Distortion equation of motion in linear incompatible elastodynamics

R. WOJNAR

Polish Academy of Sciences Institute of Fundamental Technological Research Świętokrzyska 21, 00-049 Warszawa, Poland rwojnar@ippt.gov.pl

The paper deals with an initial-boundary value problem of linear incompatible elastodynamics, based on Kosevich' theory of continuously distributed defects due to prescribed plastic fields, [1, 2, 3]. In analogy to a stress formulation of linear incompatible elastodynamics with continuously distributed defects, [4], a distortion formulation is proposed. In such a formulation the tensorial initial-boundary value problem for an unknown asymmetric tensor field is to be solved. A solution to the problem generates the associated stress and rotation fields.

1. Introduction

The stress formulation (cf. Ignaczak [5, 6]). The stress formulation was applied to a dislocation theory by Ignaczak and Rao in their fundamental work [4]. In the present paper we give the formulation of a problem of linear elastodynamics with defects in terms of an asymmetric distortion tensor field, and prove an appropriate uniqueness theorem. Also, we show that by a symmetrization, the problem and uniqueness theorem reduce to those of a pure stress formulation of elastodynamics with continuously distributed defects, cf. [4]. In addition, we use a solution to the distortion initial-boundary value problem to obtain a dislocation density formula from [4], see Eq.(2.11) in [4].

If the displacement field of a solid with defects is described by a vector u_i , $(u_i = u_i^T)$, where u_i^T is the total displacement introduced in [4]), then the distortion tensor w_{ij} is defined as, cf. Landau and Lifshitz [2],

$$(1.1) w_{ij} = u_{j,i}.$$

Of course, in general tensor w_{ij} is not symmetric, i.e. $w_{ij} \neq w_{ji}$.

In the defect theory, the integral of w_{ij} along a contour L which encloses the dislocation line D is equal to Burger's vector \tilde{b}_i , cf. Fig. 1.

http://rcin.org.pl

R. WOJNAR

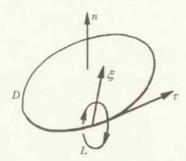


Fig. 1. The contour of integration L enclosing the dislocation line D. The direction of the contour integration and the chosen direction of the tangent vector $\boldsymbol{\tau}$ to the line D are related by the corkscrew rule, after [2]. Vector \mathbf{n} is normal to the dislocation loop surface and vector $\boldsymbol{\xi}$ is a radius vector taken from the line D in the plane perpendicular to the vector $\boldsymbol{\tau}$.

Therefore, the following relation holds true:

$$\oint_L w_{ik} n_i dl = -\tilde{b}_k.$$

Using Stokes' theorem, this integral relation can be written in a differential form

(1.3)
$$\varepsilon_{imn} w_{nk,m} = -\tau_i \tilde{b}_k \delta(\xi),$$

where ε_{imn} is the permutation symbol (the antisymmetric unit tensor), vector τ_i denotes the unit tangent to the dislocation line D, and ξ is the two-dimensional position vector taken from the dislocation line in the plane perpendicular to the vector τ_i at the point considered; and $\delta = \delta(\xi)$ represents the Dirac delta function, cf. also the Appendix.

If we introduce, after [2], the dislocation density tensor ρ_{ik} , defined as

(1.4)
$$\int_{S_L} \rho_{ik} df_i = \tilde{b}_k$$

where integration is performed over a surface S_L spanned by the contour L, we write instead of relation (1.3), the following equality

$$\varepsilon_{ijm}w_{mk,j} = -\rho_{ik}.$$

Hence, tensor ρ_{ik} satisfies the condition

$$\rho_{ik,i} = 0$$

which for a single dislocation expresses the conservation of the Burgers vector along the dislocation line.

http://rcin.org.pl

For convenience, and to make comparisons with [4] easier, we use the notation adopted in [4]

$$\alpha_{ik} \equiv -\rho_{ik}.$$

Then, Eqs. (1.5) and (1.6) take the forms

$$(1.5)' \qquad \qquad \varepsilon_{ijm} w_{mk,j} = \alpha_{ik}$$

and

$$\alpha_{ik,i} = 0.$$

Equations (1.5) or (1.5)' hold true both for dislocations which are at rest and those in motion, if only the elastic displacements are taken into account. However, the motion of a dislocation can be related to a plastic deformation, as well. An exhaustive discussion of the elastodynamic theory of defects in which plastic deformations are prescribed, and the defects are characterized in terms of a symmetric stress tensor field, is presented in [4]. In the following, we present a ramification of the results obtained in [4] in which an asymmetric distortion tensor field plays a central role.

A total distortion tensor w_{ij}^T , denoted in [2] by W_{ij} , is postulated in the form

$$(1.8) w_{ij}^T = w_{ij}^E + w_{ij}^P,$$

where w_{ij}^E and w_{ij}^P represent the elastic and plastic parts of the distortion, respectively,

$$(1.9) w_{ij}^T = u_{j,i}$$

and neither elastic nor plastic part of decomposition (1.8) are obtained by the gradient of a vector field. Clearly, relations (1.1) to (1.6) are valid for $w_{ij} \equiv w_{ij}^E$ and $w_{ij}^P \equiv 0$.

If, in addition, it is postulated that (1.5)' is satisfied by the elastic part w_{ij}^E only, i.e.

$$\varepsilon_{ijm} w_{mk,j}^E = \alpha_{ik}$$

then, by (1.8) and (1.9), we obtain

(1.11)
$$\varepsilon_{ijm} w_{mk,j}^P = -\alpha_{ik}.$$

The total deformation tensor e_{ij}^T , and elastic and plastic strain tensors e_{ij}^E and e_{ij}^P are defined in terms of w_{ij}^T , w_{ij}^E and w_{ij}^P by {cf. [4], Eqs. (2.1) – (2.2)}

$$(1.12) 2e_{ij}^T = w_{ij}^T + w_{ji}^T,$$

(1.13)
$$2e_{ij}^{E} = w_{ij}^{E} + w_{ji}^{E} (\equiv 2e_{ij}),$$

$$(1.14) 2e_{ij}^P = w_{ij}^P + w_{ji}^P.$$

Other fields of the defect theory such as the dislocation moment density can be also defined in terms of the tensor w_{mn}^P , (cf. Landau and Lifshitz [2], Kosevich [3]).

2. Basic field equations and initial boundary value problem

Let a nonhomogeneous anisotropic linear elastic body, occupying a threedimensional region B, be subject to a dynamic motion. Let the body forces be absent. Let the displacement be described by a vector u_i . Then the distortion tensor w_{ij}^T is defined as, cf. (1.9),

$$(2.1) w_{ij}^T = u_{j,i}.$$

The relation between the strain tensor e_{ij}^T and the distortion tensor w_{ij}^T is given by (1.12), and the relation between the stress tensor s_{ij}^E and the strain tensor e_{ij}^T is given by the generalized Hooke's law, cf. SOKOLNIKOFF [7], NOWACKI [8],

$$(2.2) s_{ij}^E = C_{ijmn} e_{mn}^E,$$

where C_{ijmn} is the elasticity tensor. The inverse relation reads

$$e_{ij}^E = K_{ijmn} s_{mn}^E,$$

where K_{ijmn} is the compliance tensor, i.e.:

$$C_{ijpq}K_{pqmn} = \delta_{i(m}\delta_{jn)}$$
 on B

and δ_{ij} stands for Kronecker's symbol.

Thus, instead of (2.2) we can write

$$(2.4) s_{ij}^E = C_{ijmn} w_{mn}^E$$

or taking into account (1.8), we get

(2.5)
$$s_{ij}^{E} = C_{ijmn}(w_{mn}^{T} - w_{mn}^{P}) (\equiv s_{ij}).$$
 http://rcin.org.pl

In Eqs. (2.2) - (2.5) the symmetry relations are postulated

$$(2.6) C_{ijmn} = C_{jimn} = C_{ijnm} = C_{mnij}, K_{ijmn} = K_{jimn} = K_{ijnm} = K_{mnij}.$$

The equation of motion takes the form

$$(2.7) s_{ik,k}^E + b_i = \rho \ddot{u}_i,$$

where $\rho = \rho(\mathbf{x})$ and $\mathbf{b} = \mathbf{b}(\mathbf{x})$ denote the mass density and body force vector fields.

Finally, the density ρ and compliance K_{ijkl} satisfy the inequalities

$$(2.8) \rho > 0, K_{ijkl}\xi_{ij}\xi_{kl} > 0$$

for every tensor field $\xi_{ij}(\mathbf{x}), \mathbf{x} \in B$, not necessarily symmetric.

3. Distortion equation of motion

After differentiation of equation of motion (2.7) and use of definition of distortion (2.1), we get

(3.1)
$$(\rho^{-1}s_{ik,k}^E)_{,j} + (\rho^{-1}b_i)_{,j} = \ddot{w}_{ij}^T, \qquad (\mathbf{x},t) \in B \times [0,\infty)$$

or, by (2.5),

$$\left\{ \rho^{-1} [C_{ikmn} (w_{mn}^T - w_{mn}^P)]_{,i} + (\rho^{-1}b_i)_{,j} = \ddot{w}_{ij}^T, \quad (\mathbf{x}, t) \in B \times [0, \infty) \right\}$$

or

(3.2)
$$[\rho^{-1}(C_{ikmn}w_{mn}^T)_{,k}]_{,j} + \hat{b}_{i,j} = \ddot{w}_{ij}^T, \quad (\mathbf{x},t) \in B \times [0,\infty).$$

This is the distortion equation of elastodynamics we are to deal with. The term

$$\hat{b}_i \equiv [b_i - (C_{ikmn} w_{mn}^P)_{,k}]/\rho$$

is to be considered as the given density of body forces distributed in a crystal, (cf. [2]).

The above field equation is subject to the initial conditions

(3.3)
$$w_{ij}^{T}(\mathbf{x}, 0) = w_{ij}^{o}(\mathbf{x}), \quad \dot{w}_{ij}^{T}(\mathbf{x}, 0) = \dot{w}_{ij}^{o}(\mathbf{x}) \quad \mathbf{x} \in B$$

http://rcin.org.pl

and boundary conditions

$$u_i^0(\mathbf{x}) + t\dot{u}_i(\mathbf{x}) + \rho^{-1}t * (C_{ikmn}w_{mn}^T)_{,k}(\mathbf{x},t) = \mathcal{U}_i(\mathbf{x},t)$$

$$\text{on } \partial B_{\mathcal{U}} \times [0,\infty),$$

$$(C_{ijmn}w_{mn}^T)n_j = \mathcal{F}_i(\mathbf{x},t) \text{ on } \partial B_{\mathcal{F}} \times [0,\infty),$$

where $\partial B_{\mathcal{U}} \cup \partial B_{\mathcal{F}} = \partial B$, $\partial B_{\mathcal{U}} \cap \partial B_{\mathcal{F}} = \emptyset$.

The fields $w_{ij}^0(\mathbf{x})$ and $\dot{w}_{ij}^0(\mathbf{x})$ are determined by the initial displacement field $u_i(\mathbf{x},0) = u_i^o(\mathbf{x})$ and the initial velocity field $\dot{u}_i(\mathbf{x},0) = \dot{u}_i^o(\mathbf{x})$ through the relations

$$w_{ij}^0(\mathbf{x}) = u_{j,i}^0(\mathbf{x}), \qquad \dot{w}_{ij}^o(\mathbf{x}) = \dot{u}_{j,i}^p(\mathbf{x}) \quad \text{on} \quad B.$$

Moreover, the field $\mathcal{U}_i(\mathbf{x}, t)$ is expressed by the boundary displacement $\hat{u}_i(\mathbf{x}, t)$, and the initial data $u_i^o(\mathbf{x})$ and $\dot{u}_i^o(\mathbf{x})$, through

$$\mathcal{U}_i(\mathbf{x},t) = \hat{u}_i(\mathbf{x},t) - t\dot{u}_i^o(\mathbf{x}) - u_i^o(\mathbf{x}).$$

Finally, the field $\mathcal{F}_i(\mathbf{x},t)$ represents the surface traction.

Theorem 1. (Uniqueness theorem for a distortion initial-boundary value problem of elastodynamics with defects).

The problem (3.2) - (3.4) has at most one solution.

Proof. It is sufficient to show that the problem (3.2) – (3.4) corresponding to homogeneous data has a zero solution only.

Introduce the notations

$$s_{ij} = C_{ijmn} w_{mn}^T$$

and

(b)
$$W_{ij} = w_{ij}^T.$$

Then, the homogenous counterparts to Eqs. (3.2) - (3.4) read

$$(3.2)' (\rho^{-1}s_{ik,k})_{,j} = \ddot{W}_{ij}, (\mathbf{x},t) \in B \times [0,\infty)$$

(3.3)'
$$W_{ij}(\mathbf{x}, 0) = 0, \quad \dot{W}_{ij}(\mathbf{x}, 0) = 0, \quad \mathbf{x} \in B;$$

(3.4)'
$$\rho^{-1}t * (C_{ikmn}W_{mn})_{,k}(\mathbf{x},t) = 0 \quad \text{on} \quad \partial B_{\mathcal{U}} \times [0,\infty),$$
$$C_{ijmn}W_{mn}n_j = 0 \quad \text{on} \quad \partial B_{\mathcal{F}} \times [0,\infty).$$
$$\text{http://rcin.org.pl}$$

Moreover, (a), (3.3)' and (3.4)' imply that

(b)
$$s_{ij}(\mathbf{x}, 0) = 0, \quad \dot{s}_{ij}(\mathbf{x}, 0) = 0, \quad \mathbf{x} \in B$$

and

(c)
$$s_{ik,k}(\mathbf{x},t) = 0$$
 on $\partial B_{\mathcal{U}} \times [0,\infty)$,

(d)
$$s_{ij}n_j = 0$$
 on $\partial B_{\mathcal{F}} \times [0, \infty)$.

Multiply both sides of Eq. (3.2)' by \dot{s}_{ij} and integrate over B, to obtain

$$\int\limits_{B} [(\rho^{-1}s_{ik,k})_{,j}]\dot{s}_{ij}dB = \int\limits_{B} \ddot{W}_{ij}\dot{s}_{ij}dB.$$

Hence, by integration by parts, we get

$$\int_{B} \left\{ [(\rho^{-1} s_{ik,k}) \dot{s}_{ij}]_{,j} - (\rho^{-1} s_{ik,k}) \dot{s}_{ij,j} \right\} dB = \int_{B} \ddot{W}_{ij} \dot{s}_{ij} dB$$

or, by use of the divergence theorem,

$$\int\limits_{\partial B} (\rho^{-1} s_{ik,k}) \dot{s}_{ij} n_j dA - \int\limits_{B} [(\rho^{-1} s_{ik,k}) \dot{s}_{ij,j}] dB = \int\limits_{B} \ddot{W}_{ij} \dot{s}_{ij} dB.$$

By (c) and (d), we obtain

$$-\int\limits_{B}[(\rho^{-1}s_{ik,k})\dot{s}_{ij,j}]dB=\int\limits_{B}\ddot{W}_{ij}\dot{s}_{ij}dB$$

or by (a)

$$rac{1}{2}rac{\partial}{\partial t}\int\limits_{B}\left[(
ho^{-1}s_{ik,k})\dot{s}_{ij,j}+C_{ijmn}\dot{W}_{ij}\dot{W}_{mn}
ight]dB=0,$$

and after integration with respect to time and using the initial conditions (3.3)' and (b), we get

(3.5)
$$\int_{B} [(\rho^{-1}s_{ik,k})s_{ij,j} + C_{ijmn}\dot{W}_{ij}\dot{W}_{mn}]dB = 0.$$

Hence

(e)
$$s_{ij,j} = 0$$
 http://rcin.org.pl

10 R. Wojnar

and

$$\dot{W}_{ij} + \dot{W}_{ji} = 0.$$

Insert (e) into (3.2)' to get

(g)
$$0 = \ddot{W}_{ij} \quad \forall \quad (\mathbf{x}, t) \in B \times [0, \infty).$$

Integrating the last equation twice and using the initial conditions (3.3)' we obtain the result

(h)
$$W_{ij} = 0 \quad \forall \quad (\mathbf{x}, t) \in B \times [0, \infty).$$

This completes the proof of the uniqueness theorem.

Note that the uniqueness theorem for a pure stress initial-boundary value problem of elastodynamics in which the elasticity tensor is positive definite and the density is positive was presented in [5], while the uniqueness theorem for a pure stress initial-boundary value problem of incompressible isotropic elastodynamics was given in [9].

4. Remarks

4.1.

Let us, in addition to the fields introduced in Sec. 2, define the elastic rotation vector field

(4.1)
$$\omega_k = \frac{1}{2} \varepsilon_{kab} w_{ab}^E$$

and elastic rotation tensor field

(4.2)
$$o_{mk} = \frac{1}{2} (w_{mk}^E - w_{km}^E).$$

Also, define the elastic bend-twist tensor as

$$\kappa_{mk} = \omega_{k,m}.$$

With these definitions we find that

$$o_{mk} = \frac{1}{2}(o_{mk} - o_{km})$$

or

$$o_{mk} = \frac{1}{2} (\delta_{ma}\delta_{kb} - \delta_{mb}\delta_{ka})o_{ab}$$

http://rcin.org.pl

Or

$$o_{mk} = \frac{1}{2} \varepsilon_{mkq} \varepsilon_{qab} o_{ab}.$$

Hence

$$o_{mk} = \varepsilon_{mkq}\omega_q$$

and, by (4.3)

$$(4.4) o_{mk,j} = \varepsilon_{mkq} \kappa_{jq}.$$

Therefore, Eq. (1.5)' which, by definitions (1.13) and (4.2) can be written as

$$\varepsilon_{ijm}(e_{mk} + o_{mk})_{,j} = \alpha_{ik},$$

takes the form

(4.6)
$$\varepsilon_{ijm}(e_{mk,j} + \varepsilon_{mkq}\kappa_{jq}) = \alpha_{ik}$$

and this is an equation identical with Eq. $(2.11)_1$ in [4].

4.2.

By taking symmetric part of the distortion problem (3.1) – (3.4), we arrive at the pure stress problem of elastodynamics with continuously distributed defects discussed in [4] (cf. Theorem 3.3 in [4]).

4.3.

If a solution of the pure stress problem discussed in 4.2. is available, then the skew part of the distortion, *i.e.* a solution of the problem obtained by taking skew part of the problem (3.1) - (3.4), can be easily obtained.

5. Conclusions

- 1. A pure distortion initial-boundary value problem of linear elastodynamics with continuously distributed defects has been formulated, and a uniqueness theorem for the problem has been proved.
- 2. By a symmetrization, the problem and uniqueness theorem reduce to those of a pure stress formulation of elastodynamics with continuously distributed defects, cf. [4].
- 3. By defining the elastic rotation fields in terms of the distortion tensor, a dislocation density formula from [4] has been recovered.

R. WOJNAR

Appendix

To show that the integral condition (1.2) implies the local equation (1.3), Stokes' theorem is used. The proof is due to LANDAU and LIFSHITZ [2]. First, we note that for an arbitrary vector **a** we have

(A.1)
$$\oint_{L} a_{i}n_{i}dl = \int_{S_{L}} \varepsilon_{imn}a_{n,m}n_{i}dS,$$

where S_L is a surface that spans the contour L. Substituting w_{ik} instead of a_i into (A.1) we get

(A.2)
$$\oint_L w_{ik} n_i dl = \int_{S_L} \varepsilon_{imn} w_{nk,m} n_i dS.$$

Next, we note that a constant vector $\tilde{\mathbf{b}}$ may be represented by an integral involving the two-dimensional delta function

(A.3)
$$\tilde{b}_k = \int_{S_L} \tau_i \tilde{b}_k \delta(\xi) n_i dS,$$

where ξ is the two-dimensional radius vector taken from the axis of dislocation in the plane perpendicular to the vector τ at the point considered, cf. Fig. 1. Substituting (A2) and (A3) into (1.2) we get

(A.4)
$$\int_{S_L} \varepsilon_{imn} w_{nk,m} n_i dS = -\int_{S_L} \tau_i \tilde{b}_k \delta(\xi) n_i dS.$$

Since the contour L is arbitrary, from (A.4) we obtain (1.3). This completes the proof of implication (1.2) \Rightarrow (1.3).

References

- A. M. Kosevich, Equation of motion of a dislocation, Zh. E. T. F., 43, 637-648, 1962.
- L. D. Landau and E. M. Lifshitz, Teoriya uprugosti, Izd. Nauka Glavn. Red. Fiz.-Mat. Literatury, 3rd edition, Moskva 1965; also English translation: Theory of elasticity, Vol. 7 of Course of Theoretical Physics, Pergamon Press, Oxford 1970.
- A. M. Kosevich, Crystal dislocations and the theory of elasticity, [in:] F.R.N. Nabarro [Ed.], Dislocation in solids, Vol. 1, North Holland, Amsterdam 1979.
- J. Ignaczak and C. R. A. Rao, Stress characterization of elastodynamics with continuously distributed defects, J. Elasticity, 30, 219-250, 1993.
- J. Ignaczak, Direct determination of stresses from the stress equations of motion in elasticity, Arch. Mech. Stos., 11, 671-678, 1959.

- J. Ignaczak, A completeness problem for the stress equation of motion in the linear theory of elasticity, Arch. Mech.Stos., 15, 225-234, 1963.
- I. S. Sokolnikoff, Mathematical theory of elasticity, Second Edition, New York-Toronto-London 1956.
- W. Nowacki, Theory of Elasticity [in Polish], [in:] Mechanika techniczna t. IV Sprężystość [in Polish], [Ed.] M. Sokołowski, PWN, Warszawa 1978.
- R. Wojnar, Uniqueness theorem for stress equations of isochoric motions of linear elasticity, Arch. Mech., 26, 747-750, 1974.

Received February 11, 1998; new version August 24, 1998.