1,2, 5, 10 and 20 pairs
of layers.

Our calculations and, what follows, the accuracy of the obtained picture is
strongly restricted by the number the grid points possible for calculations within
a realistic time (this is the time restriction for the applied algorithm of two-
dimensional Fast Fourier Transformation — [8]). For this reason we cannot study
the transmission of pulses for a greater number of layers (too few points of grid
at every layer). However, calculations for the one-dimensional model [4], where
only one-dimensional Fourier transformations are needed, show two effects. One
is the convergence of the shape of the transmitted wave pulse to the shape of the
incident pulse if the number of layers inside the slab grows (in our example the
transmitted pulse is of the constant amplitude). The localisation of the wave pulse
is another effect generated by a multi-layered medium. We can see that the wave
pulse goes through the homogenised slab (the slab with many pairs of very narrow
layers) longer than the sum of travel times through the material components. On
the other hand, we can observe the concentration of displacements (and, what it
follows, stresses) due to summation of several pulses, reflected and transmitted
inside the slab, what can be called the localisation of stresses.

As it is known, the incident longitudinal wave pulse generates, except for the
reflected and transmitted longitudinal wave pulses, also the transversal (reflected
and transmitted) pulses. Figures 6a, 6b show the transmitted transversal pulses
measured at the back surface of the layered slab for n = 1 and n = 20 pairs
of layers, respectively, and for two instants of time. It is seen that the transverse
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FiG. 6. Transmitted transversal wave pulse. a) n = 1 pair of layers. The cross-sections

at time ¢ = 0.0005 sec (solid line) and ¢ = 0.001 sec (dashed line); b) n = 20 pairs of

layers. The cross-sections at time ¢ = 0.0003 sec (solid line) and ¢ = 0.0007 sec (dashed
line).
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displacements are generated on the edges of the longitudinal wave. Unfortunately,
in our calculations (to rare grid) we obtain a very high level of numerical noise,
so too it is hard to conclude about evolution of this wave in time. We can only
say that transverse pulses are proportional to the longitudinal ones, so they have
peaks at the same time.

5. Wave pulses effect on fatigue fracture at interface imperfections

Two-dimensional analysis of the wave pulse propagation in stratified elastic
medium provides the normal and shear stress components within a slab. Though
the layers are assumed to be perfectly bonded, there is still a probability of an
inclusion to be present at the interface. Assuming the inclusion in the form of a
crack, the questions arise what a single impulse can be applied to the slab without
initiating the fracture of the bond or how many and how intense impulses the slab
can sustain without failing due to the fatigue damage. Both problems require the
fracture mechanics theory for an interface in an idealised infinite plane between
two linear elastic materials to be used.

For two perfectly bonded materials of different mechanical properties, shear
modules, G, and Poisson’s ratios, v;, j = 1,2, say, both the tensile and shear
stresses exist always at the crack tip affecting the fracture mode. There are several
papers devoted to the interface crack growth initiation in dissimilar media, e.g.
[9, 10, 13] and many others. It is commonly recognised that the crack branches
initially from an interface in the softer of the two materials, at an angle depending
on the stress components and material properties. As the branch extends, the
crack tends to return to a path parallel to the interface with a driving force
similar to that of an unbranched crack, cf. [6].

In order to prevent the propagation of an interface crack, the following crite-

rion, cf. [13], can be adopted:
VKE+ K2
8(901 £, ’}) 1

5. Koy = T
(D 1) [~ 2 . CQSI](?TE)

< Ko

where Ky and K3 are the real and imaginary parts of the complex stress intensity
factor, K = K + 1K>, for an interface crack, and € is the bimaterial constant
defined by

r NV S Vic
(0'2) % a (.‘{,2/02 -+ lfGI>

2T
with &; = 3 — 4u; for plane strain or x;j = (3 — v;)/(1 + v;) for plain stress pro-
blem, j = 1,2. The parameter v = tan~!(Ky/K)) and Kjc denotes the fracture
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toughness. The criterion (5.1) is derived for |¢| < 0.1 under an assumption that
the direction for which the circumferencial stress component, oy, of the stress field
in the polar co-ordinate system originated in the crack tip reaches its maximum,
coincides with the initial crack growth direction, 6y, i.e.

dog
00

The branching direction, y, can be eventually calculated from the following equ-
ation:

(5.3) =0.

(5.4) g gto=%), [2 cos (g + 1) — (cos B + 2esin ) - cos (g - 'y)jl

_e(0-m) |

0
sin (5 +'7) — (sinf — 2e cos 0) - cos (— -~ ’y)

—% (cos @ — 2esin ) - sin (— - 'y)]

—e~cl0-m) . [a‘ cos (ﬁ i 'y) 7+ Esin (g + 7)] =0.
2 2 2

The function term B(6,¢,7) occurring in (5.1) results from the formula for op
and has got the following form:

(5.5) B(8,e,9) = g 9-7) ; [2003 (g + 'y) — (cos @ + 2esinf) - cos (g - 7)]

36
4 e £0-7) . cos (E - ’y) ;

The components, K; and K, of the complex stress intensity factor are determined
numerically, cf. [13], or analytically using the following formulae based on those
derived in [9], say,

(5.5), K, = o [cos(e log 2a) + 2¢ sin( log 2a)]
+ 7 [sin(e log 2a) — 2¢ cos(¢ log 2a)] - /7 - a,
(5.5), K5 = 7 [cos(e log 2a) + 2¢ sin(e log 2a)]

—o [sin(e log 2a) — 2¢ cos(e log 2a)] - /7 - a.

Substituting the latter into (5.1), the fracture criterion takes the simple form as
follows
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V(02 +72) - (1 + 42
2 - cosh(me)

) Vrea < K.

In analogy to the fatigue crack growth modelling in homogenous materials
the amplitude of the equivalent one-dimensional stress intensity factor, AKy, ..
cf. (5.6), related to the amplitudes of the stress components, Ae and A, can be
likely used in a fatigue crack evolution equation in the form da/dn = f(AKy,,,.)
or more specifically, recalling the Paris-Erdogan equation, da/dn = C - AKg"
with C' and m as some constants. The further the crack penetrates into the
material, the weaker becomes the effect of the interface on the crack propagation,
in particular on its direction. It seems to be rational to assume the fatigue plastic
zone size, 1y, as a characteristic distance between the crack tip and the interface
when ¢ = 0 should be admitted in calculation of a new crack path direction, fy,
cf. (5.4), and of the stress intensity factor amplitude, Ay, .. (60,0,7), cf. (5.6).
Since the problem of plastic zone size calculation for the interface crack is rather
obscure, cf. [10], the approximate equation

(5.6) Kg,... = B(bo,¢e,7) -

A2 2
(5.7) e P ey OO ROT
2 oy

where o denotes the yield stress, can be adopted to indicate the moment when
the interface effect might be neglected.

6. Conclusions

In the paper we considered the model of the stratified medium - the slab
built of some number of isotropic, homogeneous elastic layers. Such a medium,
globally, is both anisotropic and nonhomogeneous. It is known that if we assume
the global thickness of the slab of layers to be constant but increase infinitely the
number of layers inside the slab, we perform a homogenisation procedure so that
after this process, the slab becomes homogeneous but remains anisotropic (locally
and globally transversally isotopic). The homogenisation effect, observed during
the numerical experiment, can be confirmed analytically, both for periodic and
random layered media [5]. To prove this fact we can calculate the limit transition
matrix (using the law of large numbers for products of matrices in the random
case, cf. [1]). The elastic properties of the obtained effective medium are described
by a tensor whose 5 elements are independent [3, 5|. However, as we have seen
from the considerations of Section 2, for the description of the elastic waves in
the case of the plane state of displacement we need only four elastic constants.
Two constants are needed in the anti-plane state of displacement (one of them
being different than that in the plane state). This statement remains valid both

http://rcin.org.pl



LOCALISATION EFFECT DURING WAVE PULSE PROPAGATION... 333

in the dynamic nonstationary case, studied in this paper, and in the stationary
one [3].

In this paper we have presented an analytical method of solution of the dyna-
mic wave problem in a layered medium. However, to express the resulting waves
(reflected and transmitted) generated by some incident pulse in an explicit way
some numerical calculations are necessary. The two-dimensional inverse Fourier
transform using the Fast Fourier Transform algorithm [8] appears to be the most
effective numerical tool to perform the calculations.

Because of the multiple reflections and possible localisation of the stress pul-
ses in the stratified media, the fatigue fracture effects must not be neglected in
reliability assessment of structures made of such composites. Therefore some re-
marks on the interface crack propagation were given to point out the problem
and suggest a possible approach to deal with it. Some numerical calculation and,
what is of the greatest importance, experimental verification are now going on
and will be reported elsewhere in the future.

Acknowledgement

The paper has been prepared with the financial support of the Committee of
Scientific Research (KBN) under grant no. 7TTOTA03312.

References
1. M.A. Bercer, Central limit theorem for products of random matrices, Trans. A.M.S., 285,
T77-803, 1984,

2. S. Kauski, |[Ed.:|, Vibrations and waves in solids, Polish Scientific Publishers, Warsaw
1966.

3. Z. Koruiskl, Elastic waves in randomly stratified medium, Part 1: Analytical results, Acta
Mechanica, 83, 61-75, 1990, Part 2: Numerical results, Acta Mechanica, 85, 143-163, 1992.

4. Z. Koruiski, On the effective reflection properties of the randomly segmented elastic bar,
European Journal of Mechanics, A /Solids, 13, 5, 677-696, 1994.

o

. Z. Koruiskl, Wave pulses in two-dimensional randomly stratified elastic media, Arch,
Mech., 47, 1, 125-139, 1995.

6. D.J. Mukal, R. BavLarint and G.R. MILLER, Analysis of branched interface cracks, J.
Applied Mech., 57, 887-893, 1990.

7. W. Nowackl, Theory of elasticity, Polish Scientific Publishers, Warsaw 1970.

8. W.H. Press, B.F. FLannery, S.A. Teukorsky and W.T. VerTeErunG, Numerical Recipes.
The art of scientific computing, Cambridge University Press, London 1986.

9. J.R. Rice and G.C. Sin, Plane problems of cracks in dissimilar media, J Applied Mech.,
Trans. ASME, 32, 418-423, 1965.

http://rcin.org.pl



334

K. DoLINSKI AND Z. KOTULSKI

10.

11.

12:
13.

J.R. Rice, Elastic fracture mechanics concepts for interfacial cracks, J Applied Mech.,
Trans. ASME, 55, 98-103, 1988.

V.I. Smirnov, Course of Higher Mathematics, vol. 3, part 2, State Editors of Physical and
Mathematical Literature, Moscow 1961.

J.J. Tuma, Handbook of physical calculations, McGraw-Hill 1976.

R. Yuuki and J.-Q. Xu, Stress based criterion for an interface crack kinking out of the
interface in dissimilar materials, Engng Fract. Mech., 41, 5, 635-644, 1992.

Received December 2, 1998; revised version 23 April 1999.

http://rcin.org.pl



