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Observable plastic spin and comparison with other approaches

NGUYEN HUU VIEM and B. RANIECKI

Institute of Fundamental Technological Research
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THE OBJECT OF THIS PAPER is to formulate a relation for plastic spin, basing on the
work of RaNiECK! and MROz [17] and the suggestion of HiLL [5].

1. Introduction

IN DESCRIPTION of strain-induced anisotropy during finite (large) straining of
metals and alloys the use of the concept of plastic spin was found to be instru-
mental.

As we know, the plastic spin represents the mean relative spin of all material
fibers measured with respect to some chosen triad which can be thought as being
attached to the substructures. The spin being the difference between the plastic
spin and the material spin, takes part in the substructure corotational rates.
For completing the constitutive equations, one has to specify three additional
equations for plastic spin. As the plastic spin is not measurable explicitly, the
representation theorems for isotropic functions have been used in conjunction
with the concept of tensorial structure variables to provide explicit forms for it
ONAT [12, 13], LORET [9], DAFALIAS [2], PAULUN and PECHERSKI [15]. Another
possibility was proposed in the work of RANIECKI and MROz [17] for a model
of rigid-plastic solids. They indicate that in certain circumstances the plastic
spin can be regarded, at least conceptually, as a measurable quantity. Supposing
that the measurable texture orientation is specified by a rigidly rotating triad
during consecutive steps of plastic deformation, the plastic spin is defined as the
difference of material and texture spin. Such an approach closely follows the ideas
of MANDEL [10, 11].

Tensors will be denoted by boldface characters. With the summation over
repeated indices implied, the following symbolic operations apply : AB — A;;B;,
A-B — AjB;j, A®B — A;;jBy with proper extension to different orders
tensor. The prefix tr indicates the trace, a superscript T the transpose and a
superposed dot the material time derivative or rate. By 1 we denote the identity
tensor and by a superscript -1 the inverse.
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2. Basic relations
2.1. Basic kinematic quantities

Following RANIECKI and MROz [17], consider a uniform deformation of the
rigid-plastic material element. Assume that the orientation of the texture can
be specified at each instant of the process by three unit mutually orthogonal
vectors triad. Let t? (¢ = 1,2,3) be the triad representing the initial texture
orientation in the initial stress-free configuration (kg), see Fig. 1. Assuming that
at each subsequent instant ¢ the orientation of texture is specified by the triad
ti(t), there is ti(tg) = t? obviously. Let Q(t) be the proper orthogonal tensor
(QQ™ = 1) which transforms initial triad t? into instantaneous t;(t), that is
ti(t) = Q(t)t?. The instantaneous texture spin w' is defined as:

(2.1) ti(t) = w'(t) ti(t),
where
(2.2) w'(t) = QQ" = Zt =ti@t;.

time t,

() l
ei

F1e::1.

Introduce the notion of tezture reference frame m; selected in the following
way: vector m; represents a material fiber lying in a chosen material plane with
normal msy and mz = m; A my (the vector product), see MANDEL (10, 11].

The spin w™(m,t) of the reference triad m; will be defined as
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(OBSERVABLE PLASTIC SPIN 209

(2.3) w™(m,t) = m; @m;, m; = w"(m,t)m;.

Here the symbol m in brackets emphasize the fact that w™(m,t) depend on the
selection of texture reference frame.

Denote by V the spatial velocity gradient V = FF~! where F is the deforma-
tion gradient. The symmetric and antisymmetric part of V are, respectively, the
rate of permanent strain D and the material spin w. This idea follows the con-
cept of director triad proposed by MANDEL [10, 11] defined on macrolevel. Some
experiments of plastic deformation of the metal sheet subjected to the tension
test produced the fiber-like textures (see, for example [1]).

To express the spin w™ in terms of V and m; we find first the material
derivative of the reference triad. The material derivative of vector m; can be

: . dx 3
found by differentiating the relation m; = —— to obtain:

jdx]
(2.4) m; = Vm; — (m; - Vm;) m; .
- ‘ wa gradf
In a similar way one can find the material derivative of vector my = lgradf|’
gr

where f(x,¢) = 0 is the material surface in actual configuration in the following
form:

(2:5) my = (my - Vmy)my — Vim,.
From the relation m3z = m; A ms we have

(2.6) mg = 1m; Amy+ m; Ams.

Introducing (2.4), (2.5) and (2.6) into (2.3); it follows that the spin w™ of the
triad m; is a very simple function of the strain rate tensor D and the chosen
triad (see, |7, 18]):

w™ (m,t) = w(t) — w(m,t),
(27) 2(;’(?’1’?., t) - t:.?l'j(m.; ® m; — my ® m,;) ’
wpy = my - Dmy, wi3 = my - Dmg, w32 = my - Dmy.

If the transformation from m; to t; is specified by an orthogonal tensor Q*, then

(2.8) ti = Q*(t) m;, Q*(t) = t; ®m;.

The relative tezture spin w” is defined as follows:
(2.9) W' (m,t) = Q"Q™".
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We can write also

(2.10) 2w" (m, t) = Qfi(t)Qjx(t) (m; ® m; — m; ® m;),

where Q}'J- is the matrix of direction cosines of angles between the vectors t; and
my:

(2.11) QF =m;(t) - t;(t) =m; - Q"'m;, Q*=Q;m;@m,;.

Differentiating (2.11)s with respect to time and using (2.3)2, we obtain

Q* = Q:_; m, ® mj i w™ Qt o Q* w™ :

then on accounting (2.10) we have

(212) Q*Q*T —w +w™— Q*wmQt‘l‘ )

On the other hand, differentiation (2.8), with respect to t, accounting for (2.1)
and (2.3)2, then multiplying two sides by Q*", gives

(2’13) Q*Q*T =gt — Q*wmQ*T :
From (2.12), (2.13) and (2.7); it follows

(2.14) w=w™ +w" = w(t) - (O(m,t) - w(m,t)).

Defining the plastic texture spin wP(t) as the difference of w(t) and w', the
followings relation between these spins take place [17]

(2.15) wP(t) = w — wt = @(m,t) —w'(m,t).

The symbol m in brackets emphasizes the fact that w(m,t) depends on the
selection of the texture reference frame. Both w! and w are independent of
the selection of the particular texture reference frame. Therefore, from (2.15) it
follows that the plastic texture spin wP(t) is also independent of the choice of m;,
and equation (2.15)2 shows the possibility for measurement of w? by metallografic
methods.

If at generic instant ¢ the texture reference triad m; is assumed to coincide with
t;, then the corresponding tensors are denoted by @ and w”, dropping symbol
“m” in brackets, and are called respectively, the texture R-spin and plastic R-spin,
see Fig. 2. In general, at the subsequent instant m;(¢ + 6t) # t;(t + d¢). Setting
m;(t) = t;(t) in (2.7), (2.9) leads to the expression for R-spins:

20 = W;;(ti ®t; —t; ® i),
http://rcin.org.pl
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o' (1)t
/

1+V(t) ot

1744
time t

~ o 5t-B )8t

tl(t): ml(t) time T =t+6t
FiG. 2.
(2.16) w2 =ty - Dty, w3 = t; - Dt3, w3y = tp - Dt3,
and
(2.17) 2" = Wl (4 @t — t; @ ).

Tensor w”dt represents the angles between vectors t;(¢ + §t) and m;(¢ + 6t) while
tensor (w — w)dt specifies the angles between m;(¢) and m;(# + 6¢). The relation
(2.15) remains valid, so that:

(2.18) WWP=w-w=0-w.

The plastic spin is thus divided into two parts. From (2.16), it follows that
w is a known function of t; and D. Both the relative texture spin and plastic
reference spin (including R-spins) are objective tensors. To complete the de-
scription, a constitutive equation for w” should be formulated. This could be
verified by metallografic measurements of the texture orientation changes during
deformation. Due to the lack of appropriate experimental data, some theoreti-
cal assumptions may be proposed to find meaningful constitutive equations. For
example, RANIECKI and SAMANTA supposed w” = 0 what means that the vari-
ation of texture orientation and the variation of its reference frame is the same
during the deformation process [18]. First, we consider the case of simple shear
to explain the notions of this section. The more general case of generalized plane
strain state was studied in the same paper of RANIECKI and MROZ [17].

2.2. General structure of evolution rules for rigid-plastic solids

Consider the texture anisotropy assuming that the yield surface is specified
by the reduced stress & — a, where o is the Cauchy stress and « is the texture
internal stress defining the shift of the yield surface. Let A be the set of variable
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(219) A= (D,O’,C!,t;‘,ﬂ'),

where t; is the texture triad and « is scalar internal variable. Assume that we
know the initial orientation t? of the texture triad and the initial texture stress
a(ty) = a®. A general form of evolution equations for rigid-plastic solids is

(2.20) W =PA), a=QA), a=KA;
here « is the corotational rate with texture

(2.21) a=a+ aw' - w'a

and P is antisymmetric, Q is symmetric and K is a scalar isotropic functions of
all tensor arguments. They are homogeneous functions of degree one of D for
rate-independent materials. We will use some theoretical assumptions for the
form of P. For linear kinematic hardening the evolution equation for a is as
follows:

(2.22) a=cD

where ¢ =const. For this rule, the equation (2.19); can be integrated to obtain
interesting integral form of the equation for the internal variable [17]:

t

(223) «aft)=c /t,-(-r} -D(7) t;(7)dr | ti(t) ® t;(t) + a?j ti(t) ® t;(t) ;

to
here a?j are the initial texture stress components in the initial texture triad
0 0. 040

The first term in (2.23) describes the change of internal stress due to plastic
deformation while the second term specifies the rotation of the initial internal
stress with the texture.

3. Simple shear analysis
3.1. Expressions for the spins of previous section

The motion in simple shear is given by
(3.1) T = X; +ctgxXo = X1 +7 X2, T2 = Xy, T3 = X3,
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time t, . OABC t=t,
. 1 1 L]
time t _OA'B'C % g B t,()  t(t)

Fia. 3.

where z; and X, 1 = 1,2,3, are the Cartesian coordinates of the current and
initial position of a material point, v = ctg x is called the engineering shear strain.
The deformation gradient F in polar decomposition reads F = RU = SR.. After
a straightforward computation we obtain the following relations

1442 7 0
(3.2) S% = ¥y 10
0 01

The rate of plastic deformation, the material spin and the rate RR" in truncated
form (all other components that have an index equal to 3 being identically zero)

are
s{0 1 @ 1
D=4 =1
2(10)’ = 2(—10 J

ol g4 01
244\ -1 0/

Let the rectangle OABC be deformed into a parallelogram OA’B’C’ at the
instant ¢, see Fig. 3. The texture orientation at the initial instant g is specified
by the line ly (the vector t(lo) is parallel to lp). At the instant ¢ the texture
orientation is presented by the position of the line l; (vector ti(¢) lies on this
direction). The material line coinciding before deformation with the segment [y
at instant ¢ occupies the position [,, (vector my;(¢) is parallel to this line). Denote
by ¢(t) the angle between the axis z; and [,. Let the angle x(t) specify the
instantaneous orientation of texture [; and introduce the rotation ¢ = ((t) — k().
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We have at t = t:

(3.4) C(to) = K(to) = ko,  @(to) =0.

From (2.7) and (3.3) it follows that the orientation of [,;, does not depend on the
stretch and shear strain histories:

(3.5) ctg ((t) = v + ctg Ko

and all the spins defined in previous section have now only one independent
component with index ;2 which will be dropped:

(3.6) w(t) = /2 for material spin,
(3.7) )= -k for instantaneous texture spin,
(3.8) w'(m,t) = ¢ for relative texture spin,
(3.9) w(m,t) = COS;C’} for relative plastic spin ,
2 COB2K:- : :
(3.10) === for plastic R-spin,
(3.11) w(t) = Qt) for texture R-spin,
(3.12) wP(t) = @(m, t) — ¢(t) for total plastic spin.
=& - Qt)

The equation (2.1) specifying the texture orientation leads to one differential
equation for x(¢). Supposing that the texture R-spin € is known, this equation
reads

(3.13) k4 Q+ 4sin’s = 0.

and in the case where the total plastic spin is known:

(3.14) k= wh(t) — /2.

Equations (2.23) give, after some transformation, the expressions for internal
stresses
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¥ ¥
gy — Q] = —¢C cos2.~s(’y)/sin 2k(g)dg — sin2k(7y) /cos 2n(g)dg]
0 0

+ (a32 - a?l) cos 2 (k(y) — ko) + 20?2 sin2 (k(y) — Ko) ,

(3.15) g + = (agz + a?l) g
i v
g = g (3052.'5(’}()/COSQK(g)dg+Sin2fi(’y)/$ill?.‘i(g]dg
0 0

o (“[1]1 — a3,)sin2 (k(7y) — ko) + aly cos 2 ((y) — ko) ,

3y = 0:23 .
Here the function x(7) is found from the functions (t) and (), k|,=¢ = Ko. For
incompressible materials —a3; = o, + ad,.
When a Mises-type yield criterion is adopted

(3.16) fzg{&—a)-(&—a)*ogz(}
where @ is the deviator of o, one has
(3.17) on = aiy, T92 = (x92 , O12 = %+012,

so, for zero initial value of a, the relations (3.15 - 3.17) lead to the following
normalized stresses (with respect to yield):

9
e %—10—1 = 2—;—; cos 2k(7) /sin 2k(g)dg
0
o
—sin2n('}')/0032u(9)dg — —0;2,
0
(3.18)
5
N — Gz L+i cos 2k( ]/cost( )d
0

5

+ sin 2k(7) / sin 2k(g)dg
0
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3.2. Different assumptions for texture orientation

1. When total plastic spin is neglected, from (3.14) one has & = —%/2 then
k() = Ko —7/2. Introducing this relation to (3.18), the known oscillatory results
are obtained:

[ c ' 1 C !
(3.19) o =g (1 -cosy) , O1p = 7 + o0 sin7y.

2. With the assumption of RANIECKI and SAMANTA w” = 0 [18], from (2.18)
one has w — w! = @, and the last relation leads to the differential equation

(3.20) k+4sin’k =0,

which gives v = cotgk — cotgrp. After a long but straightforward calculations,
one obtains from (3.18):

] C

= 2 _ 2 o o 1
2 R ey [(v* = Dln(y? + 1) — 29(y — 2arctgy)] ,

(3.21)
1 c

_+.....___._‘,.—
V3 200(y2+1)

3. In paper [2] DAFALIAS considered the corotational rates with spin RR".
This rate was also studied by DIENES [3] for hypoelasticity. This case leads to

g = [(v* = 1)(y - 2arctgy) + 2yIn(+* +1)] .

94
kzw;?h or fc=—arctgg+:cu
and from (3.18) we obtain
. Z) ( I)
oy o0 [4 cos (2a.rctg 5 In| cos arctg 5

+sin (2arctg %) (4a.rctg % - *y)] .

G2)

O3 = ﬁ -+ i [COS (Za.rctg %) (4arctg % - 7)

—4sin (Qarct.g %) In (cos arctg %)] !

which can be shown to be the same as in [2].

4. The simple shear process was considered by PAULUN and PECHERSKI
[14, 16] by introducing an influence function which produces a retardation of the
material spin. In this case, the instantaneous texture spin (3.7) is in the form
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g
2(1+7%)°
then we find k& = kg—1/2 arctgy and equations (3.18) give the followings relations
for stresses as in the papers mentioned above:

(1~ VAT 4y (VR T +9)]

(3.23) P

'
Oy =

209 \/‘72_+

O1p = 2 (TN N [ln (\/72 +1 +'y) +y(VyE+1- 1)] ]
V3 200/t +1

5. The assumption that every material remains isotropic becomes less good as
the deformation continues. Individual crystal grains are elongated in the direction
of the greatest tensile strain and the texture of the specimen becomes fibrous (see
HiLL [5]). Assume that the texture triad coincides with that of the principal axes
of the left stretch tensor S during the deformation process [19]. In this case, from
(3.2) we can find the principal axes of S and the instant texture triad is defined
as follows:

(3.24)

s i i 2y
Jo+ [+ v (a4 [+ D)

(3.25)

. Y- vVr(+4) , 2y
P y 3

\/4724-[ e 72(72+4)]2 \/472+ [72+ 72(72+4)]2

and the instant orientation of the texture triad is

2
k=arctg | —— | .
(74—\/72-&-4)

Now the stresses are

o=y 2T P
= — In 2+ + 2
a1 = ;—724_4[’}’ ( ) }

(3.26)

=I5+ e /TR i (T
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Fi1G. 4. Normalized stress 11 /oo vs. strain; sla - Jaumann; s1b — Raniecki and Samanta;
slc - Dafalias; s1d - Paulun and Pecherski; sle - this paper.
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F1G. 5. Normalized stress o12/0¢0 vs. strain; s2a -
s2¢ — Dafalias; s2d — Paulun and Pecherski; s2e -

Jaumann; s2b - Raniecki and Samanta;
this paper.

We take the material constants for an aluminum alloy from the paper of LEE
et al. [8]: initial yield stress o9 = 207MPa and modulus of linear harderning
¢ = 206.6MPa, to plot the normal o}, and shear stress oy, vs. strain -y for all the
case considered in this section. They are shown in Fig. 4 and Fig. 5 where curve
(a) for Jaumann rate, curve (b) for Raniecki and Samanta’s assumption, curve
(c) for the case of Dafalias, curve (d) for the case of Paulun and Pecherski, and
curve (e) for the assumption of this paper.

4. The expression for the proposed spin in absolute representation

Decompose the deformation gradient F in the polar form

http://rcin
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(4.1) F=RU=S8R,

where U, S are, respectively, the right and the left strech tensors and R is proper
orthogonal. Let IN; and A;, (i = 1,2,3) be respectively, the principal directions
and eigenvalues of the stretch tensor U (which are also those of S)

(4.2) U=\N;®N;.

Denote by n; the principal directions of S, n; = RN;, then

(4.3) S=An;®n;.

By differentiating this spectral decomposition with respect to time we obtain

(4.4) SQ° - Q%S = M\n;®n; - S.

Supposing S known function of ¢ we can find Q5 from the previous relation. The
equation of this form was studied by Guo and others in the paper [4]. Denote
by I, IT and III the principal invariants of S:

[ =M+ A+ A3,
(4.5) I = Xoda + Mgy + Ao,
III = A AoAs.

In case of distinct eigenvalues, the solution of (4.4) is

(4.6) 5 = A72[(6I - ITI — 512 - 11 + I* + 4I1%)(SS — SS)
+(41- 11 - I? — 9I11)(SS? — §2S) + (12 — 31I)(SSS? — §288))

(4.7) A% = (A — A3)%(A3 — A1)\ = X0)?
=181 - II - JIL 4 1% < 112 — 41° - 111 — 411° ~ 271112,

Note that from (4.1) S = RUR" we can express S in terms of the velocity
gradient using the following relations derived by HOGER [6] (valid in case of
distinct eigenvalues)
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(48) U= Tﬁ RT[8’DS? - 1(S?DS + SDS?)
+(I? +11)SDS - I1I(SD + DS) + (I- D] R
and
: 1
o _ 2 N
(49) RR" =w+ ———=I[I*(DS - SD)

+1(S?D - DS?) + (SDS? - 8°DS)].

In the particular case, where DS = SD (HOGER [6] have proved that this is
the necessary and sufficient condition for the corotational Jaumann derivative of
InS to be equal to the stretching tensor D), the relation (4.6) takes the form

(4.10) QF = A-?{(ﬁl I =512 - 11 + I* + 411%) [(wS — Sw)S — S(wS — Sw)]
+(41 - 11 = I* — 9III) [(wS — Sw)S? — §*(wS — Sw)]

+(12 - 311) [S(wS — Sw)S? — §%(wS — Sw)$] }

and the relation for plastic spin (2.18) now reads
(4.11) C wP=w -0

5. Conclusions

In the paper we use the suggestion of HILL to propose the orientation of
instant texture triad for accomplishing the description of rigid-plastic material in
finite deformation. The paper shows the relation between the two approaches for
defining the plastic spin. The considerations presented in the work of Raniecki
and Mr6z permit to understand the physical meaning and, in principle, shows
the possible way to find experimentally the evolution law for plastic spin.
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