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THE PAPER DEALS with an initial-boundary value problem of linear incompatible ela-
stodynamics, based on Kosevich' theory of continuously distributed defects due to
prescribed plastic fields, [1, 2, 3]. In analogy to a stress formulation of linear incom-
patible elastodynamics with continuously distributed defects, [4], a distortion formu-
lation is proposed. In such a formulation the tensorial initial-boundary value problem
for an unknown asymmetric tensor field is to be solved. A solution to the problem
generates the associated stress and rotation fields.

1. Introduction

THE STRESS FORMULATION of linear elastodynamics is a counterpart of the displa-
cement formulation (cf. IGNACZAK [5, 6]). The stress formulation was applied
to a dislocation theory by IGNACZAK and RAO in their fundamental work [4].
In the present paper we give the formulation of a problem of linear elastodyna-
mics with defects in terms of an asymmetric distortion tensor field, and prove an
appropriate uniqueness theorem. Also, we show that by a symmetrization, the
problem and uniqueness theorem reduce to those of a pure stress formulation of
elastodynamics with continuously distributed defects, cf. [4]. In addition, we use
a solution to the distortion initial-boundary value problem to obtain a dislocation
density formula from [4], see Eq.(2.11) in [4].

If the displacement field of a solid with defects is described by a vector u;,
(u; = ul', where u! is the total displacement introduced in [4]), then the distor-
tion tensor w;; is defined as, cf. LANDAU and LiFsHITZ [2],

(1.1) Wij = Uji-

Of course, in general tensor wj; is not symmetric, i.e. w;; # wj;.
In the defect theory, the integral of w;; along a contour L which encloses the
dislocation line D is equal to Burger’s vector b;, cf. Fig. 1.
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L

F1G. 1. The contour of integration L enclosing the dislocation line D. The direction of

the contour integration and the chosen direction of the tangent vector T to the line D

are related by the corkscrew rule, after [2]. Vector n is normal to the dislocation loop

surface and vector & is a radius vector taken from the line D in the plane perpendicular
to the vector T.

Therefore, the following relation holds true:

(1.2) f wipn;dl = —bi.
L

Using Stokes’ theorem, this integral relation can be written in a differential form

(1'3) EimnWnkm — _Ti5k5(£)!

where £;,,,, is the permutation symbol (the antisymmetric unit tensor), vector 7;
denotes the unit tangent to the dislocation line D, and & is the two-dimensional
position vector taken from the dislocation line in the plane perpendicular to the
vector 7; at the point considered; and § = §(&) represents the Dirac delta function,
cf. also the Appendix.

If we introduce, after [2], the dislocation density tensor p;i, defined as

(1.4) pirdf; = bx
/

where integration is performed over a surface Sy, spanned by the contour L, we
write instead of relation (1.3), the following equality

(1.5) EijmWmk,j = —Pik-

Hence, tensor p;; satisfies the condition

(1.9 Piki =0

which for a single dislocation expresses the conservation of the Burgers vector
along the dislocation line.
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For convenience, and to make comparisons with [4] easier, we use the notation
adopted in [4]

11.4) Qik = —Piks
Then, Egs. (1.5) and (1.6) take the forms

(1.5) EijmWmk,j = Qik
and
(1.6)" Qiki = 0.

Equations (1.5) or (1.5)" hold true both for dislocations which are at rest
and those in motion, if only the elastic displacements are taken into account.
However, the motion of a dislocation can be related to a plastic deformation, as
well. An exhaustive discussion of the elastodynamic theory of defects in which
plastic deformations are prescribed, and the defects are characterized in terms of
a symmetric stress tensor field, is presented in [4]. In the following, we present
a ramification of the results obtained in [4] in which an asymmetric distortion
tensor field plays a central role.

A total distortion tensor wg, denoted in [2] by W;j, is postulated in the form
(1.8) wf;—w +w£,

where w,J and w represent the elastic and plastic parts of the distortion, re-
spectively,

(1.9) w:*; = Uj;

and neither elastic nor plastic part of decomposition (1.8) are obtained by the
grad:ent of a vector field. Clearly, relations (1.1) to (1.6) are valid for w;; = wk

1

and wu =

If, in addition, it is postulated that (1.5)' is satisfied by the elastic part wg
only, i.e.

(1.10) Eijmwf;k,j = Qi
then, by (1.8) and (1.9), we obtain

(1.11) EijmWink,j = — Otk

The total deformation tensor er‘; and elastic and plastic strain tensors e%
and e‘- are defined in terms of wtj,w and w by {cf. [4], Egs. (2.1) - (2.2)}
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(1.12) 2el; = w +w,
(1.13) 2ef = wi + wf (= 2e;5),
(1.14) 285 = w{; + w_;-z:-.

Other fields of the defect theory such as the dislocation moment density can
be also defined in terms of the tensor w’ , (cf. LANDAU and LiFsHITZ [2],
KosevicH [3]).

2. Basic field equations and initial boundary value problem

Let a nonhomogeneous anisotropic linear elastic body, occupying a three-
dimensional region B, be subject to a dynamic motion. Let the body forces be
absent. Let the displacement be described by a vector u;. Then the distortion

tensor w;rj is defined as, cf. (1.9),

(2.1) w‘;-? = Yy

The relation between the strain tensor eg} and the distortion tensor w:{; is

given by (1.12), and the relation between the stress tensor sg and the strain tensor
e?;- is given by the generalized Hooke’s law, cf. SOKOLNIKOFF [7], NowAckl [8],

(2.2) 85 — Jijmnefmm

where Cjjmn is the elasticity tensor. The inverse relation reads

E E
(2-3) eij — Kijmnsmn,

where K;jmy, is the compliance tensor, 1.e.:
Ciququ‘rnn e :(ma-gn) on B

and &;; stands for Kronecker’s symbol.
Thus, instead of (2.2) we can write

(2.4) Sg = Cijmnwf-;n

or taking into account (1.8), we get

(25] 3‘5 = Cijmn(wg;n = w'rI:n)(E Sij)'
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In Egs. (2.2) - (2.5) the symmetry relations are postulated

(2.6)  Cijmn = Cjimn = Cijnm = Crmijs  Kijmn = Kjimn = Kijnm = Kmnij-
The equation of motion takes the form

(2.7) Sikk + bi = pili,

where p = p(x) and b = b(x) denote the mass density and body force vector

fields.
Finally, the density p and compliance Kjji satisfy the inequalities

(2.8) p>0, Kijki&ij€ > 0

for every tensor field &;;(x),x € B, not necessarily symmetric.

3. Distortion equation of motion

After differentiation of equation of motion (2.7) and use of definition of di-
stortion (2.1), we get

(3.1) (b sikk)s Hp 7 bi),j = w5, (x,t) € B x [0,00)
or, by (2.5),

{P—l[cikmn(wﬁn - wfm)l,k}j + (p~b3),; = w;{:, (x,t) € B x [0,00)
or

(3.2) [p_l(cikmnwiﬂ],k],j + 55,}' = wﬂ, (x,t) € B x [0, 00).

This is the distortion equation of elastodynamics we are to deal with. The term

(3.2a) bi = [bi — (Cikmnwhy) /P

is to be considered as the given density of body forces distributed in a crystal,
(cf. [2]).

The above field equation is subject to the initial conditions

(3.3) wi(x,0) = wfi(x), wgi(x,0) =w(x) x€B
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and boundary conditions

ud (%) + ti; (x) + p 't * (Cikmnwhy,) k(x,t) = Us(x,1)
(3.4) on @By x [0, 00),
(Cijmnwl)n; = Fi(x,t) on dBx x [0,00),

where By U dBr = 8B,0By N dBx = 0.

The fields 'w?}(x) and u‘;?j(x) are determined by the initial displacement field
u;(x,0) = u?(x) and the initial velocity field #;(x,0) = 42(x) through the rela-
tions

w?j(x) = u?lé(x), wi(x) =uf(x) on B.
Moreover, the field ;(x,t) is expressed by the boundary displacement ;(x, t),
and the initial data u¢(x) and 4?(x), through

Us(x, ) = ii(x, 1) = ti7(x) — uf(x).

Finally, the field F;(x,t) represents the surface traction.

THEOREM 1. (Uniqueness theorem for a distortion initial-boundary value problem
of elastodynamacs with defects).
The problem (3.2) — (3.4) has at most one solution.

Proof. Itis sufficient to show that the problem (3.2) — (3.4) corresponding to
homogeneous data has a zero solution only.
Introduce the notations

(a') sij — Ct'jmﬂwg;n
and

Then, the homogenous counterparts to Egs. (3.2) — (3.4) read

(3.2) (P sik k), = Wij, (x,t) € B x [0,00)
(3.3)! W;j(x,0) =0,  W;j(x,0)=0, x€ B;
(3.4) p 7t * (CikmnWinn) 1(x,t) =0 on 8By x [0,00),

Cijmn Wmnn.f =0 on 683: x [O,DO).
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Moreover, (a), (3.3)" and (3.4)" imply that

(b) sij(x, U) = U, .é,fj(x, 0} =0, x€eB
and

(c) s p(x, 8 =0 on 9By % [0,00),
(d) Sin; = 0 on BB_F X [0, OO)

Multiply both sides of Eq. (3.2) by &;; and integrate over B, to obtain
fl(P*lsik,k).jlside = fWijésde-
B B

Hence, by integration by parts, we get

_/{[(P—lsz‘k,k)éij],j _(P_lsik,k)éij,j}dB = /Wz‘jéijdﬁ'
B B

or, by use of the divergence theorem,
_/(P"]Sek,k)é‘?s'jﬂjdA */[(P_lssk,k)s'ij,jldB =/Wijéijd3-
B B
By (c) and (d), we obtain
"f[(ﬂ_lsek,k)éij,j]dB Z/Wijéide
B B

or by (a)

b =
QJ|Q_-,

f P 3:k k 3:3,3 =t Ct}mn W‘U wm'n] dB =0,
B

and after integration with respect to time and using the initial conditions (3.3)’
and (b), we get

(35) /[(P_lsik,k)sij,j +- C,-jm,,W,-ij]dB —0;
B

Hence

(e) 8ij,5 =0
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and
(f) Wij + Wji = 0.
Insert (e) into (3.2) to get

(g) 0=W;; VY (x,t)€ B x][0,00).

Integrating the last equation twice and using the initial conditions (3.3)’ we obtain
the result

(h) Wi; =0 V¥ (x,t)€ B x[0,00).

This completes the proof of the uniqueness theorem. a

Note that the uniqueness theorem for a pure stress initial-boundary value pro-
blem of elastodynamics in which the elasticity tensor is positive definite and the
density is positive was presented in [5], while the uniqueness theorem for a pure
stress initial-boundary value problem of incompressible isotropic elastodynamics
was given in [9].

4. Remarks

4.1.

Let us, in addition to the fields introduced in Sec. 2, define the elastic rotation
vector field

(4.1) wk = %Ekabwﬂ

and elastic rotation tensor field

il
(4'2] Omk — 5(“’5&& == wfm)'
Also, define the elastic bend-twist tensor as
(4.3) Kmk = Wkm-
With these definitions we find that

1

Omk = §(Omk — Okm)

or
IS
Omk = =(0madkb — OmbOka)0ab
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or
Omk = %Emkqeqaboo.b-
Hence
Omk = Emkqleq
and, by (4.3)
(4.4) Omk,j = EmkqKjq-

Therefore, Eq. (1.5)" which, by definitions (1.13) and (4.2) can be written as

(4.5) Eijm(emk + Omk),j = ik,
takes the form
(46) Eijm(ernk,j + Emkqﬁjq) = Ok

and this is an equation identical with Eq.(2.11); in [4].
4.2,

By taking symmetric part of the distortion problem (3.1) - (3.4), we arrive at
the pure stress problem of elastodynamics with continuously distributed defects
discussed in [4] (cf. THEOREM 3.3 in [4]).

4.3.

If a solution of the pure stress problem discussed in 4.2. is available, then
the skew part of the distortion, i.e. a solution of the problem obtained by taking
skew part of the problem (3.1) - (3.4), can be easily obtained.

5. Conclusions

1. A pure distortion initial-boundary value problem of linear elastodynamics
with continuously distributed defects has been formulated, and a uniqueness the-
orem for the problem has been proved.

2. By a symmetrization, the problem and uniqueness theorem reduce to tho-
se of a pure stress formulation of elastodynamics with continuously distributed
defects, cf. [4].

3. By defining the elastic rotation fields in terms of the distortion tensor, a
dislocation density formula from [4] has been recovered.

http://rcin.org.pl



12 R. WoinAR

Appendix

To show that the integral condition (1.2) implies the local equation (1.3),
Stokes’ theorem is used. The proof is due to LANDAU and LirsHITZ [2]. First, we
note that for an arbitrary vector a we have

(A]-) f&iﬂidl = /e‘imnan,mnidss
L St

where Sy, is a surface that spans the contour L. Substituting w;; instead of a;
into (A.1) we get

(A.2) f N / i Wrk %34S,
St

Next, we note that a constant vector b may be represented by an integral in-
volving the two-dimensional delta function

(A.3) b= [ mbib(e)nids,
S
where & is the two-dimensional radius vector taken from the axis of dislocation

in the plane perpendicular to the vector t at the point considered, cf. Fig. 1.
Substituting (A2) and (A3) into (1.2) we get

(A.-ﬂ /Eimnlﬂnklmngds = —f’r,—l';kr)"(&)n,-ds.
S St

Since the contour L is arbitrary, from (A.4) we obtain (1.3). This completes the
proof of implication (1.2) = (1.3).
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