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THE THERMOSOLUTAL INSTABILITY of Walters' (Model B’) fluid in porous medium
is considered in the presence of uniform vertical rotation. For the case of stationary
convection, the stable solute gradient and rotation have stabilizing effects on the sys-
tem, whereas the medium permeability has a destabilizing (or stabilizing) effect on
the system under certain conditions. The dispersion relation is also analysed numer-
ically. It has also been shown that as rotation parameter increases, the stabilizing
range of medium also increases. The kinematic viscoelasticity has no effect on the
stationary convection. The stable solute gradient, rotation, porosity and kinemat-
ic viscoelasticity introduce oscillatory modes in the system, which did not occur in
their absence. The sufficient conditions for the non-existance of overstability are also
obtained.
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1. Introduction

A DETAILED ACCOUNT of the theoretical and experimental results of the onset
of thermal instability (Bénard convection) in a fluid layer under varying assump-
tions of hydrodynamics and hydromagnetics has been given in the celebrated
monograph by CHANDRASEKHAR [1]. The problem of thermohaline convection
in a layer of fluid heated from below and subjected to a stable salinity gradient
has been considered by VERONIS [2]. The physics is quite similar to the stellar
case in that helium acts like salt in raising the density and in diffusing more
slowly than heat. The conditions under which convective motions are important
in stellar atmospheres are usually far removed from consideration of a single com-
ponent fluid and rigid boundaries, and therefore it is desirable to consider a fluid
acted on by a solute gradient and free boundaries. The problem of the onset of
thermal instability in the presence of a solute gradient is of great importance be-
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cause of its applications to atmospheric physics and astrophysics, especially in the
case of the ionosphere and the outer layer of the atmosphere. The thermosolutal
convection problems also arise in oceanography, limnology and engineering.
With the growing importance of non-Newtonian fluids in modern technology
and industries, the investigations on such fluids are desirable. The WALTERS’ [3]
fluid (Model B') is one such fluid. In another study, SHARMA and KUMAR [4] have
studies the steady flow and heat transfer of Walters’ fluids (Model B') through
a porous pipe of uniform circular cross-section with small suction. SHARMA and
KUMAR [5], recently studied the stability of the plane interface separating two
viscoelastic Walters’ (Model B’) fluids of uniform densities and found that for
stable configuration, the system is stable or unstable under certain conditions.
In recent years, the investigation of flow of fluids through porous media has
become an important topic due to the recovery of crude oil from the pores of
reservoir rocks. A great number of applications in geophysics may be found in a
recent book by PHILIPS [6]. When the fluid permeates through a porous material,
the gross effect is represented by the Darcy law. As a result of this macroscopic
law, the usual viscous term in the equation of Walters’ fluid (Model B') motion

[a

1
viscosity and viscoelasticity of the Walters’ fluid, k; is the medium permeability

and q is the Darcian (filter) velocity of the fluid. The problem of thermosolutal
convection in fluids in porous medium is of great importance in geophysics, soil
sciences, ground water hydrology and astrophysics. Generally, it is accepted that
comets consist of a dust “snowball” made of a mixture of frozen gases which, in
the process of their journey, changes from solid to gas and vice-versa. The phys-
ical properties of comets, meteorites and interplanetary dust strongly suggest
the importance of porosity in astrophysical context (MCDONNEL [7]). In recent
study, SHARMA et al. [8] studied the instability of streaming Walters’ viscoelas-
tic fluid B" in a porous medium. In many astrophysical situations, the effect
of rotation on thermosolutal convection in a porous medium is also important.
Relative to a large volume of published studies on this phenomenon in pure flu-
ids, the thermosolutal convection in porous medium has received only attention,
although it has interesting engineering applications: the migration of moisture
through the air contained in fibrous insulation, grain storage installations, food
processing and the underground spreading of chemical pollutants. Thermosolutal
convection in porous medium is also of interest in geophysical systems, electro-
chemistry and metallurgy. A comprehensive review of the literature concerning
thermosolutal convection in a fluid-saturated porous medium may be found in
the book by NIELD and BEJAN [9].

Keeping in mind the importance of non-Newtonian fluids in geophysics, soil
physics, ground water hydrology, modern technology and various applications

1}
is replaced by the resistance term |—— | pn — ,u'a q], where pu and u' are the
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mentioned above, the thermosolutal instability of a Walters’ (Model B’) fluid in
porous medium in the presence of uniform vertical rotation, has been considered
in the present paper.

2. Formulation of the problem and perturbation equations

Here we consider an infinite, horizontal, incompressible Walters’ (Model B’)
layer of thickness d, heated and soluted from below so that the temperatures,
densities and solute concentrations at the bottom surface z = 0 are Tp, pg and
Cp, and at the upper surface z = d are Ty, pyq and Cy, respectively, and that
a uniform temperature gradient B(=| dT/dz |) and a uniform solute gradient
f'(=| dC/dz |) are maintained. The gravity field g(0,0, —g) and a uniform ver-
tical rotation €2(0,0,82) act on the system. This fluid layer is assumed to be
flowing through an isotropic and homogeneous porous medium of porosity ¢ and
medium permeability k.

Let p,p,T,C,a,¢,g and q(u,v,w) denote, respectively, the fluid pressure,
density, temperature, solute concentration, thermal coeflicient of expansion, an
analogous solvent coefficient of expansion, gravitational acceleration and fluid
velocity. The equations expressing the conservation of momentum, mass, tem-
perature, solute concentration and equation of state of Walters’ (Model B') fluid
are

: 0
(2.1) é[—g‘—:—ké(q-V)q]=—($)Vp+g(1+£)

1 ( 2
g (-uﬂv'-g-)q—k;(qxﬂ) .

ot
(2.2) V.q=0,
(2.3) E‘Z—T +(q- V)T = sV*T,
(2.4) E’%?— +(q-V)C =K'V?C,
(2.5) p=po[l-al -T)+d(C-C),

where the suffix zero refers to values at the reference level 2z = 0 and in writing
Eq. (2.1) use has been made of Boussinesq approximation. The kinematic vis-
cosity v, the kinematic viscoelasticity v’, the thermal diffusivity & and the solute
c
diffusivity ' are all assumed to be constants. Here £ = ¢ + (1 — ¢) (E‘L—S) is

Po €
a constant and E' is a analogous to E but corresponding to solute rather than
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heat. ps,cs and pyg, ¢; stand for density and heat capacity of solid (porous matrix)
material and fluid, respectively. The steady state solution is

q=(0,0,0), T=-8z+T,
(2.6)

C=-F'2+Cy, p=po(l +aBz —d'f'z).
Here we use the linearized stability theory and the normal mode method. Con-
sider a small perturbation on the steady state solution and let dp,dp, 8,y and
q(u, v, w) denote, respectively, the perturbation in pressure p, density p, temper-
ature T, solute concentration C and velocity q(0,0,0). The change in density dp,
caused mainly by the perturbations # and « in temperature and concentration,
is given by

(2.7) 6p = —po(ab — a'y).

Then the linearized perturbation equations become

1dq 1 7 1 /[ , 0 2
(2.8) — & =5 \Vp) ~gled—al) - o (u v at)q+5(qu,
(2.10) E‘?—a- = Bw + kV?0,
ot
fa'T ' 172
(2.11) Eazﬁw—kmv'}'.

3. The dispersion relation

Analysing the disturbances into normal modes, we assume that the perturba-
tion quantities are of the form
(3.1) [w,0,7,(] = [W(z),0(2), '(2), Z(z)] exp(ikzx + tkyy + nt) .

where k., k, are the wave numbers along the z- and y-directions, respectively,

k = \/(k%+k?) is the resultant wave number and n is the growth rate which

i dv  du
is, in general, a complex constant. { = he = O_y stands for the z-component of
vorticity. .
Expressing the coordinates z,y,z in the new unit of length d and letting
7 v Y 2 ky d
k=== 2 pe L n -8 ad D=L Bes @R
a o v y D1 i q ! C{z y 4l d2 y dz q ( )

(2.11), with the help of expression (3.1), in non-dimensional form become
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(3.2) [;5 + %{(1 . UF)] (02— W + 9% (0o — a1 - 2?53 DZ =0,
(3.3) [g 3 %(1 —aF)]Z = (%)Dw,
(3.4) (D? —a* — Ep,0)® = — (ﬁsz)w
(3.5) (D? - a* — E'qo)T = - (ﬁ;‘fQ)w

Consider the case where both boundaries are free as well as perfect conductors
of both heat and solute concentrations. The case of two free boundaries is a
little artificial but it enables us to find analytical solutions and to make some
qualitative conclusions. The appropriate boundary conditions, with respect to
which Egs. (3.2)—(3.5) must be solved, are (CHANDRASEKHAR [1])

(36) W=D*W=0, ©=0, I'=0, DZ=0, atz=0andl.

The case of two free boundaries, though a little artificial, is the most appropri-
ate for steller atmospheres (SPIEGEL [10]). Using the above boundary conditions,
it can be shown that all the even order derivatives of W must vanish for z = 0
and I and hence, the proper solution of W characterizing the lowest mode is

(3.7) W = Wysinnz,
where Wy is a constant.

Eliminating @, I" and Z between Eqs. (3.2)-(3.5) and substituting the proper
solution W = Wpysinnz, in the resultant equation, we obtain the dispersion
relation

142\ |io T ] :
(3.8) R1=( s )[—El+ﬁ(lﬁwlF]](1+r£+zEp101)

(1+(E+iEp10’1) 2 (1+$+iE})IJ])

+T11 . 1 ) ]
:z:(w?]+%[l—ia1F]) (7 ele)

where .
R — gafd? L ga! Bld? T 4% [2Qd*\*
SR T AT T \ o )

» a? A

r= ? 5 g1 = F
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and

P =#’P.

Equation (3.8) is the required dispersion relation including the effects of ro-
tation, medium permeability, kinematic viscoelasticity and stable solute gradient
on the thermosolutal instability of Walters’ (Model B’) rotating fluid in a porous
medium.

4. The stationary convection

When the instability sets in as stationary convection, the marginal state will
be characterized by ¢ = 0. Putting o = 0, the dispersion relation (3.8) reduces
to

(1+z)?
b o
which expresses the modified Rayleigh number R; as a function of the dimen-
sionless wave number z and the parameters S;,7T4, and P. The parameter F
accounting for the kinematic viscoelasticity effect vanishes for the stationary con-

vection.
To investigate the effects of stable solute gradient, rotation and medium per-

1+ =z)

+ PTy, + 51,

(4.1) R =

meability, we examine the behaviour of jﬁ: ; ji{f :1 and (3;] analytically. Equa-
tion (4.1) yields

dR,
4.2 — =41

which implies that the stable solute gradient has a stabilizing effect on thermoso-
lutal instability of Walters’ (Model B') rotating fluid in a porous medium. The

reverse solute gradient has a destabilizing effect on the system since then %
1
becomes negative. Equation (4.1) also yields
dR] 14z
4. = .
( 3) dT_xl‘ ( o )P

The rotation, therefore, has always a stabilizing effect on the thermosolutal
instability of Walters’ (Model B') rotating fluid in a porous medium.

The dispersion relation (4.1) is analysed numerically. In Fig. 1, R, is plotted
against z for P = 10,74, = 5; S; = 10 (for curve 1), S; = 20 (for curve 2) and
S1 = 30 (for curve 8). The stabilizing role of the stable solute gradient is clear
from the increase of the Rayleigh number with increasing stable solute gradient
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Fic. 1. The variation of Rayleigh number (R;) with wavenumber (z) for P = 10, T4,
51 = 10 (for curve I), S, = 20 (for curve 2), and S; = 30 (for curve 3).
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F1G. 2. The variation of Rayleigh number (R;) with wavenumber (z) for P = 10, S, = 10;
Ta, =5 (for curve 1), Ta, = 7 (for curve 2), and T, = 9 (for curve 3).
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Fi1G. 3. The variation of Rayleigh number (R;) with wavenumber (z) for §; = 10,T4, = 0;
P =10 (for curve 1), P = 20 (for curve 2), and P = 30 (for curve 3).
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Fi1G. 4. The variation of Rayleigh number (R;) with wavenumber (x) for 5 = 10;
P=2,Ty, =5 (for curve 1), P=3,T4, =5 (for curve 2), P = 2,T4, =10 (for curve J) and
P =3,Ta, = 10 (for curve 4).

I)aranw'er Sy value. Figure 2 gives R; plotted against z for P = 10,5, = 10;
T4, = 5 (for curve 1), Ty, = 7 (for curve 2) and T4, = 9 (for curve 3). Here
we also tm(l the stabilizing role of the rotation as the Rayleigh number increases
with the increase in rotation parameter Ty, value. It is evident from (4.1) that

. dRy 1+z\|1+3
(44) dP ( T ){ p? T"'I'l]'

dR,
In the absence of rotation (T4, — 0), P is given by
. dR,  (1+ z)?
(4.5) dP ~  zP?

which is always negative. The medium permeability, therefore, has a destabilizing
effect on thermosolutal instability of Walters’ (Model B’) fluid in the absence of
rotation. In the presence of rotation, the medium permeability has a destabilizing
(or stabilizing) effect on the system if
14z

(4.6) Ta, < (or >)T

It has also been shown graphically that for

i) S; = 10,T4, = 0 (i.e. in the absence of rotation); P = 10 (for curve 1),
P = 20 (for curve 2) and P = 30 (for curve 3); the medium permeability has
always a destabilizing effect (Fig. 3).

ii) §; = 10,T4, = 5; P = 2, (for curve 1), P = 3, (for curve 2); the medium
permeability has a stabilizing influence for z < 29, and for > 29 it has a
destabilizing effect (Fig. 4).
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iii) 81 = 10,T4r = 10; P = 2, (for curve 3) and P = 3, (for curve 4); the
medium permeability has a stabilizing influence for < 59 and for z > 59 it has
a destabilizing effect (Fig. 4).

In addition. it has also been shown that as the rotation parameter increases,
the stabilizing range of medium premeability also increases (Fig. 4).

5. Stability of the system and oscillatory modes

Here we examine the possibility of oscillatory modes, if any, in stability prob-
lem due to the presence of kinematic viscoelasticity, stable solute gradient and
rotation. Multiplying (3.2) by W*, the complex conjugate of W, and using (3.3)-
(3.5) together with the boundary conditions (3.6), we obtain

Pl

(5.1) [g 4 Plt(l —UF)] 5l (J(:;”“ ) [Is + E'q0" I5]

+d? [% + %(1 - a"F)] Is - (9(:;;2) [I2 + Epro™I3] = 0,
where
1 1
L = /(|DW|2 +a? |W[*)dz, I= /(]DOI" +a* |0)?) dz,
0 0
1 1
62 &= [(6P)d, n= [(DrP+e|rp)as,
0, 0
= /(]F|2)dz._ Is = /(l7|]dz.
0 0

The integrals I,. .. , I are all positive definite. Putting o = 0, +i0; and equating
the real and imaginary parts of equation (5.1), we obtain

= 1 F go'k'a® afil I gaka®
(5.3) KE P;)I + — B ——Fqls+d . Ig " ——FEp 13| or

. {l+ga’ﬂ’az d? . gaka® I
TR e TR e
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a.‘ia2
g Uﬂ Eplfg] ag; = 0.

It is evident from (5.3) that o, is positive or negative. The system is, therefore,
stable or unstable. It is clear from (5.4) that o; may be zero or non-zero, meaning
that the modes may be non-oscillatory or oscillatory. The oscillatory modes are
introduced due to the presence of kinematic viscoelasticity, stable solute gradient
and rotation, which were non-existent in their absence.

6. The case of overstability

Here we discuss the possibility of whether instability may occur as overstabil-
ity. Since we wish to determine the Rayleigh number for the onset of instability
via a state of pure oscillations, it suffices to find conditions for which (3.8) will
admit the solutions with o real.

If we equate real and imaginary parts of (3.8) and eliminate R; between them,
we obtain

(61) A2C¥+.4[(:| + Ag =0,

where we have put ¢; = fr‘?,b =1+ and

2
0 nesl g ()]
o a{[-F) (o (-7 )

A v E F
+ [%E’zqz(l - %)]bz + [EQE’QQQ(E—;I — T, +%T41)

+e(b-1)S, (1 - %) (Em — E'q+ %E’q)]b

+ (S0 B B2
P A v q ’
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(6.4) Agzszb{[;g(l—%)}b s [(sip‘ T, + %Tﬂl)]bg

-+ [%T,.'“Epl]b + [%(b = 1)SI(EP1 = EIQ)] b}

Since o, is real for overstability, both the values of ¢;(= o?) are positive.
Equation (6.1) is quadratic in ¢; and does not involve any of its roots to be

positive if

3

2Ty F i
5 Ep,>FEq, Ep>—2 and =<-
(6.5) P> Egq pr > — and & <=,
what implies
3 12 3
7 ) ev d“E &
(6.6) E'k < Ex’, K< 7(29’”)%? and v < >
3 72
Thus E'k < Ex',k < % and v < kg are the sufficient conditions for the

nonexistance of overstability, the violation of which does not necessarily imply
the occurence of overstability.
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