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THE AIM OF THIS CONTRIBUTION is to apply homogenization methods in order to de-
scribe the nonstationary flow of a viscous fluid through a microperiodic porous elastic
medium. By using the method of two-scale asymptotic expansions, the macroscopic
phenomenological equations describing such a two-phase structure are derived and the
formulae for the effective mechanical coefficients are given. The asyvmptotic approach
is justified by the two-scale convergence. It is shown that Darcy’s law is nonlocal in
time.

1. Introduction

ONE CAN DISTINGUISH two approaches to modelling the mechanical behaviour of
porous media. The first approach, more traditional, dates back to the papers by
BioT [16 - 19], and may be called a phenomenological one. The nice book by
Coussy [26] develops such an approach within the framework of modern con-
tinuum mechanics and applies it to elastic, thermoelastic and inelastic porous
media, cf. also the paper by Cieszko and KuBIK [23, 24] and the references
cited therein. The second approach exploits the microstructure of the medium.
The micro-macro passage is performed by using averaging techniques, the mix-
ture theory or various homogenization methods. ALLAIRE [6] and MIKELIC [40]
studied flows of Stokesian fluids through undeformed microperiodic porous me-
dia by using the homogenization theory. The first of these authors assumed the
scaling of the viscosity while the second author scaled the liquid density. After
homogenization they arrived at different Darcy’s laws. More precisely, Darcy’s
law derived by Allaire is nonlocal in time while that obtained by MIKELIC [40]
coincides with the well known Darcy’s law derived by many authors for stationary
flow. The aim of the present contribution is to investigate nonstationary flows of
Stokesian fluids through linear elastic porous medium, and in particular, to de-
rive macroscopic equations of the Biot type. The scaling of viscosity is assumed.
Thus our results extend those due to ALLAIRE [6].
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244 W. BieLskl, J.J. TELEGA AND R. WoJiNAR

Our considerations differ from those performed in the papers [9 - 12, 22, 24,
25, 27, 37, 38]. In contrast to [10, 11, 12|, we do not exploit the time transfor-
mation method. The approach employed by us is straightforward and exploits
the two-scale asymptotic method which is justified by the two-scale convergen-
ce method developed by NGUETSENG [44] and ALLAIRE [7]. The comprehensive
papers [2, 15] and the books [14, 20, 33, 46, 47| provide many applications of ho-
mogenization methods to modelling the flows through porous media. Stationary
flow of electrolytes through such media was studied in [30, 49, 51, 52].

The plan of the paper is as follows. In Secs. 2 and 3 the microperiodic me-
dium is introduced. Asymptotic homogenization is performed in Sec. 4. In Sec. 5
the formal results obtained in the previous section are justified by the two-scale
convergence method. The passage to the stationary case is studied in Sec. 6. In
Sec. 7 important earlier contributions are discussed. Two appendices complete
the paper.
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F1G. 1. Example of a skeleton, after ALLAIRE [4].

2. Notations and basic relations

Let Y = (—=1,1)Y ¢ RV (N > 2) be the basic cell and Ys - a closed subset of
Y (the bar denotes the closure of the set), cf. [4, 5]. Further, weset Y, = Y\Ys; Y},
denotes that part of Y which is occupied by the fluid. Obviously, Yg stands for the
part of Y occupied by the solid. The closed set Yg is repeated by Y -periodicity
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and fills the entire space R in order to obtain a closed set of RY, denoted Eg;
further E; = RN\Es and Eg = {(z1,22,...,zy5) € RN | 3(ky,... . ky) € Z
such that (zy — 2ky,...,: ry — 2ky) € Yg}. Here Z denotes the set of integers.

HYPOTHESES, cf. [4]

(i) Yz and Ys have strictly positive measures in Y.
(ii) Fr and the interior of Eg are open sets with boundary of class C! , and
are locally situated on one side of their boundary. Moreover, Ey, is connected.

(ii1) Y7 is an open connected set with a locally Lipschitz boundary.

REMARK 2.1. The hypothesis (i) implies that the elementary cell Y contains
fluid and solid together. Next, (ii) says that Y}, is Y-periodic (Ey, has a boundary
of class C'') and Y has an intersection with each of its faces which has a strictly
positive surface measure, cf. Figs. 2, 3.

0

*- P = e — —

(iii) L~

(@) L (i)

Fia. 2. Three typical situations, which agree with hypotheses (i)-(iii), after ALLAIRE [4].
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F1G. 3. Forbidden situations. (a) The boundary of Es is not of class C'! because Yg

is not Y -periodic. (b) No contact between the fluid parts of two adjacent cells implies

that F; is not connected. (¢) Although F; has a smooth boundary, dY; is not locally
Lipschitz at point M, after ALLAIRE (1989).
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Let 2 be an open bounded and connected set of RY with the boundary
892 of class C'. In fact, it is sufficient to assume that 92 and JE; are locally
Lipschitz. The domain {2 is assumed to have an €Y -periodic structure, € = /L,
where [, L, are typical length scales associated with pores and the region and (2,
respectively. Next, we set

E J\"(E) & E £
(2.1) L=\ VY5, Q5=0\0

The set (2 is covered with a regular mesh of size ¢, each cell being a cube
YF,1<i< Ne), and
1£2|

(2.2) Ne) = aym

[1+o(1)].

The interface solid-liquid is denoted by I'*; 025 (942f) is the boundary of 25
(£27). For more details related to the description of the porous body the reader
is referred to [4].

We set

1 1
23) )= f (dy,  ((Va = W‘Z ()dy, @=SL

and 0Ys = I'y UPs, Y, = I'y UPy; Iy is the local solid-liquid contact
surface; and Ps and Pj, are the parts of the surfaces of the solid and liquid.
respectively, coinciding with the boundary of Y. The porosity [ is defined
as the volume fraction of the liquid in the considered solid-liquid composite
medium

_ 5l _ [¥s]
(2.4) f=gr 1-j=nn

By n = n’ we denote the exterior unit vector normal to a1

3. Equations of microperiodic porous media

For a fixed £ > 0 all the relevant quantities are denoted by the superscript
. Let us denote by u® and v* the fields of displacements in the elastic skeleton
and the velocity field in 27, respectively. By p° we denote the pressure in the
liquid phase. These fields satisfy the following equations:
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oSl (t, z) = X5 (u,-j,nnemn(ue(t..r))) +FS(t,2z) in (0,T) x £25,
33.-'3'
d
L. B = (P F £ i L
(3.1) o ui(t,z) = 8—-—$j ( p*(t,2)dij + € Mijmnemn (V (t,l))) + F"(t,z)

in (0,T) x 2%,

divve(t,z) =0 in (0,T) x £25.
The conditions imposed on the solid-liquid interface I'* read
(3.2) [oijln; =0 on (0,T) x I'%,

(3.3) vi(t,.2) =9%t.2) on (0,T)x %

The stress tensor o is specified by

(3 4) : ﬂ-ijnmemn.(us) in {0: T} X -Qi“?
; o;. =
| 6 + Enijmnema(vS) in (0,T) x 5.
Here (%) =den = = [ S84 9% | 58 0 d Wl uaridifor thi body forses: The
er ij = Z(1,7) = 5 3.’1‘,‘_1' 8.’1.‘,‘ s ald stan or the body lorces. >

jump [o7;] on I'* is given by

Se,

£ ol
[of;ln; = oifnj — o3 n;.

For an isotropic liquid the tensor n = (;;x) takes the following form:

2
Mijmn = 'W(éhudjn T 5jm5in = §6i '(smn)v
where 77 denotes the viscosity. For the sake of simplicity, the nonlinear convective
term in the equations of the fluid motion has been neglected. The moduli a;jx
and 7 satisfy the standard symmetry and coercivity conditions. Note that in
Eq. (3.1)2 and (3.4)s the following rescaling is introduced, cf. [4, 6, 22]

2
(3.5) Nijmn ™ € Tijmn-

According to the method of two-scale asymptotic expansions we make the follo-
wing Ansatz, cf. [47]:

36) PE(t, ) = pO(t,z,9) + epW (t,2,9) + 20D (t,2,y) + ..., y =x/e,
3.6
ué(t,z) = uQ(t,z,y) +eul(t,2,y) + 20D (t,2,9) +..., y=2z/e,
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and similarly for v¢(t,z). The functions pO(t,z,y), p'V(t.z,y), etc., and
u® (¢, 2,y), u(t,z,y) etc., are Y-periodic in y.
The parabolic-hyperbolic system of Egs. (3.1) — (3.4) is to be supplemented by
the initial conditions, here assumed to be homogeneous
ve(0;2) =0 in i
u®(0,z) =0; u(0,z) =0 in 25
Next, taking into account the formula for the total derivative
d 7] 10 T
Hf(liy)”(b;;+;@)f($9st ==

and comparing terms with the same power of €, we arrive at the homogenized
set of equations.

We observe that the quasi-stationary flow of a viscous fluid through a linear
elastic microperiodic media was examined in [9].

4. Homogenization

The interface condition (3.2) can be rewritten as follows:

E o,
(4.1) aij‘mneﬂln(u )”j =l = 5u +&? Nijmn o oz nj.
After substitution of expansions (3.6) we get
Ll R 1 2 0 1
(4.2) [a,-jm,, (3—% + 25&:) ( O 4 euld) 4+ 2@ + .. )l nj= —(p@ +ept)
d 1 9
+€2p® +...)8in;5 + € ijmn (a e :5—) (v + vy + .. )n;

on (0,T) x I
Comparing the terms associated with e~! we obtain
(4.3) Gijmnipn (W¥)N; =0 on (0,T) x 2 x I,

o 8 ;
where e?.(€) = d + % /2 and N stands for the exterior unit vector normal
s dy; Oy,

to AYy,. Further, the terms linked with £ in Eq. (4.2) yield
au([p Aull)
(4'4) [aijﬂlﬂ (“52“ a7 3};: N = _p(UJN.
http://rcin.org.pl
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It can be shown that, cf. (A.3),
(4.5) ul® = u©® (£, ).

Equations (A.4) and (4.4) are satisfied provided that

0
(46)  udhay) = AR0(t ) gud (6 2) + P2, )pO (),

and the functions A9 and P(™ are Y-periodic solutions to the following local
equations on (0,7T) x Ys:

d
61 U (ﬂ:_;pq *+ ai.’-'m“emn(A(pq) )) Ov
(4.7) : :
B—y—j (ai.jmn%"

n

P 4 §5) = 0.
Hence we get

(ar'qu o aijmnf’mn (A(PQJ)) ' on (0,T) x I'y,
(438) .
(ﬂij!:u'cap(m) i 51})NJ =0, on (O' T) X FY-

ST

In (4.7) and (4.8) the macroscopic variable x is treated as a parameter.
The interface condition (3.3) assumes the form

(4.9) a9 z) +ea®(t,z,y) + 20P(t, z,y) +

= vO(¢t,z,9) +evD(t, z,y) + 2vA (t,z,9) + ...
Hence we obtain

(4.10) ul® =@ £=0,1,2,...

Applying asymptotic expansions to the constitutive relation (3.4) and comparing
the terms linked with £° we get

G (e,m,,(u(ﬂl ) e?,m(u“))) in (0,T) x 2 x Ys,

@) o=

—p04;; m (0, 7T) %8 xYz.

We observe that

(4.12) (07)) = (oi)s + (@)1
http://rcin.org.pl
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Using Eqgs. (4.6), (4.11) and (4.12) we get

a T
(413 (07") = alipyena(®) + ((@igmn - P™)s = £6i5)p,
where
(4.14) :imq (aszq 5 at}mﬂ(‘nt?l(A(pq}))

The coefficients A®? and P(™) are to be determined from the local equations
(4.7) jointly with Eq. (4.8).
From Egs. (3.1); and (3.1)2, by comparing the terms linked with ° we get

(4.15) ") = FF + 2 [“i.:-"mn (emn(u(m) + E?m(u“]))]

6.1‘3'
a .
s 5@ [ﬂijmn (emn(u )+el, um)n in (0,7) % 2 % Y,
L. (0 i 0 0 3]
(416) 9! UE ) - Ri! B a_l.fp{o) i % () =t EJ_; (??ij?rmegm(vm)))

in (0,7) x02 xYr.

On the other hand, the terms linked with £ in the interface condition (4.2) lead
to the relation

(4.17) [ﬂijmn (Emn(u“)} + eﬁm(u(z}))] Nj = (_p“)aij i nijmnemn(vw}))Nj
on (0,T) % 2 x I'y.

Integration of Eq. (4.15) over Ys and (4.16) over Y, yields

(1 = f)QSﬁ’E'D) ( f)FS it (a‘Jm“ (emn( (0)) i e?nn(“m)))s

dx;
|Yj f aumn eﬂm(u(” +LJ (11(2) )]N dA
AYg
(4.18) in  (0,T) x £,
L '!(U) — ."‘-_ ._q_. (0)
EReA —pW6i; + Nijmneln (VD) | N;dA,  in (0,T) x 2.
|Y] J J J

avy

Adding Eqgs. (4.18), using the interface relation (4.17) and taking into account
(4.11) and (4.12), we arrive at
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: 0
(419) (1= N + M5 = 5—(oy) + (1= NF + fFf
2

in (0,7) % 2.

This is the macroscopic equation of motion of the porous medium filled with
liquid.
Since u'® = u©(t, z), therefore (4.16) furnishes

~(0) 3 (0 J d ad
w2) ¢ =R = i - 5p® - 5o + o (o (7)),

where

(4.21) 79(t, z,¢) = vQ(t, z,y) — 4D (L, z) on (0,T)x 2 x Iy.
In virtue of (4.10), for £ = 0 we get

(4.22) vO(t,z,5)=0 on (0,T) x 2 x Iy.

Since the problem considered is linear, therefore p) is of the form

)
(423)  pO(t,z,y) = V™ (t,y) (Fh(t, ) - b il (t,2) - z—pO(t,2)),
Oxy,

where (™) is Y-periodic in y. Then Eq. (4.20) is written as follows:

0
(4.24) oL (p;{; o)) - pw}) (51.,“ d 58—.’7’{"1))
Tm i

= i (Wi'mniﬁ(n)) .
3‘9‘_-;‘ d 3y,1 &

The last equation is satisfied provided that v(?) is given in the form of time-
convolution

t
1
@s) Wty = o [(FHre) - i)
0

= B (T.Jr)) X&) (t — 7,y) dr in (0,T) % 2 x Y.
The functions 4™ (t,y) and Xm)(t y) are Y-periodic solutions to the follo-
wing local problem:

9 )
: — [wise,.el (k) ok Ym
('126) 6yJ (T"J”"”emn ()( (f ?}))) {_ Y (t, y)

e (akm == D ’Y(k}(tv y)) 6(t):| 6f.m in (OT) X YLs
aym
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Ay 5: )
QY

(4.27) div, 9 = =0,

xm (£.4)=0 on [(0,70) »x Iy, x“")((], 1)=0 in Yy,

where d(¢) stands for the Dirac delta. The relation (4.26) is a consequence of
(A.9), and relation (4.27) is a consequence of Egs. (4.21), (4.5) and the local
incompressibility condition divyv(“} =0, cf. (A:.7).

After averaging of (4.25) we get

(428) @)= ] <x,:?{t—ry)n( (r,2) — e"i(r, z)

0
— —p9(z,z) | dr.
O (7, ))
The last relation is the nonstationary Darcy’s law.
From Eq. (3.1)3, comparing the terms associated with €” we conclude

(4.29) div ,vO(t,z,y) + div, vV (t,2z,4) =0 in (0,7) x 2 x Yy,

Hence, after averaging we get

dive (v, = —(div,vV),, 0T %0,
or ;
(430)  dive (vO(t,z,y))p = - m/ v (t, z,y)N; dA.
aYy

Moreover, in virtue of (4.21), (4.22), (4.6) and periodicity of u("), v(1) with
respect to y, we also have

(4.31)  divy (vO@t,2,y)) = |i’ / a(t,z,y)N; dA

dYs
|1]}] ] a I:A(P'?) (t! :rs y) %1},}(}])(“ ﬂ:) + P{'n)(t, -'L‘)p(n}(t, .T;) ]Afnl d}l,
8Ys q
or
. J :
(4.32) div, (v, = - {(e;’nm(A(M)(f,ﬂhy)))s epg (1) (t, 7))
Al (ip(m)(t 1)).5 ?J[U)(t.x) :
6ym : '

Equations (4.28) and (4.32) are Biot’s type equations modelling the nonstatio-
nary flow of viscous fluid through the microperiodic porous media. Jointly with
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Eq. (4.19) they constitute a system of 7 equations for the determination of 7
macroscopic fields: ul®, (v(®), and p'?.

REMARK 4.1. Let us set x*) = w(*) and %) = (%) in (4.26) and (4.27), and
perform integration over the interval (0,¢). Then we obtain:

ofwB(t,y) = div, (ne¥(wh)(t,1))) — V™ (t,y) + ey,

in. (0.7) %Y,

(4.33)  divy,w®(t,y) =0, in (0,T)x Yz,

wk(t,y) =0 in (0 1)x Ty, w®(0,9)=0 on Y,

where ey (k = 1,...N) are the unit base vectors in RY. The local problem (4.33)
coincides with the corresponding local problem derived by ALLAIRE [6] for the
flow through rigid skeleton. The Darcy law (4.28), however, involves the motion
of the elastic skeleton. The permeability matrix A(t) is given by

1 aw'(t,y) 1 . :
34 ol Y = Mol ST E s ) ) o
(4.34) A;;(t) ZI] 5 e;dy |Y|Y/w w dy
L

1 i o e
+ g1 | Bnpacla(W el (W) dy.
YL

The last formula is obtained from (4.33); by multiplying it by w¥) and dividing
by o”. Performing then averaging over Y, integrating by parts and exploiting the
periodicity conditions, we arrive at (4.34).

REMARK 4.2. The system (4.19), (4.28) and (4.32) involves the macroscopic
displacement field ul®) | macroscopic velocity (v(?), and macroscopic pressure
p'9. Various boundary conditions can be imposed to solve the initial-boundary
value problem for such system, cf. [9, 35]. For instance, let 82 = ['¢UT';. On I}
one can assume the homogeneous Dirichlet conditions whilst on the complemen-
tary part I} the homogeneous Neumann conditions are plausible.

REMARK 4.3. It would be interesting to weaken the assumption of periodicity
and exploit the ideas proposed in [3, 21].

5. Justification of the asymptotic analysis by the two-scale convergence

The aim of this section is to justify rigorously the results obtained by the
formal method of two-scale asymptotic expansions. To this end, we exploit the
notion of the two-scale convergence, cf. [7] and Appendix B.
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For the sake of simplicity we assume that the liquid is isotropic with the viscosity
n=1.
Consequently, the following system of equations is investigated:

(5.1) o (t,2) = divfae(u®(t,z))] + F5(t,z) in (0,T) x £§,

(5.2)  olve(t,z) = 2AVE(t,x) — VpS(t,z) + FE(t,z) in (0,T) x 25,

(5.3) divw*(t,2) =0 in (0,7T) %32,
(5.4) (ae(u®))n = (—p°I+<%(v))n  on (0,T) xI*,
(5.5) ve(t2) =ult,z) on (0, T)=r%,

(5.6) u®(0,z) = 0a(0,z) =0 in 2%, vi(0,z2) =0 in_ 1.
For definitions of Lebesgue and Sobolev spaces the reader is referred to the book

by ApAmS [1]. The main result of this section is formulated as

THEOREM 5.1. The sequence {u®,v®, p®}eso of solutions of the system (5.1)
- (5.6) two-scale converges to the solution (u©)(t,z), v (t,z,v),p 0 (t,z)) of the
two-scale homogenized problem:

57) (1= NSt z) + oA (¥)y, = div, / [a: (V,u® + v,u®)]dy
Ys

5 / VD (t,2,y) dy — fVpO(t2) + (1 - fF®(t,2) + fFE(2, 2)
Y
in (0,T) x £2,
(5.8)  divyla: (Vou@(t,z) + V,ull(t,z,y)) =0 in (0,7) x 2x Ys,

(59) Ot zy) = 8,vO(t,z,y) - Vap(t,2) - Vyp(t,2,7)

+ FL(t,2) in (0,T) ¥ 8 Y,
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(5.10) cli\:yv(o)(t.:r,y) =1 int (0,T) % 2 x¥;,

(5.11) divzfvm)(.t‘:v,y)dyz hl,—lfum(z,x,y)-Nds in (0,7) x £,

Yy Iy

(5.12)  a: (Vout z) + V,u(t,2,9))N = —p(t,2)N
in (0,T) = @ Iy,

(5.13) u®0,z) = a®@©0,z)=0 in £
(5.14) v90,2,9) =0 in 2 x Yp.

P roof It is not difficult to show that there exists a constant ¢ > 0
indepenilent of £ such that

a2 < e [IVillL2e) < € elVVEl2nmny < c

where EV stands for the space of N x N matrices. The two-scale limits of these
sequences satisfy the following properties, c¢f. Appendix B:

divyv@(t,z,9) =0 in (0,T)x 2xYy,
..liv,,_v(m(t,;xr, y) + divyv(”(t,x'y) =0 in (0, ) %42 x Y1,

ng,um}(t,.r.y) =0, or u® = u(n)(t,:r:), te (0,T), z € .
Moreover from (5.2) one can conclude that, cf. [6],
v, p9(t,z,y) =0, or 2O =pOt,2) te (0,T), z € Q.

Let x&(r) and 1 — x%(x) = x7,(z) be the characteristic functions of the domains
S and (27 , respectively. Let ¢ = ¢(t) € C°°(0,T) be such that ¢(0) = ¢(T") = 0.
Let ®°(z) be a test function such that

& (2) = n(x) + e (az, g) ,

where v € D(2)* and Pp(z,y) € D[Q:Cp";’,,(}’)]g. Multiplying (5.1) by x% and
(5.2) by x7, and by the test functions ¢(t)®°(x) and next integrating over the
[0, 7] x 2 and finally, integrating by parts with respect to time t, we obtain
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;
(5.15) ﬂxs(z)es(T)u (t,x) [n(w +ep (s, ~)} B(t) da dt

« ij [ @) (ko) @)+ (2. 2) | o) duat

= in [ oto)aivlaTante ) (@) +ew (2, 2)] o0 de a

+ (fj [ @AV (t,2) - @)+ (2. 7)| 60y do

B /Z @5 (42 n@) + e (2,7 )] ott) ot

[ 6% )+ (2. 2)| s et

082
+ f [ X @F ) [n@) +ew (.%) | 60 doat
02

Passing to the two-scale limit when £ — 0 and applying the Theorems B.2, B.3
for the vector case and eventually making integration by parts with respect to

time t, we get
T

(5.16) f[/xs(u; oSO (¢, z) - [B(t)n(z)] de dy dt

0nRY
AL
+///XL(y)QLif(O) t,xz,y) - [¢(t)n(z)] dz dy dt
0Ny

T
[/f“ W)a [Vou(t,2) + Vyu(t,2,)] : [Van(z)
0 &Y

+Vyb(z, y)|é(t) dedy dt + 0

)
+//[x,; )PV (t. z)[diven(z (x) + divyw(z, y)]o(t) dx dy dt
0y

£
+///[“ Fb“’)"‘X!()FIH»] n(z)¢(t) de dy dt.

}/
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We recall that

e s 1 Xl 1T N ’
ETH) T ‘m! xs(y)dy in L(Y) weak—s,
8

and similarly for x5 . Let n = 0 in Eq. (5.16). Then we get

i i
(5.17) f/./divy [a(v,,ufm +vyu(”)] (z,y)p(t) dr dy dt

D RYs

_./T:/fpfo)(t,m]divyw(m,y)¢(t]d:l:dydt =if);

0 2Yp

After some calculations we arrive at

b
(5.18) [ / f divy (a(Vou® + V,u) w(z, y)$(t) dz dy dt

02 Vs

T
—/// divy [a (V,;u(ﬁ) + Vyum)] <Pz, y)o(t) de dy dt
Ys
0 2

- j / f divy [pO(t, 2 (e, y)| $(t) do dy dt = 0.

0RY
Hence we conclude that
div, [a (V_,,u(m “ Vyu(”)] =0 in (0,T) x 2xYs,
and
[a (V’_.,,.u(DJ + Vyum)] N - p(O)N =0 on (0,7)x 2 xITy.

Taking now in (5.16) ¥ = 0 we obtain
(1= NEFaOt,) + 7 [ Ot 2,y dy
YL
= ﬁdivﬂn/a(vzu(m + vull)dy
—fVpO(t, z) + (1 - H)FS(t,z) + fFL(y:x) i (0,T) % 2.
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Multiplying Eq. (5.2) by a test function ¢ (:c, E) with support in 2§ and next

integrating over (2, we arrive at

; A o AW S ) e
(5.19) ‘-2[9 ve(t,z) - (:I,, e) dz !!s AvE(t,z) - (a,, E) dz

—‘[Vpg(t.m)-lb (I, %) dx+/FL(tu3’) P (1‘: g) dz.
n e

In the last relation v® is to be viewed as any extension to §2 such that v& = u®
on I'¢, cf. [45]. We have

(5.20) /EQAVE S (:1:, E) dr = /egdiv (valb (:c, %—)) dx
E J S

0
; ¥ 1 @
ﬂ/EZVVE 2 [thp (:r, E) B Evytp (;r, ;)J dz.

2
Taking into account (5.20) in (5.19) we find the following two-scale limit as ¢ — 0:

62) [ [eOta,0) vz dedy
2y,

=~ [ [9vO29): Vi) drdy - [ [(Ot,2)

YL 2Y;,

V0 (t,2,9) - Wiz, y)dedy + [ [Fu(t,a) - (o) dody.
.f?‘l.’}_.
From (5.21) we get, cf. Eq. (5.9),
VOt z,y) = AvO (8, 2,y) — VopO (2, 2) — V,p (2, 2, y)

+FL(t,z) in (0,T) x 2 x Ys.

This completes the proof. O

6. Passage to the stationary case

ALLAIRE [8] suggested us how to pass to the stationary flow. Assume now
that 7 = 1, cf. Sec. 5. We observe that the stationary case is not obtained by
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_ . wit)
simply putting

We find, of. (4.34)

t :
1 ’8w(’}(t—a,1)
-O[A;J(f—b)ds—-myf(./o Tdo -ejdy
L

91 ./ i
w'(t,y) - e;dy.
Y:

=0, ¢f. (4.33). In fact we have to pass with time to infinity.

ap'®

6—) is now time-independent. Hence
Ly

(6.1) SV, (/Aur—s HF"‘() %]
‘]

0
because i(? = 0. From (6.1) and (6.2), taking into account (4.28) we get

apl0)(;
(6.2) (v SV (/w(" t,y) - e;dy [F.L( )= -————paxft)].

Letting ¢ tend to infinity we find

6.3) (O, (/w(" ) - e; dy [FP() GP;D)(I)]
Q z;

= Ky [FJL(I) = M] ,

The forcing (Ff« — okii {0}

6:53-

where (W9, = (v("); and K = (Kj;) coincides with the well-known perme-
ability matrix for the stationary flow, cf. [4, 15, 47]. Indeed, the local equation
(4.33) yields

(1)
(6.4) o" lim - Mds+ hm /V,.q(' s,y)ds
t—oo t ds
t
~ lim ~ A,w)(s,y)ds = I 1/e-ds-—e-
rﬂlolot JW(8,y) é_ti»nclot ;ds = e;.
0
We have
1 rowt 1
< 4 o . — | &3 (‘)
(6.5) tlﬂgotf 3 (s,y)ds th—glot. ke =9,
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t

t

(6.6) tl_ig‘go%/qu“’(ew,r) ds =V, lim % /Q“’(-‘-‘,y) ds = Vg2 (y).
0 0

Thus

V@) - Awl(y) =e;  in ¥,
(6.7) ‘
(liv?‘,wc{;gJ — ) me ¥

The components of the permeability matrix K are eventually given by

(1} (4)
Y| / Vywee yWe dy.

We recall that it was assumed that n = 1. In the general case we have

(6.8) Kij=

(6.9) K;; = wa*) : Vyw) dy.

7. Comments on related papers

7.1. The works by BioT [16 — 19] are now classical. In [16] an elastic skeleton
with a statistical distribution of interconnected pores is considered. The porosity

is denoted by
(7.1) f=3
. r3 L]b 3

where V,, is the volume of pores contained in a sample of bulk volume Vj, cf. the
definition (2.4);. It is assumed, however, that f represents also a ratio of areas

Sl
Sp’

i.e. the fraction S, occupied by the pores in any cross-sectional area Sy . This
assumption is not needed in our approach. In the next two papers Biot |17, 18]
proposed to consider frequency-dependent characteristics of materials of skeleton
and liquid and derived a time convolution-type law for nonstationary flow through
a porous medium.

The resulting stress tensor Sf? in porous material is assumed in the form

(7.2) f=

(7.3) SZ = sij + 0dyj, o=—fp

where p denotes the hydrostatic pressure of the liquid. If a cube of unit size of
the bulk material is considered, o represents the total normal tension applied
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to the liquid part of the faces of the cube, while s;; represent the forces applied
to the portion of the cube faces occupied by the solid. This assumption clearly
corresponds to (4.12); nevertheless, the assumption (7.2) was not needed in our
consideration.

This liquid-solid system is regarded as an elastic system. The liquid may be
compressible. The average displacement of the solid is denoted by u and that
of the liquid by U, whilst e = divU stands for the dilatation of the liquid.
At this point there is a difference with our theory. In our case the liquid is
incompressible, cf. (3.1)3; however the divergence of the average velocity does
not vanish, cf. (4.30), and e # 0 also in our theory.

The potential energy W per unit volume of aggregate is given by

(74) W= —;—(Sij eij + 0’6).

The stress-strain relations are expressed by

ow aw
7.5 8ij = 57—, g=—F—
( ) 17 88;‘, ae 1]
and reduce to the form
(7.6) 845 = Ciimn€mn + Qije, g = @Qijeij + Re.

The coefficients c¢ijm, are elastic moduli, whilst R is a measure of the pressure
required to force a certain volume of the liquid into the aggregate provided that
the total volume remains constant. The coefficients Q;; describe the coupling
effect. The equation (7.6) is of the type (4.13) thus confirming Biot’s idea. Biot
assumed the equation of motion in the form

(7.7) onii; + 012U; + by (‘&j - Uj) = i+ FP,

(7.8) o12ii; + 022U; — by (ﬁj = Uj) =0+ FL.

The coefficients py1, 012, p22 are mass-like coefficients which take into account
the fact that the relative liquid flow through pores is not uniform. The meaning
of p12 is rather obscure. One shows that

(7.9) o11 + 2012 + 022 = 0,

represents the total mass of the solid-liquid aggregate per unit volume, and
bi:_; ;Kl'j =
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For frequency-dependent permeability matrix K, AURIAULT et al. [11] pro-
pose to treat the mass-like coefficients: pyy, 012, P22 as tensors

(011)i5 = (2%)6i; — (012)is
(022)i = i Hﬁ,
(e12)i5 = (921)53' = fo"di; — (022)ij,

e=(1-f)o® + fot,

(7.10)

where < 0% >= (1 - f)o° and
H=H®+iH =K.

Hence, in the isotropic case one has 911 2 o, 012 = 091 <0, 09 > fo.
In Biot’s theory, Darcy’s law is given by

do

(7.11) Ui — ;) = Kij (a

i FL)

However, we observe the discrepancy between the Darcy law (7.11) and the equ-
ation of motion (7.8). Only for stationary flows both equations coincide. Adding
Eqgs. (7.7) and (7.8) we obtain

*8—(3:‘;-' +06;) + 7+ FE

(7.12) (11 + 012)iis + (012 + 022)Ui = B
L

After comparison with (4.19) we conclude that
FP=(1-fF¥ Ff=fFf

(7.13) on + o012 = (1= f)e°,

and y
(7.14) (012 + 022)Ui = 02 (5",

or
(7.15) (012 + 922) ; =0 fD l ,-("} dy.

Hence
(7.16) 012 + 022 = fot,

and
(7.17) 011 + 2012 + 022 = (1 — f)o° + fo* = o,
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where p is the same as in (7.9). Consider now the nonstationary Darcy’s law
(4.28). We have

(7.18) ()1 — " = Kij(t) x (FF - o"a{” — ;p(‘”)(t,x),
.BJ

where

(7.19) Kij = Kij(t) = < 9t,y)1,

and * denotes the convolution with respect to time t . After taking the Laplace
transformation of (7.18) defined as

f:]f(t)e*'“dt, Gl =W . =S 0
0

we get 3

~(0) =(0) _ 5 L _ L:(0) 0) g
(7.20) (@)~ = Kij(z) (FF - o"i mjp( ) (2, 2).
Thus, after the inversion

. (0 o} = —{D < (0)
(7.21) (FiL - o"ii; } c’)r,—pm)) ' Hij(('”:g ))L — g ).
where L
H=K
The inverse transformation yields
(7.22) FE— b _ 9 0 3 () (W™ — ai”) (¢, ).
Ox; e J

Therefore 5
(7.23) Fl - 2= = Hi(t) » (W — i) + ok ul®.

The matrix H can be written as follows:
(7.24) Hy = A} +iH;.

Then (7.21) becomes

I d - o ~{0) ~(0) , 1 o\ =0
(7.25) (Ff‘ — a;jp(m) = H?} ((bf ))L - ut(- ) + (9!5,:3- i ;H{})‘uj
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and we find

> 1- - 1-
(726) (QIQ)U’ = QLfsij -+ ;Hg and (922)1'3' = —;HEJ}-,

cf. also the paper by AURIAULT et al. [11].

7.2. BURRIDGE and KELLER [22] employed the homogenization theory, tho-
ugh not quite rigorously. Performing Fourier transformation in time, the basic
system of equations is given by, cf. (2.3) - (2.8),

—w?pSi; = gz‘j,j + ES in Ysg,

Sii = Gijmnémn in Yg,

iwok; = (—13(55.3' + T).ijmnﬁm‘n) 5 + FE in Y7,

(ran) iwp = —kdivv in Yy,
Sijnj = (—ﬁfffj + Nijmnemn (V‘*))nj on 9Ys N AYy,
wit; = U on AYs N Yy,

Here w denotes the frequency. Now the incompressibility condition (3.1)3 is re-
placed by compressibility equation (7.27)4.

The two-scale asymptotic method was applied to the system (7.27). The ma-
croscopic equations describe a liquid-filled porous elastic medium with isotropic
stochastic distribution of pores. A comparison with Biot's result for an isotropic
stochastic medium was performed. The averaging used is typical for stochastic
media.

The use of time-Fourier transforms is also characteristic for other papers on
the subject, cf. LEvY [38], AURIAULT et al. [11]. Such an approach corresponds
to steady vibration of the porous medium.

7.3. The question of the form of the nonlinear effects has been raised by
FORCHHEIMER already in 1901, cf. [29], and was studied by LINDQuUIST [39].
MuskAT [43] distinguishes 3 zones of Reynolds number R, namely: (i) Darcy
zone where R is low, (ii) transition zone, and (iii) linear deviation zone for high
values of R.

WobiEt and LEVY [51] considered the influence of the convective term vVv
on Darcy’s law in the case of a stationary flow. If the nonlinear term is of the
same order as the viscosity term, then

N~ /2y
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instead of (3.5). We note the difference with the linear case where the scaling
parameter is €?. These authors show that up to the second order approximation,
Darcy's law is given by

_ 1 apt) 0 ap'® apl®)
7.28 <y >=—-Ki; | F; — =Tir | F; — —— Fi. - &
(" ) . T}hu ( 4 3;(‘",' 3 n ik o 8;1,'_7' ¥ a;l'k

where the tensor T satisfies the following relation:
T;Jk o Tk;‘j -+ I}ki =}

[n the case of macroscopic isotropy and one-dimensional flow, the correction
term vanishes. However, one can calculate the third correction being the first
nonvanishing nonlinear contribution in Darcy’s law which can be written in the
form

. 2
(7.29) F—Vp“”z’—f<v>+£|<v>i2<v>.
Ke n(Ke) '

where K¢ and ¢ are positive constants of order €® completely determined by
the microstructure. Such law is not in agreement with the generally used empirical
law of FORCHHEIMER [29] but agrees with the numerical calculation of BARRERE
(1990).

The results of Wodie and Lévy on vanishing of the first nonlinear correction
were confirmed by FIRDAOUSS et al. [28].

8. Concluding remarks

ALLAIRE’S [6] results were extended to the flow of a viscous fluid through
a microperiodic, linear elastic anisotropic porous medium. To justify rigorously
the formal asymptotic approach, the two-scale convergence method developed by
ALLAIRE |7] and NGUETSENG [44] was successfully used. In contrast to several
previous papers on similar flow problem [10, 22, 27, 45], our approach is stra-
ightforward and avoids using time-transformation. Also, the local problem was
explicitly formulated and the formula for the permeability matrix was derived.

TorzirL and Mow |50] employed the mixture theory to describe the interac-
tion of the fluid and solid phases of articular cartilage. The equations of motion
for each phase and the total mixture were derived from the extended Hamilton’s
principle, where the Rayleigh dissipative resistance is considered as a generalized
body-force field. This procedure yields. as special cases, the classical Darcy’s law
for the liquid transport due to direct pressure gradients, as well as Biot’s consoli-
dation equation for the liquid transport due to dilatation of the solid phase. For
further results on modelling of articular cartilage the reader is referred to [31, 32,
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34, 36, 41, 42, 48]. We are convinced that, since the cartilage exhibits a hierar-
chical microstructure, the homogenization methods can be used to macroscopic
modelling of its behaviour.

Appendix A

-2

Analysis of terms of £~ order

Equation (3.1); yields

ad d :
(A.1) 5;}' [aijmn.'(rm—n'l"'sg)] =0 in Ys.

Multiplying (A.1) by u§°’ and integrating by parts we get
(A.2) f aij,,,,teﬁm(u(m)tzEG]NJ- dA — /a,-j,,mefj (u el (u?)dy = 0.
dYs Ys

By virtue of the interface condition (4.3), the surface integral in the last equation
vanishes and consequently we get

(A.3) u® = u@¢,2).

-1

Analysis of terms of £~ order

Equation (3.1); now yields

(A.4) a% [aljm (%u,&‘? ks é%u,f;’” =0, =zefR we¥s
Similarly, Eq. (3.1)2 gives

(A.5) Vypm) =0, me&l yeYL.

Hence

(A.6) p0 = p (¢, z).

The incompressibility Eq. (3.1)3 yields
(A.7) divyvm) =
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Local function for the flow problem

By (4.25) we have

)
© (¢ 2 FE— oLy — (0) (s)(0.
U’ (t,,y) = 7 ( o" il 5 )( z) X' (0,9)

t

)y _
1: /(FL ohal” - g p("))(T, R s Ul ) P
3 g

0 dt

+

Since xiﬁ)([), y) = 0, we write

i

1 0 dx$(t -,
(A.8) ”7(:?} t,z,y) = — /(F‘(‘ L'ti_E,U) - %p(ﬂ))(.r,m)__x__‘%ﬁ_T_w dr.
0 S

=

Therefore, substitution of (4.25) into (4.24) yields

(T, ur)) X [QL 3——-——)(?) (t —7.9)

t

(AQ) / (FsL(T1 I) N QL'&iU)(Tv:C) =

0

at

P a B 8)(,,, (t—1,y) .
(631 3?};‘ Vs (Tz y)) ‘5(t T) a'yj (nunm 6!}71 dr =0,

This equation implies the relation (4.26).

Appendix B. Two-scale convergence

The aim of this Appendix is to gather basic facts about two-scale convergence.
For details the reader is referred to [7, 44]. We observe that this notion was
mtroduced to justify the formal method of two-scale asymptotic expansions. We
also note that the I'-convergence method is confined to sequences of functionals.

Let £2 be an open set in RY (N > 1) and Y - a closed cube. As usual, L*(12)
is the Lebesgue space of real-valued functions that are measurable and square
integrable in £, cf. [1]. Let C35,(Y) be the space of infinitely differentiable
functions in RY that are Y-periodic. Then L2..(Y), (Hll,er(Y)) is the completion
for the norm of L*(Y)(H'(Y)) of C3%(Y'). We note that L],Lr(}’) coincides with
the space of functions in L2(Y) extended by Y-periodicity to the whole of RV.

Consider a sequence of functions {uf}.so in L*(£2) (¢ > 0 and £ — 0).

DEFINITION B.1. A sequence of functions {uf}eso in L*(R2) is said to two-
scale converge to a limit u'®(x,y) € L*(2 x Y) if, for any function (x,y) in
D[$2; CR.(Y)], we have

])( T
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(B.1) iﬁl‘(l} /u‘(:zr)-d;(:r,z:/s)(f;r = ﬁ%/ uO (z, y)(x, y) dx dy.
2 FP A
REMARK B.1. For evolution problems when u* = u®(t,x), the variable t is
treated as a parameter and instead of (B.1) we have |7]

T
liy / . / uE (2) (. 2 /€)b(¢) da dt
0 2
i ig

.4 'Y
-m/
0
where ¢ is a smooth test function.
The following compactness theorem establishes that the notion of two-scale
convergence makes sense.

/‘/H(U)(:r..y)-t;b(.zr,y)ﬂt) dax dy dt,
L2

v

THEOREM B.1. From each bounded sequence {uf}.~q in L*(£2) we can extract
a subsequence and there exzists a limit uO(z,y) € L*(2 x Y) such that this
subsequence two-scale converges to u("). O

It is interesting to note that the two-scale limit furnishes more information
than the weak limit in L2. The relationship between the two-scale and weak
L%-convergence is established by

PROPOSITION B.1. Let {u®}.~0 be a sequence of functions in L?(£2), which
two-scale converges to a limit u(¥ € L2(2 x Y). Then uf converges also to

i
W) = m [ 11.{0)(1‘, y)dy in L2-weakly. Furthermore, we have
i}.

(B.2) lim €l L2y 2 If"-(u)|1u(r2xn > ||l 20y

H|
The next proposition gives two-scale limit of the product of two sequences.

PROPOSITION B.2. Let {uf}c>0 be a sequence of functions in L?(£2), which
two-scale converges to u(®(z,y) € L2(2 x Y). Assume that

(B.3) gglg) e[l z2¢2) = [1W@ || L2(axy)-

Then for any sequence {v¢}.~o two-scale convergent to v("Y) € L2(£2 x Y) one has

(B.4) ut(z) v (z) = I}% / u® (z, ) v\ (2, y) dy in D'(2).
o
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Moreover, if u\?) € L(12; Cper(Y')) then
RN 1 O
ut(r) —u (.;, E)

Of practical importance is the two-scale convergence of sequences with bounds
on derivatives. The relevant results are summarized as follows.

(B.5) lim

e—0

=l
L2(£2)

5]

THEOREM B.2. Let {uf}csp be a bounded sequence in H'(82) that converges
weakly to a limit u in H'(£2). Then uf two-scale converges to u and there exists
a function uM(z,y) in L2[£2; H). (Y)/R] such that, up to a subsequence, Vu*

two-scale converges to Vyu(x) + Vyul(x,y). 0

THEOREM B.3. Let {u"}so and {eVus}eso be two bounded sequences in
L?(£2). Then there exists a function u'®) in LE(Q;HII,E,.(Y)) such that, up to
a subsequence, u and eVu® two-scale converge to u\%)(z,y) and V,u(z,y),

respectively. O

THEOREM B.d. Let {uf}~o be a free-divergence bounded sequence in L*(2)N,
which two-scale converges to u'% (x,y) in [L*(2x Y)|N. Then, the two-scale limit
satisfies

(B.6) divy v (z,y) =0

and

(B.7) [ div, w9} dy=0.
‘}.

O
ExampLE B.1. To illustrate the two-scale convergence method let us consi-
der the problem of homogenization of linear second-order elliptic equations, cf.
ALLAIRE [T7].
Let £2 be a bounded open set of RY. Let f be a given function in L?(£2).
Consider the following equation:

(B.8) —div (,4 (;u, %) v-u.f) = ¥ e gl

(B.9) u =0 on 912,
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”

4 e x B P ey
where A (:.-, —) is a matrix defined on 2 x Y, Y-periodic in y, such that there
&

exist two positive constants 0 < a < f3 satisfying

N
(B.10) alé? < Y Aij(z,y)6&; < BIE® forany £ e RV,

ij=1

Additionally we assume that A;;(z,z/¢) satisfies

(B.11) m/ [A,-,- (3:5)]2 e f/[/ﬂ.z-j(m,y)]2 iz
n nYy

Under the assumptions (B.10) and (B.11), the system of Egs. (B.8) - (B.9) admits
a unique solution u* in Hj(£2), which satisfies the a priori estimate

(B.12) 14| 22y < CIIS

where C' is a positive constant that depends only on 2 and a, and not on €.
The homogenized problem is given by

[L2(2)

(B.13) —div [AMz)Vu(z)] = f i 0,

(B.14) u=10 on 00,

where the matrix A" has the following form

1 ) :
(B15)  Ajj(a) = o f Az,y) [V (z,9) + e - [V (2,y) + ;] dy
¥

and, for 1 <i < N, w( is the solution of the so-called cell problem
(B.16) —div, [A(x,y}(vyw(”(x,y) +e,-)] =0 in Y.

Here w9 (2, ) is Y-periodic with respect to y. The result of two-scale conver-
Y
gence are summarized is the following form:

THEOREM B. 5. The sequence {u®} of solutions of the problem (B.8) con-
verges weakly to u(x) in HJ(£2), and the sequence Vu® two-scale converges
to Vu(z) + VyulV(z,y), where (u,uM) is the unique solution in H}(2) x
LQ[Q;HII)GI.(Y)/R] of the following two-scale homogenized system:

(B.17) —div,, (A(::.-.y) [V-u.(:::) + Vyu.(”(:;:.y)D =0 in 2xY,
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(B.18) —div, (/ (z.y) [Vu( + VY, m(:r.y)] dy) =f in £
7

(B.19) ulz] =0 on Of2.

Furthermore the system is equivalent to the usual homogenized and cell equations
through the relation

N au

(B.20) Z 01, (z,y).

Proof Duetothea pr10r1 estimates (B.12), there exists a limit » such
that, up to a subsequence, u° converges weakly to uw in H}(£2). We multiply
now tlle Eq. (B.8) by a test function 7n(z) + ey(z,z/e) with n(x) € D(§2) and
Y(z,y) € D[R2; Coe,(Y)]. This yields

(B.21) b/A(;I:, %) Vu [vn( z) + Vi (x -) et w( :)] i
/f [ ) + ey ( %)] dx.

By Theorem B.1 and B.2 we can pass to the two-scale limit in (B.21):

(B.22) //A(:r,y) [Vu(ﬂ:) + Vyu“}(:c,y)] [Vn(z) + Vyp(z,y)] dedy

= [ 1@n(@) da
n

By density, (B.22) holds true for any (n,%) in H}(2) x L?[2; H pcr Y)/R]. The
integration by parts show that (B.22) is a variational formulation associated to
(B.13) — (B.15). To prove that (B.17) — (B.19) is equivalent to (B.13) - (B.16),
it is sufficient to use (B.20). O
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