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THis PAPER AIMS at presenting a mathematical background of material instability
problems such like strain localization or flutter, as an application of the theory of
dynamical systems. The basic field equations of the solid continuum are the kinema-
tic equations, the Cauchy equations of motion and the constitutive equations. This
system of equations is completed with initial and boundary value conditions and can
define a dynamical system. Then, a condition of material stability can be obtained
using Lapunov’s indirect method. Also the basic material instability modes can be
classified as static (divergence type) or dynamic (Hopf) bifurcations of dynamical
systems. Such formulation gives a mathematical interpretation of rate and gradient-
dependence in the constitutive equations and mesh dependence in numerical studies,
pointing out their close relationship to the structure of the critical eigenspace of an
operator defined by the dynamical system.

1. Introduction

IN THE RECENT YEARS several new results of the theory of dynamical systems [1,
18] have already been successfully used in various fields of mechanics [5, 16]. The
main aim of this paper is to analyze the effect of rate and gradient-dependence in
material instability and postlocalization by considering solid continua as dynami-
cal systems [4, 6]. This kind of investigation is closely related to the perturbation
analysis 9, 19] as it will be explained in Section 3.

In the theory of dynamical systems, the linear concept of the loss of stability
of a state of the system means that the real part of certain eigenvalues of the
linear operator describing its behavior changes sign. The eigenvectors connected
with them are used in applications to the critical eigenmodes [16]. In a nonlinear
case, the postbifurcation can be studied and described analytically using these
critical eigenmodes.

Unfortunately, for the classical setting [13] there is no possibility to obta-
in specific critical eigenmodes at the onset of material instability. On the other
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hand, in the finite element calculation of material instability problems, the clas-
sical formulation of the basic equations of solid continua results in a definite
mesh dependence [7, 14, 15]. These are very similar phenomena. In those pa-
pers the mesh dependence was eliminated by the inclusion of rate-dependence or
nonlocality (gradient effects) into the constitutive equations.

In this paper we study how and when the inclusion of rate and gradient
dependent terms into the constitutive equations changes the structure of critical
eigenmodes, and we show how the postlocalization can be studied for a nonlinear
constitutive equation.

The second section presents the basic equations for the solid body. We ne-
glect geometrical nonlinearities, but include the nonlinearity in the constitutive
equation. The equations will be transformed into the velocity field, because such
form is convenient for our investigation. The third section starts with a survey of
the basic notions of the theory of dynamical systems and formulates a linear sta-
bility condition for a state of the body based on the Lapunov stability definition.
These conditions are formulated as linear boundary value problems. By solving
them, the eigenfunctions can be considered as critical eigenmodes. In case of a
unique critical eigenmode, a static bifurcation investigation is performed for the
nonlinear equation.

In section four the effect of rate and gradient-dependence is studied in uniaxial
cases. These are mostly linear problems, but at the end we show how the critical
eigenmode can be used for the analysis of a static post-localization in presence
of a material nonlinearity.

2. Basic equations

In case of small strains the kinematic equation [11] is
1
(2.1) e=§(uov+vmu)$

where € is the strain tensor, u is the displacement vector and o denotes a diadic
product. The equation of motion [11] without body forces is

(2.2) pii = 0V,

where p is the mass density and ¢ denotes the symmetric stress tensor.
Let the constitutive equation have the form

(2.3) F (ar. e, ¢, V€, Ve, o’) =0

representing both the rate-dependent and gradient effects. Equation (2.3) is a
combination of the rate-dependent second gradient theory [17] and of the first
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gradient constitutive equation suggested in [2], which is developed on the basis
of the wave dynamics [3] and of several experimental results [2].

By studying the stability of a state S described by 0, €% ... the constitutive
equation can be linearized at S°. Let the new variables & = 0—0”, € =e—¢"...be
introduced for arbitrarily small perturbations. Because at state S” the variables
satisfy (2.3), we may assume that the linearized constitutive equation is

(2.4) &= Cle +C%e+ C*V?% + €*Ve + C55.
Now equations (2.1), (2.2) and (2.4) form the basic equations for the stability
investigation of state SU. These equations should be transformed into the velocity
field v. For the sake of simplicity the bars are omitted in the following deriva-
tions but all equations concern the small perturbations of state S, thus all the
calculations are performed in a sufficiently small neighbourhood of S0

From (2.2) and by using the rate form of (2.1) and (2.4), the basic equation is

(25) 2pV=Cl(voV+4+Vov)V+C?(voV+Vov)V
+C3V2(voV+Vov)V+CiV(voV+Vov)V+CPpv.

The initial and boundary conditions assumed by the mechanical problem un-
der consideration are also needed. In the following considerations, the stability
investigation of state S” will be based on (2.5).

3. Dynamical systems and bifurcations

In operator form Eq. (2.5) reads
(3.1) ti= Flv + F2 + F3%.

Here v = (vy.v2,v3) is a vector of the coordinates of the velocity field satisfy-
ing the boundary conditions and F', F? and F* are linear differential operators
defined by the right-hand side of (2.5). Equation (3.1) can be considered as an
infinite-dimensional dynamical system.

The stability of state S° of the continuum is defined by the Lapunov stabi-
lity of a solution v°(t) of (3.1). That is, a state represented by v°(t) is stable,
when the perturbed velocity field v°(t) + 9(t) remains sufficiently close to the
unperturbed one. Such definitions are also used in solid mechanics [11, 12]. The
stability investigation of v”(t) starts with a transformation into a local form at
that solution by substituting

into (3.1):
(3.2) i + = F1 (o2 +9) + F2 (° +5) + F° (5°+3).
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While v is a solution of (3.1) and F!, F? and F* are lincar operators, the first
terms of all parts in (3.2) are equal, thus the equation of motion (3.2) for the
perturbation o(t) has the same form as (3.1). Then (3.2) can be transformed into
a system of first order equations by introducing new variables and vectors

N=0, ..., Y¥=9, =700, ..., Y=v3, Y=o, ..., Y=173

Ui (=123 ya (B=d,_...8), 9 W=7T...,9)

The transformed equations are

(34) yﬁ =
(3.5) @q{r = Flytr i 5 F2y(3 3 Fsy?ﬁ‘

The stability properties are determined by the eigenvalues of linear operator F
defined by the right-hand sides of (3.3), (3.4) and (3.5),

F(Yas 4 ¥4) = (s, ¥y, Flya + Foys + F3y,).

Using Lapunov’s indirect method [8] v? is asymptotically stable, when the real
parts of all eigenvalues of F' are negative. In case of zero real parts, the system
is on the stability boundary. The characteristic equation of F' reads

AYa = Yp,
(3.6) Nyg = Yo, ' _
Ayy = Flyo + Flyg + F3y,,.

By substituting the first two equations of (3.6) into the third one, equation
(37) )\33,*(1 =a Angyn = /\Fzyu = Flya =0

is obtained. The condition of asymptotic stability is Re\; < 0, i=1... for all
Ai satisfying (3.7).

The typical ways of loosing stability are the following cases: when (SB) a real
Ac or (DB) the real part of a pair of complex conjugate A¢; and Ae2(= A1) changes
sign, while all the others satisfy ReA; < 0, i # c and 7 # ¢l, 2, respectively.
Thus the loss of stability can either be a generic static (SB) or dynamic (DB)
bifurcation [6]. In case of a (SB), Eq. (3.7) has a zero eigenvalue A\, = 0. From
(3.7) the condition of (SB) is

(3.8) Fly, =0.

This phenomenon is also called the divergence instability or the onset of strain
localization [13], because also the uniqueness of the solution 2" is lost and other,
localized nontrivial solutions appear.
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At (DB) the eigenvalues are imaginary values, thus the necessary condition is
o\ —1
(3.9) ((FJ) F' F?) Yo = 0.

The main difference between instabilities (SB) and (DB) is that at (DB) the
uniqueness of v’remains valid, but Lapunov stability is lost.

While (2.5) and (3.1) show that F' depends on the so-called hardening para-
meter and F? on the rate-sensitivity, this classification is similar to that in [19],
where (SB) is called the strain-hardening type and (DB) is the rate sensitivity
type.

Notice that all functions y, should also satisfy the boundary conditions, thus
expressions (3.8), (3.9) are partial differential equations with those boundary
conditions. To obtain the critical eigenfunctions (eigenmodes), these linear bo-
undary value problems should be solved. Unfortunately, in a general case this
step cannot be done analytically. Instead of solving it we could use two kinds of
simplifications.

Firstly, we could restrict ourselves to one-dimensional problems. Then an
analytical solution can easily be calculated (see the example in the following).

Secondly, in the three-axial case special solutions could be studied using the
method called the perturbation technique. It is widely used (see for instance [9,
19]) to omit the boundary value problem. Then the treatment is restricted to the
study of the functions

q(t) exp('i?'r.i‘;.rp),
substituted into the equation of motion. Then conditions (3.8), (3.9) turn out to
be systems of algebraic equations. A detailed study of the linear case is given in
[6].

At the end of this section the nonlinear post-localization will be studied in
case of an (SB) of a stationary (or steady state) solution. A solution of (3.3) and
(3.5) is called stationary, when

Yo = y,ﬂ'j =3y = 0.

Let us study what happens with such solutions at a static bifurcation. In the in-
vestigation also the nonlinear terms N (y,,yy) are necessary. When also nonlinear
terms are added to Eqgs. (3.3) and (3.5), for the stationary solutions

(3.10) 0= F'ya+ N(va)

is obtained, where N(ya) = N(ya.0). Assume that F'! depends on a (for example
loading) parameter p, and at g = 0 condition (3.8) of the static bifurcation is
satisfied by the eigenmode 32,

(3.11) F!l 42=0.
=0
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Defining F' (1) = F' = F'|,—0, Eq. (3.10) assumes the form
(3.12) 0= (F(#) + F'lu=0) ¥ + N (tia)-

In static bifurcation theory [5] in a small neighbourhood of v? (or state S°), the
nontrivial solution can be searched for in the form

Yo = GV
where ¢ is a small real number. By substituting this form into (3.12), relation

(3.13) 0=gF" (u)yo + N (av5)

is obtained because of (3.11). Introducing a scalar product < .,. >, from (3.13)
an approximation of the bifurcation equation [16]

(3.14) 0=q(y9, F' (1)) + (v2, N (as5))

is obtained, which is a nonlinear algebraic equation for ¢. By performing power
series expansions and considering only the first few terms, it can be solved for
q = q(p). Then for a sufficiently small p, the nontrivial solution is

Yo = q(1) Y2

4. Rate and gradient dependence

In the following parts the static and dynamic bifurcations of solid bodies will
be studied in a one-dimensional example. We will also analyse the static post-
bifurcation (post-localization) of a second gradient dependent nonlinear material.
Let a rod of length L be considered. Several kinds of rate-dependence of the con-
stitutive equations will also be investigated. These are second gradient-dependent
and gradient-independent materials. We also study two types of instability pro-
blems of rate and first gradient dependent materials.

4.1. A linear second gradient-dependent material

In case of a second gradient-dependent material, the constitutive equation in

rate form [17]
(4.1) é=51é+§2'€'—-51ﬁ
~ Oz?
is a widely used one, based on the second gradient theory and succesfully used

in static post-localization. Equations (3.4) and (3.5) in this case are
(42) ?;“1 = y2s
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) . 9% o o2
(4-3) Y2 = (01@ & 63@) T 025;592,

where ¢; = —, i=1,2,3. Now, the characteristic Eq. (3.7) is a second order one

o | M

92 o2 o
: 2,
(4.4) A%y — Aea 92~ (01 5.2 O3 63:4) y1 = 0.

In case of homogeneous boundary conditions, the eigenfunctions are

T where ap = E (k=1,-..)

and the eigenvalues are

—cpai + \/cgozi —4a? (csa} + 1)
(4.6) Mok = 5 .
When ¢; and ey are positive, the real parts of all the eigenvalues are negative.
Thus the state is stable, if ¢; > 0 and

(4.7) (esaf +e1) > 0.

The (SB) loss of stability happens, when

(4.8) (csag o3 (:1) = .

Then

(4.9) O = Oy = -2,
c3

In this case the only function of form (4.5) satisfying (4.9) is

(8]
1 -
(4.10) v=eg'¥ €4
Obviously, when for some k
(4.11) ok < Qg

one of the eigenvalues A} o has a positive real part. For that k this implies
instability.

Since ¢ is the tangent of the stress-strain diagram at state S” and during a
quasistatic loading process it gets increasingly negative values on the softening
side, the first critical oy, is at & = 1. In case of the so-called adiabatic localization
[13] L tends to infinity. Then the instability condition (4.8) can be satisfied by
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any arbitrary small real o, thus the state loses stability, when ¢; assumes negative
values. Thus the stability boundary for the adiabatic case is ¢; = 0.
When the loss of stability is of type (DB), the condition is

co =0,

Before the loss of stability Re(A;2.%) < 0, thus (4.7) should be satisfied. Assume
that it remains true during the dynamic loss of stability. Then at ¢ = 0 all
eigenvalues are imaginary numbers

(4.12) M2k = tiagy/ (czaf + 1)

and each of them can be attached to a critical eigenmode. Unfortunately, at
o = oy, expression (4.12) yields a zero eigenvalue, thus a coexistent (SB) and
(DB) instability happens.

From (4.6) we can see that rate-independence for such a material is equivalent
with the (DB) condition. Thus such material is always on the stability boundary
(of course it may be Lyapunov stable but not asymptotically stable [18]). The
“real” loss of stability happens as an additional (SB), if ¢; = 0. Then we obtain
again coexistent (SB) and (DB) instabilities. (For details see [6].)

4.2. The gradient-independent case

Expression (4.6) shows the differences between the gradient-dependent and
independent cases. When the material is gradient-independent, ¢3 = 0. Then
from (4.6)

—cpad £\ /Bad — 4adcy
5 !
The condition of (SB) is ¢; = 0, because then (4.13) implies

(4.13) A2k =

—r:gai + Ic-,g]ori

(4.14) Mg = O
that is,

(4.15) Ap = -Cz—;’c"’laf k=1,2,...
(4.16) Nk = lqgﬂaﬁ, R0, 0

By comparing (4.8) and (4.14) we see, that the main difference is that (4.8) de-
fines a critical k = k* (see (4.9)) and consequently, a critical eigenmode ¢“k-*
for the perturbation. In (4.14) all values k, &k = 1,2... and all perturbations
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ek are critical when ¢; = 0. In other words, for gradient-independent consti-
tutive equation all wavelengths are critical. At the postbifurcation investigation,
the nontrivial solutions were searched for as linear combination of the critical
eigenmodes. Such study cannot be performed for rate-independent constitutive
equation because of the infinite number of critical eigenmodes. Moreover, while
cp > 0 suffices to ensure stability for eigenvalues (4.16), the other group (4.13)
results in a zero eigenvalue with infinite multiplicity.

In case of (DB) instability, the necessary condition is ¢3 = 0 and for the
eigenvalues

A],'.Z,k = :}:i\/’aak.

Contrary to the previous case, now (SB) and (DB) instabilities are distinct phe-
nomena.

When rate-dependence is omitted we again have the permanent (DB) as in
part 4.1.

4.3. The effect of material nonlinearity

In this subsection a nonlinear constitutive equation proposed in [20] is used.
This one contains both second gradient-dependent and rate-dependent terms

. : - D% e\ *®
(4.17) O'=C1(:+Cg€—(,‘3w+ﬂ_1 (5;)

for the adiabatic postlocalization investigation in the one-dimensional case. As-
sume that the loss of stability of state S happens at ¢jp. A small bifurcation
parameter 0 < p < 1 is introduced,

(4.18) C1 = Cjop — |

Using (4.17), (4.18) and the one-dimensional form of (2.1) and (2.2), the equation
of motion for the velocity field is

: # & 9 ) v\’
g s (“HW "“3‘6.?) VT Kt T Cggat T (m) -

While the localization is a static bifurcation [6], the postbifurcation investigation
can be restricted to the steady state solutions © = v = 0 of (4.19). Then instead
of (4.19), equation

2 @ 92 v\’
(42[]) (C}Qm o C;;@') V- p‘,ml’ + ¢4 (m) =0

is used.
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In the linear study of the previous subsection at the loss of stability, the ve-
locity function in form (4.10) was obtained. Thus, as the first critical eigenmode,
function sin(az) can be identified. Similarly to the general treatment, the bifur-
cated nontrivial solution of (4.20) can be searched for as a linear combination of
the critical eigenmodes. Now there is a unique critical eigenmode, thus

v° = gsin(az),

where |¢| < 1 and « satisfies (4.9). Function v® can be substituted into (4.20)
and then the scalar product (the right-hand side of (3.14)

L

82 o4 32 : a
glq, p) = / (((cm—a? ~O A~ “W) qsm(m:)) sin(aur)

0
33 qsin(ox) 2 -
+ ¢4 i sin(ax)dx

defines function g(q, ) for the approximate bifurcation equation

(4.21) 9(q,p) = 0.
Solving (4.21), we obtain

3
4.22 o
4,22) 4 dmeqat

and thus a transcritical bifurcation is obtained and the nontrivial solution is

St £ gk
ve = gy psin(ax),
or, using (4.9),
& 3c% ] c10
(4.23) vt = —e—Sigin Lay s,
dmeycyy cy

4.4. First gradient effects

Let us study now the first gradient effects. Then the constitutive equation
has the generalized form

_ _ 0 .
(4.24) & =dié+ dga—:i + dae + dyo,

which was studied in connection with acceleration waves, both theoretically and
experimentally in [3], and contains a first gradient term.
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Firstly, let us set dq = 0, which is an experimental result for copper [2]. Then
the characteristic equation (3.7) is

g 92 32 63
] - — 1y — d3—=—=y1 —da—=y1 =0,
(4.25) Ay — Mig o —dsg gt — deg gy
1 o
where d; = (—, i = 1,2,3. For homogeneous boundary conditions, as before

p
Eq. (4.5) can be substituted into (4.25) and then a complex equation
(4.26) A3+ Mo} +dsad +idyai =0

is obtained.
The necessary condition of (SB) instability is
dy = d; = 0.
Then
Ak =0

and from (4.26)
Xo3k = TapV/dy.

While dy > 0 (see [3]) these are all real values and a half of them has positive
signs, that is, this case is not a stability boundary.
For (DB) instability the necessary condition is

dy = 0.
Assume that A = v + iw. Then at v = 0 for the imaginary parts from (4.26)
(4.27) —w® +wdya? + deai = 0.

Equation (4.27) should always have at least one real solution w = w(ay). For
this kind of material, the dynamic type of instability (DB) is the only possible
way of stability loss because the conditions of (SB) can only be satisfied in the
instability region.

Now let us study the case when in (4.24) instead of € the stress o is pre-
sent (dz = 0, dq # 0). Now the characteristic equation (3.7) with homogeneous
boundary conditions is

(4.28) A3 — dyA? 4 Mol +idgal = 0.
The necessary condition of (SB) instability from (4.28) is
da =0
http://rcin.org.pl
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and for the other (nonzero) eigenvalues
(4.29) X —dyX+djal =0.

The solutions of (4.29) are

d + E[z—'-'lo(g.dl
(4.30) tiaf o M s ]

IS
2.3,k b

In (4.30) the sign of d4 has a great importance. When it is negative, there is a
static bifurcation, but in case of dy > 0 it does not exist.
For (DB) instability the bifurcation condition is

dg =0

and then we have Eq. (4.27) and the same results as before for the eigenvalues.

5. Concluding remarks

The results show that by considering the system of the basic equations of
a solid continuum as a dynamical system, the material stability conditions can
be formulated by using the linear Lapunov stability conditions. The loss of sta-
bility can be classified into the classes of static and dynamic bifurcations. In
one-dimensional mechanical problems the selection of the constitutive equation
has the most important effect on the type of instability. We studied rate and
gradient-dependent and independent constitutive equations as well. We found
that rate-dependence in most of the cases separates the (SB) and (DB) types of
instability, while the inclusion of gradient-dependence has a more complex effect.
The one which was detected here is the role in determining the dimension of the
critical eigenspace at the loss of stability. In case of the so-called second gradient-
dependent material we have a very simple eigenspace at (SB), thus we could also
perform a nonlinear static bifurcation investigation. For the other material mo-
dels, the study ended up in infinite-dimensional critical nullspaces. Therefore an
exciting theoretical question has arisen: does such behavior belong to the essen-
ce of the real physical phenomenon or it is caused only by the use of improper
material models.
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