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Laminated pressurized elastic tube and its homogenization

H. BUFLER
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In TH1s paPER the state of stress and deformation of a pressurized tube consisting
of various elastic isotropic or transversely isotropic layers is evaluated. Especially
a periodically laminated tube made of many thin layers is analysed by means of
a homogenization process, and closed-form solutions are obtained. The results are
illustrated by means of a numerical example.
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1. Introduction

LAMINATES CONSISTING of a great number of different layers are characterized
by a considerable amount of parameters, and an exact analysis seems therefore
to be more or less hopeless. However, as shown by the author [1], the method
of transfer matrices (possibly in connection with integral transforms) turns out
to be a clear and effective procedure for the construction of solutions without
simplifying assumptions. The transfer matrix method usually applied to pro-
blems which are governed by differential equations with constant coefficients, see
PESTEL and LECKIE [2], has been used for isotropic layered tubes (governed by
differential equations with variable coefficients) already by SAUMWEBER [3], ho-
wever without taking into account the homogenization. The homogenization is
studied additionally in the present paper. It applies to a periodically laminated
tube made of many thin isotropic or transversely isotropic layers, and consists
in the transformation of an original discrete problem (governed by a matrix dif-
ference equation for the “state vector” at the boundaries of a finite layer group)
into a continuous one (governed by a matrix differential equation) by means of
a limiting process. The resulting differential equation is of the same type as that
for a homogeneous transversely isotropic tube, and its exact solution is given in
closed form. The procedure is similar to that proposed by the author [4] in a
recent paper which deals with laminated hollow spheres.
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As a numerical example, a pressurized tube consisting of only five double
layers is considered. The results for the radial displacement, the radial and the
circumferential stresses are evaluated according the the exact (inhomogeneous)
model and the approximate (homogenized) one, respectively, and compared to
each other. It turns out that the homogenization procedure leads to a sufficiently
accurate solution, even for the considered low number of double layers.

2. Basic equations and transfer matrix for a transversely isotropic
and homogeneous thick tube

Using cylindrical coordinates r, ¢, z, and assuming an axisymmetric state of
stress and deformation (without torsion), the remaining equilibrium equation and
strain-displacement relations are

do, du
(21) 7'54‘0}-—0’@:0; Ep =
(o radial stress, o, tangential stress, £, and &, corresponding strains, and u
radial displacement). Since no shear is involved with respect to the cylindrical
coordinates, in the case of a transversely isotropic tube we have only the following
equations of the generalized Hooke's law:

B Ep = —
dr’ &

Er 1/E' —VJ/E' -V /E'] [o.
go| = |=V/E' V/E —u/E | |0o,],
£, -V'/E' -v/E 1/E o

where E,E’'.v and /' are material parameters such that the strain energy is
positive definite. In the case of plane strain (. = 0) one obtains

B % (1 - 1)"‘2%) Op— %(1 = I/)ng'e
!
Ep = —é(l — ug)aw - %(1 +v)oy;
(2.2)
o (=) (e +—uf EE );
T 1-v-22E/F'T  1-vE 7

o 1-v2E/E E (;.— (1+v)/ s)
¥ 1—v—-22E/E'1+v \ ¥ 1-V2E/E'")’

In the case of plane stress (o, = 0) there is

1 v
=57 B
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(2:2) -
tic v )
[cont.| &= Eo‘p . _Egn

E'
Ty

E
= T=oE & Y )

!
O"p — TW(EF + v E'-,-).
Eliminating the strains, the basic equations (2.1) and (2.2) for the state of
plane strain and (2.1) and (2.2)’ for the state of plane stress can be put into the
following common form:

s qfor()]. * _ Ei y
(2.3) op(r) =[N Ljr] [u*(?'}] : = I w;
(h* reference thickness, E* reference modulus of elasticity), and
(2.4) A A(r)a(r)

dr
with K/ L2 (r)
. I Ries r T ] = Or\T

(25) A=)y e Semelill

In (2.4) and (2.5) a(r) is called state vector and A(r) - fundamental matriz.
The quantities K, L, M and N contain the material parameters and are defi-
ned as follows:
(a) For plane strain and transversely isotropic material
v B 1 E

I E k= Bl

g T2 E"

K 2 B\ E* ) v E
M*‘*(“I:E)Eﬁ-“ N =1ow

(b) For plane strain and isotropic material (V' = v and E' = E)

2.7) = L et
we QHAMBL,
(¢) For plane stress and transversely isotropic material
E E...
e = l_f}!:l_y"'—’: | 5L = —E-—;h ;
M= (1 = ;ﬂ-g;) %% = uf‘—g;.
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(d) For plane stress and isotropic material

K=1-vu ngh*;
27 Y
M_(I_U)Eh‘ N =

|
It can be easily seen that the quantities K, L, M and N are not independent of |
each other. There exist the following compatibility equations: |
For transversely isotropic material (cases (a) and (c))

(2.8) K+N=1,
and for isotropic material (cases (b) and (d))
(2.9) K4+N=1 and ML+N?=1.

In order to integrate (2.4), a matrix differential equation with variable coef-
ficients, we eliminate there o, and get
d®u*  ldu* e

2 —_— t—— — =u" =0,
(2-10) dr? i r dr TQH

with
(2.11) c¢= ML+ N2,
Taking into account (2.6), (2.7), (2.6)" and (2.7) there follows
. 5 ok I
mﬁ (1 =i ﬁ) >0 for case (d),
= E

(2.12) o o >0 for case (c),

1 for cases (b) and (d),

where the positiveness of the strain energy density has been used. The change of
variable r according to r = ' yields finally

d*u* f_0
dt? i
with the solution — again in terms of r -
(2.13) ut = Cyr 4 Cor™?,

where C; and Cy mean integration constants, and A; 2 — the roots of the charac-
teristic equation:

(2.14) Aa=%X  A=.e

Due to relations (2.12), these roots are real.
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With (2.3) and (2.1), there follows from (2.2) (plane strain) and (2.2)’ (plane
stress) the radial stress component

1 fdu® N .
(215) T = H (? <+ ?U ) 3

where M and N are given in (2.6), (2.7) and (2.6)’, (2.7)’, respectively. Taking
further into account (2.13), we obtain the solution of (2.4)

5 N+ A .A_l N = o A .___A_l
(2.16) la"(?)lz M M [Cll _

A A Cy

Inverting this equation for » = 1, one obtains for the integration constants C
and Cy

& 1 [ Me}™> (N =Xr5?] [ow
(2.17) = e ’ .
C? 2’\ "’ﬂ{?‘o (N + )\)T‘O 3

Up
Their elimination in (2.16) leads finally to
(2.18) a(r) = T(r)a(ro),

where the field-transfer-matriz T(r) (from radius rp to radius r) is

(N + ) (1)H (N =) (i‘-)ﬂ\_l

(=) ~(=)

N
(L) swen (L)

For case (d) - plane stress and isotropic material — this formula corresponds to
that given by SAUMWEBER [3].

(219) T()=o

Mry

REMARK 1. The fundamental matrix A(r) in (2.5) and the field-transfer-
matrix T(r) are related to each other according to
dT(r)

(220) A(?.D) = T r=rp*
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Let us consider, as an example, a thick-walled tube with radii r¢ ard r; under
internal pressure p. From the boundary conditions o,(rg) = —p and a,(r1) = 0,
one obtains from (2.12) and (2.13) at first

r\ A1 X1
(2.21) ua=*(N+A)("_'l) 21 ’\)(U)H Mrop,
R (ORI ON
and then
L2 .
o pb h*M, (E) 5 b

(2.22) 7, (E)A~1 ;U(a)_’\“] ‘(%),\—1 B (E)_)‘_lﬂ ’

e

where a = 79 and b = ry. The last formula had been derived from (2.3). For
an isotropic material — cases (b) and (d) — the well-known result is (see e.g.
TIMOSHENKO and GOODYEAR [5]):

pb At (g)_l 5
ST EE T | NI
(2.23) i o LB 1 ("—) S/ )

: e
Gp = —Tp%)_-g 41 + (%) .

with M and N given by (2.7) and (2.7)’, respectively. Note that the state of stress
for transversely isotropic material — cases (a) and (c¢) — depends on the material
via A, while it is independent of the material in the case of isotropy.
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3. Arbitrarily layered thick tube

In Fig. 1 is sketched an n-layer system consisting of different transversely
isotropic or isotropic layers which are considered to be either in a state of plane
strain or in a state of plane stress. Layer (k) is characterized by the corresponding
material parameters (marked by index k) and the radii rx_, and 7, or radius
rr—1 and thickness hy. The coordinate z and the dimensionless coordinate p for
layer (k) are defined as follows:

=1+p;

Pk =

1
Tk—1 Tk—1

0< 2 < hy, Thtl S 7 ETh: 0<p<pg.

Then with 7 = 1 in (2.19), the transfer Eq. (2.18) reads

(3.2) a®)(p) = T® (p)al®)(0),
where
. til(p) ti*(p)
(3.3) T®) (p) = {* ] ._
=) @)
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with
2tk (0) = (Nie+ M) (L +p)™ 1 = (N = Ae)(L+ p) ™71,

Ni + /\k)(Nk - ’\k)

2Atk2(p) = ( Mo

[Fa+p™ T+ 1+ )7,

2)\,&3%1(9) = Mgri_, [(1 4 P)Ai" i PJ_A*} :

At (p) = =(Ni = M) (L4 p) ™ + (N + M) (1 + p) ™,
is the field-transfer matriz of the layer k. Further there holds
(34) a®(pi) = T® (p1)a®(0),
and the interface continuity condition is
(3.5) a¥le) =a® V(g fzary (k=23....n).

Consequently, (3.4) can be written in the form

(3.6) a; = Tray_),
with
(3.7) Ty, = T®(py),

representing the layer-transfer-matriz. Applying (3.6) from k = 1 to k = n, one
obtains
(3.8) a, = Sag; S=T M. STy

where S is called system-transfer-matriz.

Due to the boundary conditions, one component of ag and one component
of a, are prescribed, and the remaining ones can be calculated from(3.8).
Further, (3.6) yields all initial state vectors of the individual layers a;...a,_ 1,
and the exact state of radial stress and displacement follows from (3.2) with
(3.3). Finally, the circumferential stress can be evaluated from (2.3). Concer-
ning the transfer matrix method, the reader is referred to PESTEL and LECKIE [2].

REMARK 2. The layer-transfer-matrix (3.7) has the following properties:

(1) For two succesive layers (k) and (k+ 1) with identical materials (Ap = A,
My, = M, Ny = N) we may write T®)(p,) = T(pi) and T+ (p 1) = T(pian),
respectively in (3.3), and there holds

(3.9) 7 (hk+l) T ( hy, ) _7 (hk i hkﬂ) |
Tk Thk—1 Tk—1
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(2) The inverse layer-transfer-matrix T~! is obtained from the original one
T y Lo ;
Tlogt="T (— - 1) by replacing 7. /rr_, with its reciprocal ry._y /7
Thk—1

]

These statements are plausible physically and can be proved directly using (3.3).
Note that, for simplicity, T(:) is used in Sec. 2 (Eqgs. (2.18) - (2.20)) and Sec. 3
(Egs. (3.9) - (3.10)) simultaneously as a symbol for the transfer matrix and a
symbol for a function. Of course, T(r) and T(p) mean the same transfer matrix,
but different functions, since the corresponding arguments are different.

4. Periodically layered thick tube and its homogenization

In what follows we consider a tube which consists of many thin layer gro-
ups with equal thickness h. A layer group (Fig. 2) is composed of m (generally
different) transversely isotropic or purely isotropic basic layers which are charac-
terized (in addition to their radii) by their material parameters Ey, E, vy, v} (k =
1,2...m), and their thickness hj. Denoting by . the thickness ratio of basic layer
(k), there holds

m ™m

(4.1) hi = Kih; hi= Z hi; Z kp=1
k=1 k=1
D <<l B=1,2...7).
m
S T My
h

{ hy Q

0

F1G. 2. Layer group consisting of m thin layers.
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Let the layer group be bounded by the inner radius rg and the outer radius r,,,
and let us assume h < rg. Then after (3.1) there is

h h - kih
To L] Tk—1
o+ h Z i
i=1
N ;
=22 0((hfro?) (b =2.3,...m),
0

and a series expansion of (3.3) in (3.7) with respect to h/rp results in the thin-
layer transfer-matriz of basic layer (k)

1 - rckKkh/rg RkLkh/T‘g

(4.3) Ty= + O((h/r0)?).

h‘.kﬁffkh 1-— :“ikah./?'o

Consequently for the thin layer group, according to (3.8), there follows

(44) Ay =§ ap; §='i):'m%m—] Cee r.(i‘le
particularly " "
2 1-Kh/rg Lh/r¢
(4.5) S=| _ . + O((h/m0)?),
Mh 1- Nh/rg
with
I_( = Z!{kf(k; f) = Z"‘"‘k[‘k;
(4.6)

M = anMk:_ N = Zﬁ.ka;
(The sum extends from k=1 to k= m; an =T

The quantities Ky, Ly, My and Ny have to be taken from (2.6) or (2.7) or (2.6)’
or (2.7), after attaching index k at E,E’, v, v/, K, L, M and N. As can be
easily verified , the following compatibility equation exists:

(4.7) K+N=1.

The homogenization is performed by replacing the finite relation (4.4), written

in the form
(8]
Ay — Ay S ""Ia
= 0
h h !
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and to ve interpreted as a difference equation, by the differential equation

(4]

da

i am — ap T = | Lt
T oATE g
or, taking ro = r and ag = a, by
da -
48 — = A(r)a,
(45 dr (r)a,

with the fundamental matriz of the periodical layering

B —K/r L/r?
(4.9) A(r) = ! .
M -N/r

Since the fundamental matrix of the basic layer k is
—Ki/r Li/r?

Ax(r) =
M, —Ng/r

3

taking into account (4.6), one obtains the relation

T

(410) A(T‘) = z N.kAk.
k=1

REMARK 3. We have derived the thin-layer transfer-matrix '%k in (4.3) via
the layer-transfer-matrix Tj ( given in (3.7) with (3.3)). Alternatively one can
obtain this directly by integrating (2.4) in the neighbourhood of r = ry, i.e. for
a constant fundamental matrix Ay (rp):

ap = eMelrodhng, | — [I + Ak(ro)rih + O(hr‘})} Ay i = ‘i‘k aj_i.
Consequently there is
(4.11) Ti= 1+ ki Ax(r0)h + O((h/ro)?)

in agreement with (4.3). =

Since the governing differential equation of the homogenized periodically lay-
ered tube, (4.8) with (4.9), has the same structure as that for the homogeneous
transversely isotropic tube, (2.4) with (2.5), the corresponding solutions of Sec. 3
can be teken over. One has only to substitute K, L, M, N by K,L, M,N and as
a conseqience, ¢ by @and A by A, where

(4.12) ¢= ML+ N?% A= Ve
http://rcin.org.pl
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In this way one obtains from (2.22), for a thick tube with outer radius b and
inner radius a and loaded by internal pressure p,

=
Il
|

—

(4.13) = ‘(%)1,1_( )_:\_1 (3) ‘(E) |

Tp = ‘(%):\_1 y (a)—i—l (3) gt (5) |

Here o, is to be considered as an average value; it follows from (2.3) with N
and L instead of N and L, or equivalently from the equilibrium equation in
(2.1) using o, from (4.13). Note, however, that for a finite layering, u(r) and
o.(r) are continuous while o, (r) is discontinuous at the interfaces. Therefore
the knowledge of o, in the individual layers of a thin, but finite layer group
is of interest. Assuming that for this case u and o, from (4.13) are a sufficient
approximation, one obtains with (2.3) for layer (k) of a layer group at first

(4.14) Ook(r) = Niop(r) + %u‘(r) (k=1,2...m),

and finally

(4.15) Ok = —

It is further interesting to note that the individual circumferential stresses o
(4.15) and the smeared stress o, in (4.13) are related to each other according to

m

(4.16) O = X SRk,
k=1

For the proof, the relations (4.15), (4.6) and (4.12) are needed. It can easily be
checked that in the case of identical materials of all basic layers, the difference
between formulae (4.13) and formulae (2.22) disappears.
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LAMINATED PRESSURIZED ELASTIC TUBE... 305

According to (4.9) (periodical layering) and (2.5) (homogeneous tube under
plane stress or plane strain, respectively), both problems are formally equivalent.
Especially a periodically layered tube consisting of isotropic basic layers can
be substituted uniquely by a homogeneous, transversely isotropic tube in the
case of plane stress. Indeed, equating (2.6)" and (4.6), one obtains, taking into
account (2.8), three independent equations for the three material parameters
being involved, namely E, E' and ¢//. The result is

E*
= KBy

1 wif- N h* O mNg)?
o= b e s e T N e
E E( L) B | 2 M Y xLe

- O
th ZME"‘

and with (4.1)

'}
(4.17) Eh=Y" Exhy; % z(l—u hk %:;; : ‘
kitk

Voo ZUkhk

E N Bk’

(all sums from k =1 to k = m).

As it can be seen from (4.18), the resulting stiffness of the layered tube in
tangential direction is the sum of the stiffnesses of the individual layers. In radial
direction the statement, that the resulting compliance of the layered tube equals
the sum of the compliances of the individual layers holds exactly only if v = 0,
otherwise approximatively.

5. Numerical Example

The numerical example concerns a tube under internal pressure consisting
of five double layers, see Fig. 3. This periodically layered tube is analysed first
by means of the exact (inhomogeneous) model. All basic layers have the same

http://rcin.org.pl
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F1G. 3. Periodically layered tube consisting of 5 double layers.

thickness d and are assumed to be isotropic and under plane strain. For the layers
of type « and the layers of type 3 (Fig. 3), we take

=1 | (k=210 Va =g = 3; Eo=E; Eg=3F
and we choose h* = d and E* = E. Then from (2.7), (2.12) and (2.14) there
follows

1 9 201 1
K(.:r — E, LQ — gd, Anl.{a - 55 1’V(, — 5: /\ﬂ - l,
1 27 21 N 1
I{ﬂ — 51 L,{-} — _d A'Li 5'} f\"ﬂ = 5, )\;3 — 1,’
and after (3.1) pr. = ElJ]r—L Next the elements of the layer transfer-matrices T},
can be evaluated from (3.7) and (3.3). For instance, one obtains

1] 9 . 1,3,5,7,9
12 S ol —2 H— Poreabiad
t(ox) = { 3 } 167% 1= (+p)7?] for { 2,4,6,8,10 -

Further from (3.8) and from the boundary conditions ¢,, = —p and o,,, = 0 one
gets uh = (s11/s12)p and hence the initial state vector ag and subsequently — from
(3.6) — ay,ag,...ay i.e. the radial stresses o, and the radial displacements uy..

http://rcin.org.pl
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i I i i i 1 i
5 l = % T T L T L L 1

10 11 12 13 14 15 16 17 18 19 20 r/d

Fic. 4. Radial displacement distribution for the tube in Fig. 3, —— inhomogeneous
model, - - - - homogenized model.
-o./p
14

0.3 1

0.2 5

01+

1 4 1 1 e
0 } t t t t } } t 4

10 11 12 13 14 15 16 17 18 19 20 r/d

Fi1G. 5. Radial stress distribution for the tube in Fig. 3, —— inhomogeneous model,
- - - - homogenized model.
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These ones are sketched as solid lines in Figs. 4 and 5, respectively, where u* =
(E/d)u. The solid line in Fig. 6 represents the circumferential stress distribution
which is discontinous due to the discontinuity of the stiffness parameters. They
have been calculated from (2.3) for r = r = (10 + k)d and £ =0,1,...10

a /Ip

}

0 1 1 I 1 I i i i I i
. ; T T T T T T T T

10 11 12 13 14 15 16 17 18 19 20 r/d

F1G. 6. Circumferential stress distribution for the tube in Fig. 3, —— inhomogeneous
model, - - - - homogenized model, (a) for layers of type o, (b) for layers of type 3:
(c) mean values).

Tkla 1 1 5} E b (43
= =0k - —— e or layers
o 2 3 [ 8(10+k) d 3
The corresponding homogenized model (being exact only in the case of infini-
tely many double layers with vanishing thickness) yields an approximate solution

for the layered tube in Fig. 3. For this one there is
1
2d; a=10d; b=20d; K|=ko= 5;

K, = Kq; Ly=La; My =Ma; Np= Ny

h

]\'2 = Klgi LQ = L;;: i“l'fg = I‘t-f;g; fVQ = Nﬁ
http://rcin.org.pl
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and according to (4.6) and (4.12)

. 1 =1 9 = 41 7
= = = et = E=
I 5 L 4(1', M 9 N 5 c

=

The closed-form solution is given in (4.13). For instance, the radial displacements

as a function of the radial coordinate r reads
1 r \ V5/2
V541 (_2763)

1 7 -V5/2
+ — | = :
VB -1 (20d)

The corresponding graphs for u, o, and o, are given in Fig. 4, 5 and 6 (dotted
lines). The circumferential stress o, (4.13)3 is the mean value (00 + 04p)/2,
while the formulae (4.15), namely

Toa 1 1 1 1 P (v5-2)/2
= m i — + P —
O # 9(V5+2)/2 _ 9—(v5-2)/2 3 | V6+1 2 (Q(Jd)

1 1 1 7 —(v542)/2 - o'
I e (m) or layers [)‘

represent the values which are valid piecewise for the layers of type a (lower
curve) and type 8 (upper curve), respectively.

The comparison of the results for the exact (inhomogeneous), but expensive
and the approximate (homogenized) model shows that, even for a relatively low
number of layer groups (double layers), one gets a rather good agreement.

_d 160 |
Y= EPT9 o2 _9-(Va-2)2
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