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Sensitivity analysis of 2D elastic structures
in presence of stress singularities
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Tue osieceT OF THIS PAPER is the investigation of the influence of stress singularities
on the sensitivity of two-dimensional linearized elastic fields and the corresponding
functionals under a variation of the domain. This requires a detailed study of the
local behaviour of the material and of the shape derivatives of the displacement field
in the vicinity of boundary corner points. Using these regularity results, we apply
the method of adjoint problems to express the shape derivatives of the functionals
as boundary integrals and give precise conditions under which this approach can be
justified. It turns out that in case of elastic structures with cracks, the sensitivity
of the functionals depends also on the stress intensity factors of the solution of the
adjoint problem.

Notations

(-. ) inner product in RQ,
s:t inner product of tensors s, t,
d:;  Kronecker’s delta,
Dwv  Jacobian of a vector function v,
n. perturbed unit normal vector,
u.  perturbed displacement field,
e(u:) perturbed linearized strain tensor,
C = {eyn 4,9, k1 =1,2} Hooke's tensor,
o{u:) = C:e(u:) perturbed linearized stress field,
1 material derivative of wu.,

w  shape derivative of wu..

1. Introduction

THE INFLUENCE OF THE SHAPE of the domain on the elastic behaviour has been
studied by many authors (see the monographs |6, 18] and the references therein).
The corresponding sensitivity analysis is well developed for problems in smooth
domains. In particular, the method of adjoint systems [2, 3] allows to express the
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276 M. BocHNIAK AND A.-M. SANDIG

shape derivatives of the functionals as boundary integrals if the underlying elastic
fields are smooth enough. In practical situations the regularity of elastic fields
is low because of stress singularities which appear at geometrical peculiarities
like corners, cracks and notches and at points where the boundary conditions
change. In this case the sensitivity analysis is much less developed and only few
mathematically rigorous results are available. For example, in [13] the existence
and the H'(2)-regularity of the material derivative is proved for the mixed
boundary value problem for the Laplace equation in a smooth domain, using
the implicit function theorem. Moreover, there exist a lot of papers on particular
problems of fracture mechanics, where the sensitivity of the potential energy with
respect to a variation of the crack tip is analyzed (see the classical paper by RICE
[15] and the subsequent mathematical works [11, 4, 10, 12]).

In this paper we study the influence of stress singularities on the sensitivity
of linearized elastic fields in general two-dimensional domains with corners, and
of a class of corresponding functionals with respect to shape perturbation. To
this end we apply the material derivative approach [5, 17, 6, 18], i.e. we introdu-
ce a fixed reference configuration and consider a class of small perturbations of
the reference domain. The state equations as well as all fields which are defined
over the actual configuration are transformed to the fixed reference configuration.
Thus the investigation of the shape sensitivity can be reduced to the investiga-
tion of a regular perturbed boundary value problem for the transformed elastic
fields. We expand the transformed quantities asymptotically with respect to the
perturbation parameter € and justify the asymptotics with the help of a—priori
estimates in weighted Sobolev spaces. In this way we obtain the existence and
precise regularity results for the material and the shape derivatives of the displa-
cement fields. We apply the method of adjoint problems in order to express the
derivatives of the functionals as boundary integrals and give conditions under
which this approach can be justified. Then we show that in case of cracked struc-
tures, the sensitivity of functionals depends also on the stress intensity factors of
the adjoint field, and the original version of the method of adjoint problems |2,
3] has to be modified. Finally, we apply these results to the sensitivity of several
basic functionals.

2. Formulation of the problem

Let £2 ¢ R? be a bounded domain, whose boundary 942 consists of two smooth
open manifolds I'”?, 'V and a set S of isolated points where stress singularities
can occur, i.e. corner points and points where the boundary conditions change
(see e.g. Fig. 1). We assume that I'? # () and that the domain §2 is locally
diffeomorphic in a neighbourhood of each singular point P; € S to a wedge.
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Fic. 1. A plate with singular points P,..., FPs.

We introduce a family of mappings
(2.1) {@e € [C3(R)]% € € 0,0}
which admit Taylor expansions
(2.2) b (z) = x + ed(z) + £*PR(c, z)

with @, &g € [C*(2)]%. The function Pr(s,z) is bounded with respect to € for
every z € £2. The perturbations (£2:, [P, I'N) of the reference configuration
(22, 1'P,'N) are defined by

(2.3) Q. =8.(Q), rP=¢,(rP), r¥=o.(r").

Since @, € [C3(12)]?, the number of singular points in 2 is constant for every €.

We consider the following mixed boundary value problem for the displacement
field u. in an anisotropic linear elastic body occupying the perturbed configura-
tion

Luc(z.) :i= —divo(ue)(ze) = fe(xe) in  $2,
(2.4) ue(ze) = 0 on IP,
a(te)be(2:) = helz) on FEN,

where o(us) = C : e(uc) is the linearized stress tensor with the compo-
nents o;; = Cijneij; €ij = (Oiu; + Gju;)/2 is the linearized strain tensor,
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D= {c,—__.,-k,-,i,j,k,ﬂ = 1,2} is the Hooke’s tensor and n. is the outer unit nor-
mal vector on @f2-. Moreover, we consider functionals associated with the elastic
fields u. and o(u.)

(25) 5(@2) = [ Flue,o(ue))da.
02
The function F' satisfies for a positive constant ¢ the growth conditions

(2.6) F(p,q) < alp)(c +|g|*), 8,F(p,q) < a(p)(c+ |q|)

for some a € C(R?) and all p € R%, q € RY. This guarantees that the functio-
nal (2.5) is well defined for all displacements ue € [Wy, 5(£2:)]* and all stresses
o(ue) € [Loys(82:)]* with a small 6 > 0 [1, Lemma 9.5]. Examples of such func-
tionals will be given in Sec. 7.

Our goal is to derive formulae for the sensitivity of the functional J with
respect to the perturbation mapping ®., i.e. we want to calculate the shape
derivative

&

and to express d.J(§2,®.) as an integral over 9£2.

3. Regularity of elastic fields in 2D non-smooth domains

In this section we omit the index €.

The behaviour of solutions of elliptic boundary value problems like (2.4) in
the neighbourhood of singular points P, € S was mathematically analyzed by
KONDRAT'EV [8] (see also the monograph [9], whose general theory was applied
to problems of the theory of isotropic linearized elasticity in [16]. Stress singu-
larities were investigated earlier by many engineers using formal methods (see
e.g. [7]). According to Kondrat’ev’s results, the weak solution fu — . of the bo-
undary value problem (2.4) admits a decomposition into a linear combination of
singular functions S; which have (in polar coordinates (r,w) centred on F;) the
form

(3.1) S; = r%p;(logr,w),

and a more regular remainder
(3.2) u=> ¢S +i
J

provided that the given forces satisfy appropriate regularity assumptions. The
singular functions S; are solutions of the problem (2.4) with vanishing body and
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boundary forces in the infinite wedge W (F;) which coincides with {2 in some
neighbourhood of P;. The exponents o and the functions ¢; can be interpreted
as eigenvalues and (generalized) eigenfunctions of a certain operator pencil A(F;)
(see [8, 9] for details). The exponents a; in (3.1) are complex roots of special
transcendent equations |7, 16] and have to be calculated numerically. For the
functions ; of S; many explicit formulae are available (see 7, 16] for isotropic
elasticity). In this paper we are interested mainly in the eigenvalue with the
smallest positive real part which determines the regularity of the weak solution.
To this end we define ap = min{Rea;}, where the minimum is taken over all
eigenvalues a; of A(F;) with a positive real part Rea; for every singular point
P; € S. Note that ap > 1/2 in case of a pure Dirichlet or a pure Neumann
problem, whereas for mixed boundary value problems we have only ap > 1/4
[16]. In case of a pure Dirichlet or a pure Neumann problem in a domain with
reentrant corners we have ag < 1, i.e. the stresses are unbounded. At points
where the boundary conditions change, stress singularities can occur even if the
boundary is smooth.

For the formulation of the regularity results we use weighted Sobolev spaces
which describe not only the regularity of functions in the interior of §2 but also
their behaviour near singular points.

DerFINITION 3.1. [8,9] Ford =0,1,2,... we define the weighted Sobolev space
V,ﬁi(.Q) as the closure of CS°(12\ S) with respect to the norm

1/2

(3.3) lellvaee) = D ||?"'ﬁ_d+m9;'“[|igtrz! g
[vl<d

where 7 = dist(z, S). The trace spaces V5 /*(00), VyH/*(rP), viH2(rN)
are defined in the usual way.

Roughly speaking, a function u belongs to Vg(ﬁ) if it belongs to H%(£2) for
every open subset 2 C 2 and u(z) < clz — P;|*#~! in the neighbourhood of
every singular point P; € S with some positive constant c.

THEOREM 3.2. [8,16,9] Letd=0,1,2,..., B:=d+1—ag+ & with a small

positive § and f € [V{;‘r(ﬂ)]g, h € [V;“/?(FN)IQ. Then the unique weak solution

u € [H'Y(2)]? of (2.4) belongs to [‘i/'éi'*?(l?)]'Z and the following a priori estimate
s valid:

(3.4) ey gs2 e < c{”f”["’é‘(ml* 2 ||h||[‘~’.-f+”2“‘””2}

with a positive real constant c.
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4. Existence and regularity of the material and the shape derivative

Let us investigate the existence and the regularity of the material derivative

_ d(u: o P,)

4.1 = ———
(4.1) u i
and the shape derivative
(4.2) u = fthe

de |e=o

of the perturbed displacement field u.. To this end we transform the problem (2.4)
onto the reference configuration by means of a change of variables z. = &.(x)
and obtain in this way a boundary value problem for the transformed field uz o®.

Lf(ug 0 B¢ )(z) = fe o Pe() in (2,
(4.3) ue 0P (z) =0 5 T G
0 (ue 0 P:)(n: 0 P )(z) = heoPe(z) on I'N.

Here, L and oF are differential operators whose coefficients depend smoothly on
£ and admit expansions in Taylor series

(4.4) IF = L+ el +*L(e),
(4.5) 0° 1= o +¢cay + e2op(e),
where L = —dive and the coefficients of Ly and op are bounded with respect

to £ € [0, sg]. Note that the Theorem 3.2 can be applied also to boundary value
problems with the operators L®, 0 instead of L, o provided that € is small enough.

Let us assume that the transformed forces f- o . and h- o @. also depend
smoothly on &

(4.6) feo®. = fo+efi +€frle),

(4.7) he 0o®: = hg +ehy + e2hp(e).

Inserting these expansions together with

(4.8) n. o ®. = ng + en + £2ng(e)

and the formal ansatz

(4.9) (ue 0 B¢ )(2) = uo() + u(z) + O(e?)
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into (4.3) and comparing the terms of the order O(g) we obtain a boundary value
problem for the material derivative 1

—dive(a) = fi — Liu in 2,
(4.10) =0 on I'P,
o(u)ng = hy — o1(up)ng — o(ug)n on I'N,

The ansatz (4.9) has to be justified, i.e. we have to show that the function @ in
(4.9) coincides with the material derivative @ defined by (4.1). The correctness
of (4.9) can be easily proved with the help of the a priori estimate (3.4). Indeed,
the following Theorem holds:

THEOREM 4.1. Suppose that the Taylor expansions ((4.6), (4.7)) are valid with
feo®e, fo, f1, fr € [VH(R)]2, heo®e, ho, hy, hg € [V5/*(I'N)]? and B := 2—ap+6
with a small positive §. Then the following estimate is valid

(4.11) ||te © Pe — ug — Eﬂ”[V{i’{ﬂ)]z < ce?
with a positive real constant c.
P roof: From the formal ansatz (4.9) and the Taylor expansions (4.4) -

(4.8) follows that the function v := u. 0P, —ug — e satisfies the following elliptic
boundary value problem:

Lf(v) = €X(fr — Lruo) + O(e%) in £,
(4.12) v =0 on 2
0% (v)(ne o ®;) = €?(hgr — o(ug)ng — o(i)n — op(up)n
—op(W)ng — op(uo)ng) + O(e®)  on I'N.

From Theorem 3.2 applied to (4.10) it follows that u € [VE(Q)P. Since fp €

[V3(R)]2 hp € [V;”(FN )]?, the right-hand sides of (4.12) satisfy the assump-
tions of Theorem 3.2. Applying the a priori estimate (3.4) to (4.12) we obtain
the assertion. [k

The above theorem states that the material derivative 7 exists and belongs
to the space [1/'23_ﬂo+6(!2)]2. It means, both up and % behave at least as O(r%°) in
the vicinity of singular points. Furthermore, we obtain immediately the existence
and the regularity of the shape derivative u . Indeed, from the identity

(4.13) U =1-— Dug - @
http://rcin.org.pl



282 M. BocHNIAK AND A.-M. SANDIG

follows that u’ belongs to [‘/22_ﬂ“+{5(.(?)]2 and it behaves at least as O(r®~!) near
the singular points. If ap < 1 and the perturbation mapping @ does not vanish
near the singular points, then ' is a displacement field of infinite potential energy,
u ¢ [H'(2)]?. From now on, we will assume that the given body and surface
forces do not depend on the parameter &, i.e. there exist functions f, L defined
on R? such that f: = fla,, he = hlpn.

Inserting (4.13) into (4.10) we find out that the shape derivative " satisfies
the following boundary value problem (see e.g. [18, Chapter 3.1.5]):

—dive(u') = 0 in £,
(4.14) u = —(P,np)Ohuo on I'P,
o(u)ng = (&, n0)(f + kh) — divp((®, ng)or(ug)) on I'N.

Here we denote by d,ug the normal derivative of up on 92, or(ug) is the tan-
gential component of the stress tensor on 92, & is the curvature of 9§2 and the
tangential divergence operator divp is defined by

(4.15) divpv = dive — (Dwv - ng, ng).

REMARK 4.1. The boundary value problem (4.14) is in general not suitable
for the numerical computation of u because u ¢ [H'(£2))? is not a variational
solution of (4.14). The right-hand sides of (4.14) depend on the derivatives of
ug € [H'%(2)]? and are also singular if ag < 1. However, in the following we
use only the information on the dependence of the boundary values of u' on the
boundary values of dyug, o7 (ug) and (@, ng).

5. Sensitivity of functionals by the method of adjoint problems

In this and in the following sections we write shortly oo for o(ug) and denote
by ¢,0 the material and the shape derivative of o(u.), respectively.
5.1. Sensitivity via the material derivative

Let us assume that the scalar function F in (2.5) is continuously differentiable
with respect to all its arguments and satisfies the growth conditions (2.6). Stan-
dard formulae for the sensitivity of integrals over varying domains yield [17, 14|

(51)  dJ(2,®.) = /{(BuF(un,arn),ﬁ) i Flsouac)
n
+ F(ug, 00)divd} dz.
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This formula is valid without any restrictions on the strength of the stress sin-
gularities. However, the expression (5.1) depends on the values of @ inside (2.

5.2. Sensitivity via shape derivative

Let us assume that the constant ap which determines the regularity of the
displacement field up and of the derivatives 1, u’ is not less than 1/2. Otherwise
we have to require that the mapping ¢ vanishes in the neighbourhood of sin-
gular points where the stress singularities are stronger. Replacing the material
derivatives %, in (5.1) by the corresponding shape derivatives u',o’ using the
identity (4.13), we obtain an expression for dJ(£2,®.) which depends only on the
boundary values of the perturbation mapping @ [17, 14]

(5.2)  di(, 8 = / {(0uF (0, 00), ') + 8, F(uo,00) : o'} do
[

5 / F(uo, 00)(®, no)ds;
an

The assumption ag > 1/2 and the growth conditions (2.6) ensure that all integrals
in (5.2) exist.

5.3. Boundary expression for the sensitivity

The expression (5.2) still contains a domain integral. It can be transformed
to a boundary integral using the method of adjoint problems (2, 3]. Here we as-
sume that ag > 1/2. The interesting case of elastic bodies with cracks, where
ap = 1/2, requires a more careful investigation and will be treated in the next
section. Furthermore, we assume that the function F' is twice continuously dif-
ferentiable. Following the ideas from [3] we replace d,F (up,00) : ¢ in (5.2) by
05 F(up,00) : (C : e(u')) and use Green’s first formula (9.1) applied to a field v
with o(v) = C : 9, F(up,00) and to the field u

53 [(C: R, 00) : elu)dz = [ (4, (C: 8, F(uo,00) ma)ds,
0 an
= /.(u.'.div(c : Op F'(up,00)))dz.

17
In this way we obtain

(5.4) dJ(2,8,) = / (8uF (ug, 00) — div(C : 8, F(ug, 00)), u )dz
2

4 / { P(uo,00)(®,n0) + ((C : 9, F(uo, 00))mo, u') } dss.
an

http://rcin.org.pl



284 M. BocHNIAK AND A.-M. SANDIG

We introduce an adjoint displacement field w as the solution of the boundary
value problem

—divo(w) = 0, F(up,00) — div(C : 8, F (ug,00)) in £,
(5.5) =0 : on I'P
o(w)ng = (C: 8, F(up,00))ng on I'N,

LEMMA 5.1. Let the assumptions of Theorem 4.1 be satisfied. Then the
boundary value problem (5.5) has a unique weak solution w which belongs to

Vol ag45(2)]%

Proof: Under the assumptions of Theorem 4.1 we have ug € [V23_a0+5 (£2))?,
00 € [V 4 +5(2)]%. Therefore 8, F(ug,00),div(C : 8, F(ug,00)) € Vo o45(12)]?

and (C : 8,F(up,00))np € [stﬁo_i_é(f‘“r)]z because of the growth conditions
(2.6). Thus we can apply Theorem 3.2 and obtain the assertion. O

The domain integral in (5.4) can now be transformed to a boundary ultegl al
by using second Green’s formula (9.2) applied to the displacement fields u and
w. Note that in case of cracked bodies, where ag = 1/2, all integrals in (9.2) exist
but the formula (9.2) is not valid any more.

Since dive(u') = 0, we obtain finally

(5.6) dJ(2,D.) = -[F[ug,og)(¢,no)dsx+ / (w,a(u’)ng)dsx
2 N

+ f ((C : 8, F(ug, o0))ng — o(w)ng, u )ds,.
ro

Inserting the boundary values of «' from (4.14) into (5.6) we get:
THEOREM 5.2. Under previous assumptions we have

(5.7  dJ(R,8.) _/F u6i o018, moldis + / (@, no)(f + kh)
a1

—divr({®, ng)or(uo)))ds, — / (@,n0)((C : 05 F(ug,00))ng

ro
— o(w)ng, Onup)ds,.
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6. Method of adjoint problems for 2D crack problems

Let us consider an elastic body with a smooth crack (see e.g. Fig. 2). On the
outer parts of the boundary, mixed boundary conditions are given, whereas the
crack lips are stress-free. For the sake of simplicity we suppose that the material
is isotropic, i.e. only two independent material constants A, 4 appear and

(6.1) Cijkt = A0ij0kt + p (6t + 6udj) -

PE‘

0 e

PO G LA
|

Fic. 2. A plate with a crack.

For every singular point P; lying on the outer boundary we assume that there
exists no eigenvalue a; of A(P;) with 0 < Rea; < 1/2, i.e. there is no stress sin-
gularity near P; stronger than the singularity at the crack tip. Otherwise we must
assume that the singular point P; is not perturbed by @.. In this way we ensure
that the crack tip singularity is dominating and we have ag = 1/2. Furthermore
we suppose that the perturbed crack tip Pf moves along a smooth curve and
(®(x),ng(x)) = O(|z — P§|*®) with a small positive § near the unperturbed crack
tip P§. Moreover, we can assume without loss of generality that the vector tan-
gent to the crack curve at the unperturbed crack tip Fj§ coincides with the vector
(1,0)T. In this case the perturbation mapping has locally in the vicinity of P§
the form

T o 1
(6.2) &, (y) = (y) +E(0) L Ole*):

Let us describe precisely the behaviour of the displacement fields u. and .
Under the previous assumptions on the regularity of given forces, the displace-
ment field u. belongs to [1/33!.24_5(.(25)]2 and admits in the neighbourhood of the
perturbed crack tip P¢ the asymptotics (see e.g. [9, 10])

http://rcin.org.pl



286 M. BOCHNIAK AND A.-M. SANDIG

2
(6.3) e (Te, wWe) = Zfi'j(uf)r;/zgoj(wg) + O(r)
a=]1

with

1 —cos(3w/2) + (27 — 1) cos(w/2)
e g 4pv/2m ( sin(3w/2) — (27 + 1) sin(w/2) )
-~ 1 3sin(3w/2) — (27 — 1) sin(w/2)
%) pal) = 4puv2m \ 3cos(3w/2) — (21 + 1) cos(w/2) |

where 7 = (A+3u)(A+u)~'. Here, (-, w.) are polar coordinates with origin in P¢
and the angular variable w; is oriented in such a way that the crack lips correspond
to the angles m, —7. Furthermore we have written the singular functions ¢;,j =
1,2, in polar components @; = (:p;,qJ;?)T. The coefficients K (u:) and Ko(u.)
are called stress intensity factors of Mode I and Mode 11, respectively, and are
given by
(66) Kj(“s) = /fs ? Cj,edms e f he - .Cj,edszga
12, N
where the weight functions (;. € [V;.?N(!?E)]?, 7 = 1,2, satisfy the problem
(2.4) in £2. with vanishing body and boundary forces and admit the asymptotics
(6.7) Gielre,we) =12 2h5(we) + O(r2?),
with
1 —3cos(w/2) + (27 + 1) cos(3w/2)
(68) (W) =——F7 , )
(1+7)V8m 3sin(w/2) — (21 — 1) sin(3w/2)
1 sin(w/2) — (27 + 1) sin(3w/2)
(6.9) tolw)=———7"rm ;
(1+7)v87 \ cos(w/2) — (27 — 1) cos(3w/2)

The following theorem plays the key role in the application of the adjoint

method to problems with cracks.

THEOREM 6.1. Let v = (1+7)/(4p) and (®(x),no(z)) = O(|z — P§[*) near
the crack tip P5. Then the shape deriwvative u € [%2,"2-:-6(9)]2 has the following
decomposition:

2
(6.10) % = "fz Ki(uo)Go + i
ge=]

with & € [V,_s(2)1%.
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1
Proof. Since —1/2is the only eigenvalues of A(F§) in the interval (— 3 —0,

1
~3 + d), we can apply the general theory of elliptic systems in domains with

corners [8, 9] to the problem (4.14). The condition (¢(z),ng(z)) = O(|lz — P§[*%)

implies that the right-hand sides of (4.14) belong to [V;,’f PP x [V;’;2 SR
and we obtain the decomposition

2
(6.11) u'=Yctio+i

1=1

with @ € [V, 370-5(12) )]? and real coefficients c1,¢a to be determined.

Let us calculate these coefficients. To this end we calculate the singular terms
in th(' a.symptotics of u' near the crack tip using the identity (4.13). Since u €
Vi3 3/245( 2)]2, the main parts of the asymptotics of the functions ' and —Dug - &
coincide. Furthermore Duy - @ = 0,,up near the crack tip F§ because of the
special form (6.2) of the perturbation mapping ®.. Using the identity (see e.g.
19, 10])

(6.12) 8y (e 2 05(w0)) = —rg Ps(wo), F=1,2,

we obtain from (6.3) with e =0
(6.13) 9z, uo(ro,wp) = -—"yZK uQ)T, & Yi(w) + O(r 1’12)

and the assertion follows. O

THEOREM 6.2. Under the assumptions of the previous theorem we have

(6.14) dJ(Q,d,.) 72 Ki(up) K;(w) /F (g, 00) (P, ng)ds,
=1 a0

v / (8, n0)(f + kh) — divr((®, noYor(uo)))dss

= / 0B, oG o8, Fluns o Fag— ol g Batigldb s

Proof. Weinsert the decomposition (6.10) into (5.3). The integrals with
2

the weight functions ;o can be interpreted as v }~ K;(up)K;(w) due to formula
i=1

(6.6). The remaining integrals with @ are reduced to the boundary as described
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in Section 5.3 because @ € [1/;;):,2_5(1’2)]2 is regular enough in order to apply the
method of adjoint problems. Thus (6.14) follows. o

7. Examples

Let us apply the results of the last section to calculate the sensitivity of some
special functionals. The resulting formulae have a particularly simple form if we
assume that the crack tip moves along a straight line and the remaining boundary
is fixed. In this case we have (®,n9) = 0 on the whole boundary and formula
(6.14) simplifies to

2
(7.1) dJ(02,8;) =7 Ki(ug)Ki(w).
i=1

A formula similar to (7.1) was obtained in [13] for the mixed boundary value
problem for the Laplace equation in a smooth domain with collision points (i.e.
points where the boundary conditions change) moving along the boundary.

EXAMPLE 1. Let @ € Ly(£2) where 2. C 2 Ve € [0,&0] and let the functional
J be defined by

(7.2) J(02.) = % / (ue — it)dae.

2
Here we obtain formula (7.1) with the adjoint field w satisfying the following
boundary value problem:

—~dive(w) = ug—u in 2,
(7.3) w =10 on I'P,
o(w)ng = 0 on JTH.
EXAMPLE 2. In case of the energy functional

(7.4) J($2) = %/a(ua) : e(ue)dze,

R

the adjoint field w coincides with the displacement field ug. In this way we obtain
the well known Irwin formula [15, 11, 4, 10]

2
(7.5) dJ(2,8.) =~ Ki(uo)*.

j=1
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8. Conclusions

The occurence of stress singularities in elastic bodies demands in the sensiti-
vity analysis the consideration of the regularity of underlying elastic fields. Since
singular stresses belong only to Lo(£2), it is necessary to impose restrictions on the
class of admissible functionals. Integral functionals over singular stresses are well
defined only if the integrands satisfy quadratic growth conditions with respect to
the components of the stress tensor.

The sensitivity of integral functionals can be easily expressed with the help
of the material derivatives of the elastic fields. In this case we do not need any
restrictions on the strength of stress singularites but the resulting expression
depends on the perturbation of the interior of the domain. If all stress singularities
in a body are weaker than the singularities at a crack tip (all singular exponents
greater than 1/2), then the sensitivity of the functionals can be expressed as
boundary integrals using the method of adjoint problems. This method is based
on the application of Green’s formulae to the original displacement field and to
the solution of an appropriately defined adjoint problem. In the limiting case of
bodies with cracks, the sensitivity depends also on the stress intensity factors of
the original and of the adjoint field. In case of stronger singularities, the method
of adjoint problems can not be applied because the Green formulae are not valid.

The same approach can be also applied to three-dimensional elastic structures
and to interface problems. The difficulty in the mathematical justification of the
adjont method in these cases stems from the necessity to define the weighted
Sobelev spaces which take all possible stress singularities into accout (singularities
at conical points, at smooth edges, intersections of edges etc.).

The problem how to reduce the sensitivity of the functionals to a boundary
exprassion is still unsolved for problems where boundary points with very strong
singularities (singular exponents smaller than 1/2) are perturbed. One should
note that singular exponents smaller than 1/2 occur often in applications (change
of boundary conditions at reentrant corners, interior interface corners etc.).

9. Appendix

In the literature, the Green integral formulae are usually formulated under
assumptions on the regularity of underlying integrands which are too restrictive
for the application in this paper. Therefore we give here precise assumptions
whici can be best formulated in weighted Sobolev spaces.

THEOREM 9.1. a) Let v € [VA2(Q))2, w e [VEH(2)]?, d=0,1,2,... and
o, B =R with a+ 3 < 2d+ 1. Then Green's first formula holds
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(9.1) fo(v) ce(w)dz = / (w,o(v)ng)ds, —/(w,diva(u))d:r
n an Q
b) Let v € [VH2(Q)]?, w € [VF2(R)]?, d =0,1,2,... and o, B € R with
o+ 3 < 2d + 2. Then Green’s second formula holds

(9.2) /{(divo(v),w) — (v,dive(w))} dz
i
= / {{o(v)ng, w) — (v,o(w)ng)} ds,.
an
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